Self-adhesive and biocompatible dry electrodes with conformal contact to skin for epidermal electrophysiology
Xiaoxue Lin , Zeping Ou , Xuewei Wang , Can Wang , Yunfei Ouyang , Ibrahim M. Mwakitawa , Feng Li , Rui Chen , Yaru Yue , Jihe Tang , Wei Fang , Shanshan Chen , Bing Guo , Jianyong Ouyang , Tatyana Shumilova , Yongli Zhou , Liang Wang , Chengwu Zhang , Kuan Sun
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (5) : 775 -790.
Self-adhesive and biocompatible dry electrodes with conformal contact to skin for epidermal electrophysiology
Long-term biopotential monitoring requires high-performance biocompatible wearable dry electrodes. But currently, it is challenging to establish a form-preserving fit with the skin, resulting in high interface impedance and motion artifacts. This research aims to present an innovative solution using an all-green organic dry electrode that eliminates the aforementioned challenges. The dry electrode is prepared by introducing biocompatible maltitol into the chosen conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Thanks to the secondary doping and plasticizer effect of maltitol, the dry electrode exhibits good stretchability (62%), strong self-adhesion (0.46N/cm), high conductivity (102 S/cm), and low Young’s modulus (7 MPa). It can always form a conformal contact with the skin even during body movements. Together with good electrical properties, the electrode enables a lower skin contact impedance compared to the current standard Ag/AgCl gel electrode. Consequently, the application of this dry electrode in bioelectrical signal measurement (electromyography, electrocardiography, electroencephalography) and long-term biopotential monitoring was successfully demonstrated.
biocompatibility / conductivity / dry electrode / self-adhesion / Young’s modulus
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |