Polar materials for photocatalytic applications: A critical review

Xiaoqing Liu , Yu Zhang , Cong Wang , Lei Shen

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 530 -564.

PDF (7645KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 530 -564. DOI: 10.1002/idm2.12176
REVIEW

Polar materials for photocatalytic applications: A critical review

Author information +
History +
PDF (7645KB)

Abstract

The critical challenges of the energy crisis and environmental degradation promote innovative approaches for energy conversion. Semiconductor-based photocatalytic technology, which transforms solar energy into chemical energy, emerges as a promising solution. However, the practical application of this technology faces several challenges, such as the rapid recombination of photogenerated electrons and holes, significantly limiting photocatalytic efficiency. In this review, we provide a detailed discussion, an insightful perspective, and a critical evaluation of recent advances, challenges, and opportunities in the field of photocatalysis using polar materials. We present a comprehensive examination of the photocatalytic mechanisms, activity, and diverse applications of photocatalysts based on polar materials. We also briefly discuss the engineering design of polar photocatalysis in experiments and its scalability in the industry. This review outlines future trends and potential breakthroughs in the photocatalytic field using polar materials, projecting their transformative impact on environmental chemistry and energy engineering.

Keywords

2D Janus structures / ferroelectric materials / heterostructures / photocatalysts / polar materials

Cite this article

Download citation ▾
Xiaoqing Liu, Yu Zhang, Cong Wang, Lei Shen. Polar materials for photocatalytic applications: A critical review. Interdisciplinary Materials, 2024, 3(4): 530-564 DOI:10.1002/idm2.12176

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev. 2011;112(3):1555-1614.

[2]

Fu J, Yu J, Jiang C, Cheng B. g-C3N4-based heterostructured photocatalysts. Adv Energy Mater. 2018;8(3):1701503.

[3]

Khojasteh H, Salavati-Niasari M, Safajou H, Safardoust-Hojaghan H. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diamond Relat Mater. 2017;79:133-144.

[4]

Kalogirou SA. Solar Energy Engineering: Processes and Systems. Elsevier;2023.

[5]

Smalley RE. Future global energy prosperity: the terawatt challenge. MRS Bull. 2005;30(6):412-417.

[6]

Dresselhaus MS, Thomas IL. Alternative energy technologies. Nature. 2001;414(6861):332-337.

[7]

Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253-278.

[8]

Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol. 2015;5(3):1360-1384.

[9]

Hisatomi T, Domen K. Progress in the demonstration and understanding of water splitting using particulate photocatalysts. Curr Opin Electrochem. 2017;2(1):148-154.

[10]

Wu Y, Li C, Tian Z, Sun J. Solar-driven integrated energy systems: state of the art and challenges. J Power Sources. 2020;478:228762.

[11]

Gao R-T, Zhang J, Nakajima T, et al. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat Commun. 2023;14(1):2640.

[12]

Gao R-T, Liu L, Li Y, et al. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting. Proc Natl Acad Sci. 2023;120(27):e2300493120.

[13]

Ju L, Bie M, Tang X, Shang J, Kou L. Janus WSSe monolayer: an excellent photocatalyst for overall water splitting. ACS Appl Mater Interfaces. 2020;12(26):29335-29343.

[14]

Zhao Y-M, Ren P, Ma X-Y, Lewis JP, Yan QB, Su G. Effects of vacancy and Ti doping in 2D Janus mosse on photocatalysis. J Phys Chem C. 2021;125(22):11939-11949.

[15]

Zhou Z, Hou F, Huang X, et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature. 2023;621(7979):499-505.

[16]

Shao G, Yang M, Xiang H, et al. Edge reconstruction of layer-dependent β-In2Se3/MoS2 vertical heterostructures for accelerated hydrogen evolution. Nano Res. 2022;16(1):1670-1678.

[17]

Huang Y-T, Chen N-K, Li Z-Z, et al. Two-dimensional In2Se3: a rising advanced material for ferroelectric data storage. InfoMat. 2022;4(8):e12341.

[18]

de Jesus Silva Chaves M, de Oliveira Lima G, de Assis M, et al. Environmental remediation properties of Bi2WO6 hierarchical nanostructure: a joint experimental and theoretical investigation. J Solid State Chem. 2019;274:270-279.

[19]

Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale. 2013;5(18):8326-8339.

[20]

Li X, Li Z, Yang J. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys Rev Lett. 2014;112(1):018301.

[21]

Han W, Zheng X, Yang K, et al. Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat Nanotechnol. 2023;18(1):55-63.

[22]

Fu C-F, Sun J, Luo Q, Li X, Hu W, Yang J. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018;18(10):6312-6317.

[23]

Wang G, Chang J, Tang W, Xie W, Ang YS. 2D materials and heterostructures for photocatalytic water-splitting: a theoretical perspective. J Phys D Appl Phys. 2022;55(29):293002.

[24]

Ji Y, Yang M, Lin H, et al. Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J Phys Chem C. 2018;122(5):3123-3129.

[25]

Li S, Shi M, Yu J, et al. Two-dimensional blue-phase CX (X = S, Se) monolayers with high carrier mobility and tunable photocatalytic water splitting capability. Chin Chem Lett. 2021;32(6):1977-1982.

[26]

Gao Z, He X, He Y, Xiong K. Tuning of the electronic, photocatalytic and optical properties of Janus XWAZ(2) (X = S, Se, Te; A = Si, Ge;Z = N, P, As) monolayers via strain and external electric field. Catal Sci Technol. 2023;13(19):5718-5733.

[27]

da Silva R, Barbosa R, Mançano RR, et al. Metal chalcogenides Janus monolayers for efficient hydrogen generation by photocatalytic water splitting. ACS Appl Nano Mater. 2019;2(2):890-897.

[28]

Wang P, Zong Y, Liu H, Wen H, Wu HB, Xia JB. Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J Mater Chem C. 2021;9(14):4989-4999.

[29]

Gao X, Shen Y, Liu J, et al. Boosting the photon absorption, exciton dissociation, and photocatalytic hydrogen-and oxygen-evolution reactions by built-in electric fields in Janus platinum dichalcogenides. J Mater Chem C. 2021;9(42):15026-15033.

[30]

Yu Y, Zhou J, Guo Z, Sun Z. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl Mater Interfaces. 2021;13(24):28090-28097.

[31]

Pan H, Feng L, Liu P, Zheng X, Zhang X. Asymmetric surfaces endow Janus bismuth oxyhalides with enhanced electronic and catalytic properties for the hydrogen evolution reaction. J Colloid Interface Sci. 2022;617:204-213.

[32]

Zhou Y, Zhou L, He J. 2D Nb3SBr7 and Ta3SBr7: experimentally achievable Janus photocatalysts with robust coexistence of strong optical absorption, intrinsic charge separation, and ultrahigh solar-to-hydrogen efficiency. ACS Appl Mater Interfaces. 2022;14(1):1643-1651.

[33]

Qi C, Yan C, Li Q, Yang T, Qiu S, Cai J. Two-dimensional Janus monolayers Al2XYZ (X/Y/Z =S, Se, Te, X ≠ Y ≠ Z): first-principles insight into the photocatalytic and highly adjustable piezoelectric properties. J Mater Chem C. 2023;11(9):3262-3274.

[34]

Zhao Y, Zhang B, Lin J. Janus monolayer SiXY (X = P, as and Sb, Y = N, P, As) for photocatalytic water splitting. Appl Surf Sci. 2023;621:156883.

[35]

Liao Y, Zhang Z, Gao Z, Qian Q, Hua M. Tunable properties of novel Ga2O3 monolayer for electronic and optoelectronic applications. ACS Appl Mater Interfaces. 2020;12(27):30659-30669.

[36]

Li Y-Q, Tang D-S, He Q-W, Shang X, Wang XC. Inside vertical reconstruction effect enhances internal polarization field in MXenes for regulating photocatalytic water splitting. Appl Phys Lett. 2023;122(19):193903.

[37]

Liu X, Ling F. 2D indium-VA semiconductors: promising photocatalysts with intrinsic electric fields for water splitting. Sci China Mater. 2023;66(7):2759-2767.

[38]

Ju L, Bie M, Tang X, Shang J, Kou L. Janus WSSe monolayer: an excellent photocatalyst for overall water splitting. ACS Appl Mater Interfaces. 2020;12(26):29335-29343.

[39]

Liu X, Kang W, Zhao J, et al. Intrinsic electric field and excellent photocatalytic solar-to-hydrogen efficiency in two-dimensional Janus transition metal dichalcogenide. Phys Status Solidi Rapid Res Lett. 2022;16(3):2100417.

[40]

Yuan G, Ma X, Liao J, Xie T, Xie Q, Yuan Z. First-principles calculations of 2D Janus WSSiN2 monolayer for photocatalytic water splitting. ACS Appl Nano Mater. 2023;6(3):1956-1964.

[41]

Thanh VV, Truong DV, Tuan Hung N. Janus γ-GeSSe monolayer as a high-performance material for photocatalysis and thermoelectricity. ACS Appl Energy Mater. 2023;6(2):910-919.

[42]

Yang X, Banerjee A, Ahuja R. Structural insight of the frailty of 2D Janus NbSeTe as an active photocatalyst. ChemCatChem. 2020;12(23):6013-6023.

[43]

Haman Z, Khossossi N, Kibbou M, et al. Janus aluminum oxysulfide Al2OS: a promising 2D direct semiconductor photocatalyst with strong visible light harvesting. Appl Surf Sci. 2022;589:152997.

[44]

Guo G, Tan S, Guo G, Xie Z. Strain-enhanced properties of Janus Si2PAs monolayer as a promising photocatalyst for the splitting of water: insights from first-principles calculations. Colloids Surf A. 2023;659:130782.

[45]

Tan X, Chen Q, Liang Y, Tian Z, Gao T, Xie Q. Hexagonal Janus Zn2XY (X = S, Se; Y = Se, Te; X ≠ Y) monolayers: a high-performance photocatalyst for water splitting. Int J Hydrogen Energy. 2024;51:222-230.

[46]

He QW, Wu Y, Yang CH, et al. Switch effect on controlled water splitting by biaxial strain regulating the promising two-dimensional Janus X2PAs (X = Si, Ge and Sn) photocatalyst. Nanoscale. 2023;15(24):10458-10464.

[47]

Dat VD, Vu TV. Janus monolayer HfSO with improved optical properties as a novel material for photovoltaic and photocatalyst applications. New J Chem. 2022;46(4):1557-1568.

[48]

Ying Y, Lin Z, Huang H. “Edge/basal plane half-reaction separation”mechanism of two-dimensional materials for photocatalytic water splitting. ACS Energy Lett. 2023;8(3):1416-1423.

[49]

Cheng YC, Zhu ZY, Tahir M, Schwingenschlögl U. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys Lett. 2013;102(5):57001.

[50]

Lu A-Y, Zhu H, Xiao J, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol. 2017;12(8):744-749.

[51]

Liu X, Kang W, Zhao J, et al. Intrinsic electric field and excellent photocatalytic solar-to-hydrogen efficiency in 2D Janus transition metal dichalcogenide. Phys Status Solidi. 2022;16(3):2100417.

[52]

Liu X, Ling F. 2D indium-VA semiconductors: promising photocatalysts with intrinsic electric fields for water splitting. Sci China Mater. 2023;66(7):2759-2767.

[53]

Xia C, Xiong W, Du J, Wang T, Peng Y, Li J. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys Rev B Condens Matter Mater Phys. 2018;98(16):165424.

[54]

Chen Y, Sun M. Two-dimensional WS2/MoS2 heterostructures: properties and applications. Nanoscale. 2021;13(11):5594-5619.

[55]

Rawool SA, Pai MR, Banerjee AM, et al. pn Heterojunctions in NiO:TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation. Appl Catal B. 2018;221:443-458.

[56]

Yang H, Li J, Yu L, Huang B, Ma Y, Dai Y. A theoretical study on the electronic properties of in-plane CdS/ZnSe heterostructures: type-II band alignment for water splitting. J Mater Chem A. 2018;6(9):4161-4166.

[57]

Wang X, Liu G, Chen Z-G, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun. 2009;23:3452-3454.

[58]

Low J, Dai B, Tong T, Jiang C, Yu J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater. 2019;31(6):1802981.

[59]

Yu J, Wang S, Low J, Xiao W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys. 2013;15(39):16883-16890.

[60]

Liu X, Kang W, Qi L, et al. Two-dimensional g-C3N4/Ti2CO2 heterostructure as a direct Z-scheme photocatalyst for water splitting: a hybrid density functional theory investigation. Phys E. 2021;134:114872.

[61]

Hu J, Chen D, Mo Z, et al. Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew Chem Int Ed. 2019;58(7):2073-2077.

[62]

Shen R, Zhang L, Chen X, Jaroniec M, Li N, Li X. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Appl Catal B. 2020;266:118619.

[63]

Liu X, Zhao Y-M, Zhang X, et al. Data-driven discovery of transition metal dichalcogenide-based Z-scheme photocatalytic heterostructures. ACS Catal. 2023;13(15):9936-9945.

[64]

Yu C, Yang H, Zhao H, et al. Simultaneous hydrogen production from wastewater degradation by protonated porous g-C3N4/BiVO4 Z-scheme composite photocatalyst. Sep Purif Technol. 2024;335:126201.

[65]

Ding CC, Sun YJ, Liu T, Li HD, Fan QC. h2D-C2N/C3B two-dimensional heterostructures: a direct Z-scheme photocatalyst for overall water splitting. J Phys Chem C. 2024;128(8):3377-3383.

[66]

Yu J, Qi J, Lin N, Zhang Z, Ji T, Su W. Zinc-vacancy mediated Z-scheme photocatalyst of ZnS/LaTiO2N for hydrogen evolution under visible-light. J Alloys Compd. 2024;976:173301.

[67]

Hussain MK, Khalid NR, Tanveer M, et al. Facile fabrication of Z-scheme ZnO/MoO3 heterojunction as an excellent visible-light responsive photocatalyst for the degradation of rhodamine B and alizarin yellow dyes. Opt Mater. 2024;148:114794.

[68]

Wang J, Xuan J, Wei X, et al. Direct Z-scheme GaTe/SnS2 van der Waals heterojunction with tunable electronic properties: a promising highly efficient photocatalyst. Int J Hydrogen Energy. 2024;54:979-989.

[69]

Xie KX, Zhang Y, Qiang ZB, et al. A direct Z-scheme GeS/GeSe van der Waals heterojunction as a promising photocatalyst with high optical absorption, solar-to-hydrogen efficiency and catalytic activity for overall water splitting: first-principles prediction. Int J Hydrogen Energy. 2024;51:1381-1391.

[70]

Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B. 2019;243:556-565.

[71]

Xia B, He B, Zhang J, et al. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution. Adv Energy Mater. 2022;12:2201449.

[72]

Cao Y, Wang G, Liu H, Li Y, Jin Z, Ma Q. Regular octahedron Cu-MOFs modifies Mn0.05Cd0.95S nanoparticles to form a S-scheme heterojunction for photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2021;46(10):7230-7240.

[73]

Xu F, Meng K, Cheng B, Wang S, Xu J, Yu J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun. 2020;11(1):4613.

[74]

Yang Y, Cheng B, Yu J, Wang L, Ho W. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res. 2023;16(4):4506-4514.

[75]

Chen M, Umer K, Li B, et al. Metalloporphyrin based MOF-545 coupled with solid solution ZnxCd1-xS for efficient photocatalytic hydrogen production. J Colloid Interface Sci. 2024;653:380-389.

[76]

Zhang B, Hu X, Liu E, Fan J. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin J Catal. 2021;42(9):1519-1529.

[77]

Yang J, Wang J, Wang G, Wang K, Li J, Zhao L. In situ irradiated XPS investigation on S-scheme TiO2/Bi2S3 photocatalyst with high interfacial charge separation for highly efficient photothermal catalytic CO2 reduction. J Mater Sci Technol. 2024;189:86-95.

[78]

Wang W, Li C, Fan J, Sun T, Liu E. Fabrication of NiWO4/g-C3N4 S-scheme heterojunction photocatalyst for enhanced H2 evolution. Surf Interfaces. 2024;44:103811.

[79]

Lu Y, Chen R, Wu F, et al. A novel SiP/TiO2 S-scheme heterojunction photocatalyst for efficient degradation of norfloxacin. Sep Purif Technol. 2023;324:124572.

[80]

Zhang H, Liu J, Zhang Y, Cheng B, Zhu B, Wang L. BiOBr/COF S-scheme photocatalyst for H2O2 production via concerted two-electron pathway. J Mater Sci Technol. 2023;166:241-249.

[81]

Zhu H, Zhang X, Nie Y, Yang D, Xiang G. 2D/2D Janus BiTeCl/GeSe vdW heterostructure as a robust high-performance S-scheme photocatalyst for water splitting. Appl Surf Sci. 2023;635:157694.

[82]

Sun T, Li CX, Bao YP, et al. S-scheme MnCo2S4/g-C3N4 heterojunction photocatalyst for H2 production. Acta Phys Chim Sin. 2023;39(6):2212009.

[83]

Bavani T, Preeyanghaa M, Neppolian B, Madhavan J, Balaji D. A hybrid S-Scheme WS2/BiOI heterojunction photocatalyst for wastewater treatment. ChemPhotoChem. 2023;7(8):e202300024.

[84]

Zhang K, Zhang Y, Zhang D, et al. Efficient photocatalytic water disinfection by a novel BP/BiOBr S-scheme heterojunction photocatalyst. Chem Eng J. 2023;468:143581.

[85]

Gao X, Shen Y, Liu J, et al. Developing dipole-scheme heterojunction photocatalysts. Appl Surf Sci. 2022;599:153942.

[86]

Liu X, Cheng P, Li S, Liu W. Designing a dipole-scheme heterostructure based on Janus TMDCs for highly efficient photocatalytic overall water splitting. Adv Mater Interfaces. 2023;10(22):2300170.

[87]

Serpone N, Borgarello E, Grätzel M. Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions;improved efficiency through inter-particle electron transfer. J Chem Soc Chem Commun. 1984;6:342-344.

[88]

Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol A. 1995;85(3):247-255.

[89]

Bedja I, Kamat PV. Capped semiconductor colloids. synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites. J Phys Chem. 1995;99(22):9182-9188.

[90]

Teranishi T, Sakamoto M. Charge separation in type-II semiconductor heterodimers. J Phys Chem Lett. 2013;4(17):2867-2873.

[91]

Bai S, Jiang J, Zhang Q, Xiong Y. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev. 2015;44(10):2893-2939.

[92]

Rogée L, Wang L, Zhang Y, et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science. 2022;376(6596):973-978.

[93]

Li L, Long R, Prezhdo OV. Charge separation and recombination in two-dimensional MoS2/WS2: time-domain ab initio modeling. Chem Mater. 2017;29(6):2466-2473.

[94]

Zhang X, Zhang Z, Wu D, Zhang X, Zhao X, Zhou Z. Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods. 2018;2(5):1700359.

[95]

Pesci FM, Sokolikova MS, Grotta C, et al. MoS2/WS2 heterojunction for photoelectrochemical water oxidation. ACS Catal. 2017;7(8):4990-4998.

[96]

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694.

[97]

Low J, Jiang C, Cheng B, Wageh S, Al-Ghamdi AA, Yu J. A review of direct Z-scheme photocatalysts. Small Methods. 2017;1(5):1700080.

[98]

Bard AJ. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem. 1979;10(1):59-75.

[99]

Zhou P, Yu J, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater. 2014;26(29):4920-4935.

[100]

Li H, Tu W, Zhou Y, Zou Z. Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv Sci. 2016;3(11):1500389.

[101]

Maeda K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013;3(7):1486-1503.

[102]

Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobiol A. 2002;148(1-3):71-77.

[103]

Sayama K, Mukasa K, Abe R, et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem Commun. 2001;23:2416-2417.

[104]

Miseki Y, Fujiyoshi S, Gunji T, Sayama K. Photocatalytic water splitting under visible light utilizing I3-/I- and IO3-/I- redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catal Sci Technol. 2013;3(7):1750-1756.

[105]

Tabata M, Maeda K, Higashi M, et al. Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir. 2010;26(12):9161-9165.

[106]

Abe R, Shinmei K, Koumura N, Hara K, Ohtani B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc. 2013;135(45):16872-16884.

[107]

Sasaki Y, Kato H, Kudo A. [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc. 2013;135(14):5441-5449.

[108]

Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat Mater. 2006;5(10):782-786.

[109]

Di T, Xu Q, Ho W, Tang H, Xiang Q, Yu J. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem. 2019;11(5):1394-1411.

[110]

Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today. 2018;21(10):1042-1063.

[111]

Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020;6(7):1543-1559.

[112]

Grätzel M. Photoelectrochemical cells. Nature. 2001;414(6861):338-344.

[113]

Liu J, Cheng B, Yu J. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. Phys Chem Chem Phys. 2016;18(45):31175-31183.

[114]

Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater. 2022;34(11):2107668.

[115]

Wu Y, Gao Z, Li H, et al. Promoting carrier separation efficiently by macroscopic polarization charges and interfacial modulation for photocatalysis. Chem Eng J. 2021;410:128393.

[116]

Wan TL, Ge L, Pan Y, et al. Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency. Nanoscale. 2021;13(15):7096-7107.

[117]

Liu L, Huang H. Ferroelectrics in photocatalysis. Chem Eur J. 2022;28(16):e202103975.

[118]

Huang S, Shuai Z, Wang D. Ferroelectricity in 2D metal phosphorus trichalcogenides and van der Waals heterostructures for photocatalytic water splitting. J Mater Chem A. 2021;9(5):2734-2741.

[119]

Ju L, Shang J, Tang X, Kou L. Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer. J Am Chem Soc. 2020;142(3):1492-1500.

[120]

Ju L, Tan X, Mao X, et al. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat Commun. 2021;12(1):5128.

[121]

Liu X, Wang J, Ling F, Shen L. Mechanical control of photocatalysis in 2D ferroelectrics. Solar RRL. 2023;7(22):2300589.

[122]

Zhang Y, Shen Y, Liu J, et al. Symmetry-breaking-induced ferroelectric HfSnX3 monolayers and their tunable Janus structures: promising candidates for photocatalysts and nanoelectronics. Phys Chem Chem Phys. 2023;25(34):22889-22899.

[123]

Zhang X, Zhao F, Wang Y, et al. Two-dimensional GeTe: air stability and photocatalytic performance for hydrogen evolution. ACS Appl Mater Interfaces. 2020;12(33):37108-37115.

[124]

Zhan L-B, Yang C-L, Wang M-S, Ma XG. Discovery of two-dimensional Ga2S3 monolayers for efficient photocatalytic overall water splitting to produce hydrogen. Appl Surf Sci. 2023;626:157215.

[125]

Hegde SS, Surendra BS, Talapatadur V, Murahari P, Ramesh K. Visible light photocatalytic properties of cubic and orthorhombic SnS nanoparticles. Chem Phys Lett. 2020;754:137665.

[126]

Zhang L, Wang W, Zhou L, Xu H. Bi2WO6 nano-and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small. 2007;3(9):1618-1625.

[127]

Li S, Bai L, Ji N, et al. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J Mater Chem A. 2020;8(18):9268-9277.

[128]

Liu L, Huang H, Chen Z, et al. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew Chem Int Ed. 2021;60(33):18303-18308.

[129]

Jiang L, Ni S, Liu G, Xu X. Photocatalytic hydrogen production over Aurivillius compound Bi3TiNbO9 and its modifications by Cr/Nb co-doping. Appl Catal B. 2017;217:342-352.

[130]

Yu H, Huang H, Reshak AH, et al. Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Appl Catal B. 2021;284:119709.

[131]

Al-keisy A, Ren L, Cui D, et al. A ferroelectric photocatalyst Ag10Si4O13 with visible-light photooxidation properties. J Mater Chem A. 2016;4(28):10992-10999.

[132]

Lan Z, Småbråten DR, Xiao C, Vegge T, Aschauer U, Castelli IE. Enhancing oxygen evolution reaction activity by using switchable polarization in ferroelectric InSnO2N. ACS Catal. 2021;11(20):12692-12700.

[133]

Qi W, Wang Y, Wu J, Hu Z, Jia C, Zhang H. Relaxor ferroelectric and photocatalytic properties of BaBi4Ti4O15. Adv Appl Ceramics. 2019;118(7):418-424.

[134]

Wang Y, Zhang M, Wu J, Hu Z, Zhang H, Yan H. Ferroelectric and photocatalytic properties of Aurivillius phase Ca2Bi4Ti5O18. J Am Ceram Soc. 2021;104(1):322-328.

[135]

Chao C, Zhou Y, Han T, et al. Ferroelectric polarization-enhanced photocatalytic properties and photo-induced charge carrier behavior of Au/BaTiO3. J Alloys Compd. 2020;825:154060.

[136]

Wang Y, Li X, Chen Y, et al. Pulsed-laser-triggered piezoelectric photocatalytic CO2 reduction over tetragonal BaTiO3 nanocubes. Adv Mater. 2023;35(45):2305257.

[137]

Li J, Zhang G, Han S, Cao J, Duan L, Zeng T. Enhanced solar absorption and visible-light photocatalytic and photoelectrochemical properties of aluminium-reduced BaTiO3 nanoparticles. Chem Commun. 2018;54(7):723-726.

[138]

Ortiz N, Zoellner B, Kumar V, et al. Composite ferroelectric and plasmonic particles for hot charge separation and photocatalytic hydrogen gas production. ACS Appl Energy Mater. 2018;1(9):4606-4616.

[139]

Chao C, Zhou Y, Li H, He W, Fa W. Polarization-induced selective growth of Au islands on single-domain ferroelectric PbTiO3 nanoplates with enhanced photocatalytic activity. Appl Surf Sci. 2019;466:274-281.

[140]

Huang G, Zhang G, Gao Z, et al. Enhanced visible-light-driven photocatalytic activity of BiFeO3 via electric-field control of spontaneous polarization. J Alloys Compd. 2019;783:943-951.

[141]

He J, Liu Y, Qu J, et al. Boosting photocatalytic water oxidation on photocatalysts with ferroelectric single domains. Adv Mater. 2023;35(14):2210374.

[142]

Zlotnik S, Tobaldi DM, Seabra P, Labrincha JA, Vilarinho PM. Alkali niobate and tantalate perovskites as alternative photocatalysts. Chemphyschem. 2016;17(21):3570-3575.

[143]

Raja S, Ramesh Babu R, Chandra Mohan S, Jothivenkatachalam K, Ramamurthi K. Visible light driven photocatalytic activity of palladium nanoparticles assisted potassium niobate microrods. Appl Surf Sci. 2019;497:143737.

[144]

Tu S, Zhang Y, Reshak AH, et al. Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy. 2019;56:840-850.

[145]

Chen L, Hai P, Yang Y, Wu C, Hu Y, Rao WF. Highly efficient photocatalytic hydrogen production by platinum modified ferroelectric SrBi4Ti4O15. Sep Purif Technol. 2023;309:123058.

[146]

Xu X-F, Chen L-F, Xu H-K, et al. Theoretical study on the stability, ferroelectricity and photocatalytic properties of CaBiO3. RSC Adv. 2022;12(47):30764-30770.

[147]

Hou P, Lv Y, Zhong X, Wang J. α-In2Se3 nanoflakes modulated by ferroelectric polarization and Pt nanodots for photodetection. ACS Appl Nano Mater. 2019;2(7):4443-4450.

[148]

Carey JH, Lawrence J, Tosine HM. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol. 1976;16(6):697-701.

[149]

Chiu Y-H, Chang TF, Chen C-Y, Sone M, Hsu YJ. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts. 2019;9(5):430.

[150]

Zhao H, Jian L, Gong M, et al. Transition-metal-based cocatalysts for photocatalytic water splitting. Small Struct. 2022;3(7):2100229.

[151]

Su T, Shao Q, Qin Z, Guo Z, Wu Z. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018;8(3):2253-2276.

[152]

Li J, Cai L, Shang J, Yu Y, Zhang L. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv Mater. 2016;28(21):4059-4064.

[153]

You J, Xiao M, Liu S, et al. How carbon contamination on the photocatalysts interferes with the performance analysis of CO2 reduction. J Mater Chem A. 2023;11(19):10149-10154.

[154]

Zhu Q, Zhang K, Li D, et al. Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: a review. Chem Eng J. 2021;426:131681.

[155]

Dai B, Fang J, Yu Y, et al. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater. 2020;32(12):1906361.

[156]

Chen J, Luo W, Yu S, et al. Synergistic effect of photocatalysis and pyrocatalysis of pyroelectric ZnSnO3 nanoparticles for dye degradation. Ceram Int. 2020;46(7):9786-9793.

[157]

Zhou X, Sun Q, Zhai D, Xue G, Luo H, Zhang D. Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect. Nano Energy. 2021;84:105936.

[158]

Zhang C, Deng Y, Wan Q, et al. Built-in electric field boosted exciton dissociation in sulfur doped BiOCl with abundant oxygen vacancies for transforming the pathway of molecular oxygen activation. Appl Catal B. 2024;343:123557.

[159]

Yuan J, Huang X, Zhang L, et al. Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Appl Catal B. 2020;278:119291.

[160]

Li J, Zhan G, Yu Y, Zhang L. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat Commun. 2016;7(1):11480.

[161]

Lefebvre P, Allègre J, Gil B, et al. Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells. Phys Rev B: Condens Matter Mater Phys. 1999;59(23):15363-15367.

[162]

Morello G, Della Sala F, Carbone L, et al. Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: photoinduced screening of the internal electric field. Phys Rev B: Condens Matter Mater Phys. 2008;78(19):195313.

[163]

Guo Y, Shi W, Zhu Y. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat. 2019;1(1):e12007.

[164]

Franchini C, Reticcioli M, Setvin M, Diebold U. Polarons in materials. Nat Rev Mater. 2021;6(7):560-586.

[165]

Nonnenmacher M, o’Boyle MP, Wickramasinghe HK. Kelvin probe force microscopy. Appl Phys Lett. 1991;58(25):2921-2923.

[166]

Melitz W, Shen J, Kummel AC, Lee S. Kelvin probe force microscopy and its application. Surf Sci Rep. 2011;66(1):1-27.

[167]

Guo Y, Shi W, Zhu Y, Xu Y, Cui F. Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. Appl Catal B. 2020;262:118262.

[168]

Gao Y, Zhu J, An H, et al. Directly probing charge separation at interface of TiO2 phase junction. J Phys Chem Lett. 2017;8(7):1419-1423.

[169]

Chen Y, Yang W, Gao S, Zhu L, Sun C, Li Q. Internal polarization modulation in Bi2MoO6 for photocatalytic performance enhancement under visible-light illumination. ChemSusChem. 2018;11(9):1521-1532.

[170]

Pan C, Li D, Ma X, Chen Y, Zhu Y. Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. Catal Sci Technol. 2011;1(8):1399-1405.

[171]

Cao Y, Wang Z, Park SY, et al. Artificial two-dimensional polar metal at room temperature. Nat Commun. 2018;9(1):1547.

[172]

Zhang Z, Zhu Y, Chen X, Zhang H, Wang J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv Mater. 2019;31(7):1806626.

[173]

Weingarten AS, Dannenhoffer AJ, Kazantsev RV, Sai H, Huang D, Stupp SI. Chromophore dipole directs morphology and photocatalytic hydrogen generation. J Am Chem Soc. 2018;140(15):4965-4968.

[174]

Wang J, Shi W, Liu D, Zhang Z, Zhu Y, Wang D. Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Appl Catal B. 2017;202:289-297.

[175]

Chu J, Wang Y, Wang X, et al. 2D polarized materials: ferromagnetic, ferrovalley, ferroelectric materials, and related heterostructures. Adv Mater. 2021;33(5):2004469.

[176]

Low T, Chaves A, Caldwell JD, et al. Polaritons in layered two-dimensional materials. Nat Mater. 2017;16(2):182-194.

[177]

Pan Q, Yang K, Wang G, et al. BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting. Chem Eng J. 2019;372:399-407.

[178]

Liu Y, Lv Y, Zhu Y, Liu D, Zong R, Zhu Y. Fluorine mediated photocatalytic activity of BiPO4. Appl Catal B. 2014;147:851-857.

[179]

Huang G, Shi R, Zhu Y. Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. J Mol Catal A Chem. 2011;348(1-2):100-105.

[180]

Bai X, Sun C, Wu S, Zhu Y. Enhancement of photocatalytic performance via a P3HT-g-C3N4 heterojunction. J Mater Chem A. 2015;3(6):2741-2747.

[181]

Tao X, Gao Y, Wang S, et al. Interfacial charge modulation: an efficient strategy for boosting spatial charge separation on semiconductor photocatalysts. Adv Energy Mater. 2019;9(13):1803951.

[182]

Peng Y, Zhang Y, Wang X, et al. Polar aromatic two-dimensional dion-jacobson halide perovskites for efficient photocatalytic H2 evolution. Angew Chem Int Ed. 2024;63:e202319882.

[183]

Xin X, Li Y, Zhang Y, et al. Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting. Nat Commun. 2024;15(1):337.

[184]

Wang X, Liu B, Ma S, et al. Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution. Nat Commun. 2024;15(1):2600.

[185]

Li D-F, Zhao P-J, Deng X-H, et al. A new organic–inorganic hybrid perovskite ferroelectric [ClCH2CH2N(CH3)3][PbBr3] and its PVDF matrix-assisted highly-oriented flexible ferroelectric films. New J Chem. 2022;46(40):19391-19400.

[186]

Huang C-R, Luo X, Liao W-Q, Tang YY, Xiong RG. An above-room-temperature molecular ferroelectric: [cyclopentylammonium]2CdBr4. Inorg Chem. 2020;59(1):829-836.

[187]

Zhang Y, Liao W-Q, Fu D-W, Ye HY, Chen ZN, Xiong RG. Highly efficient red-light emission in an organic–inorganic hybrid ferroelectric: (pyrrolidinium)MnCl3. J Am Chem Soc. 2015;137(15):4928-4931.

[188]

Li L-S, Tan Y-H, Wei W-J, Gao HQ, Tang YZ, Han XB. Chiral switchable low-dimensional perovskite ferroelectrics. ACS Appl Mater Interfaces. 2021;13(1):2044-2051.

[189]

Gou J, Bai H, Zhang X, et al. Two-dimensional ferroelectricity in a single-element bismuth monolayer. Nature. 2023;617(7959):67-72.

[190]

Xu X, Zhong T, Zuo N, et al. High-Tc two-dimensional ferroelectric CuCrS2 grown via chemical vapor deposition. ACS Nano. 2022;16(5):8141-8149.

[191]

Zhou Z, Li A, Wu F, Huang C, Kan E. Two-dimensional ferroelectricity in a single-atom adsorbed BiI3 monolayer. J Phys Chem C. 2023;127(7):3898-3903.

[192]

Kruse M, Petralanda U, Gjerding MN, Jacobsen KW, Thygesen KS, Olsen T. Two-dimensional ferroelectrics from high throughput computational screening. npj Comput Mater. 2023;9(1):45.

[193]

Smidt TE, Mack SA, Reyes-Lillo SE, Jain A, Neaton JB. An automatically curated first-principles database of ferroelectrics. Sci Data. 2020;7(1):72.

[194]

Ricci F, Reyes-Lillo SE, Mack SA, Neaton JB. Candidate ferroelectrics via ab initio high-throughput screening of polar materials. npj Comput Mater. 2024;10(1):15.

[195]

Liu Y, Morozovska AN, Ghosh A, et al. Stress and curvature effects in layered 2D ferroelectric CuInP2S6. ACS Nano. 2023;17(21):22004-22014.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (7645KB)

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/