Chiral twisted molecular carbons: Synthesis, properties, and applications

Yunqin Zhang , Junjie Guan , Leiquan Luo , Xiao Han , Jie Wang , Yongshen Zheng , Jialiang Xu

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 453 -479.

PDF (6415KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 453 -479. DOI: 10.1002/idm2.12173
REVIEW

Chiral twisted molecular carbons: Synthesis, properties, and applications

Author information +
History +
PDF (6415KB)

Abstract

In recent years, the precisely controlled synthesis of chiral twisted molecular carbons has emerged as a forefront topic in the research of carbon materials. Molecular carbons refer to carbon nanomaterials synthesized with precision at the atomic level. Through rational design, rigid and stable chiral twisted structures can be synthesized. The exploration in the field of chiral twisted molecular carbons is key to fully understanding the various twisted configurations of carbon materials and delving into the relationship between structure design and functionality. This review explores chiral twisted configurations of carbon nanomaterials such as nanographene, carbon nanobelts, carbon nanosheets, graphdiyne, etc. It emphasizes the role of photocyclization, Scholl reaction, and Diels–Alder reactions in achieving precise chiral control and discusses a range of innovative design strategies. These strategies have led to the development of various twisted structures, such as helical, propeller, and Möbius strip configurations. The introduction of chirality, combined with the inherent exceptional optical properties of nanocarbon materials, has facilitated the creation of materials with superior chiroptical performances. This advancement is driving applications in fields such as optoelectronics and chiral optics.

Keywords

carbon nanomaterials / carbon nanobelts / chirality / molecular carbon / nanographene

Cite this article

Download citation ▾
Yunqin Zhang, Junjie Guan, Leiquan Luo, Xiao Han, Jie Wang, Yongshen Zheng, Jialiang Xu. Chiral twisted molecular carbons: Synthesis, properties, and applications. Interdisciplinary Materials, 2024, 3(4): 453-479 DOI:10.1002/idm2.12173

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao B, Yang S, Deng J, Pan K. Chiral graphene hybrid materials: structures, properties, and chiral applications. Adv Sci. 2021;8:2003681.

[2]

Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality pure carbon nanotubes: growth, sorting, and characterization. Chem Rev. 2020;120:2693-2758.

[3]

Yan X, Zhao H, Zhang K, Zhang Z, Chen Y, Feng L. Chiral carbon dots: synthesis and applications in circularly polarized luminescence, biosensing and biology. ChemPlusChem. 2023;88:e202200428.

[4]

Maroto EE, Izquierdo M, Reboredo S, Marco-Martínez J, Filippone S, Martín N. Chiral fullerenes from asymmetric catalysis. Acc Chem Res. 2014;47:2660-2670.

[5]

Fernández-García JM, Evans PJ, Filippone S, Herranz , Martín N. Chiral molecular carbon nanostructures. Acc Chem Res. 2019;52:1565-1574.

[6]

Zhang Z, Lei Y, Huang W. Recent progress in carbon-based materials boosting electrochemical water splitting. Chin Chem Lett. 2022;33:3623-3631.

[7]

Gao P, Xie Z, Zheng M. Small nanoparticles bring big prospect: the synthesis, modification, photoluminescence and sensing applications of carbon dots. Chin Chem Lett. 2022;33:1659-1672.

[8]

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-669.

[9]

Yu H, Feng Y, Chen C, et al. Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon. 2021;179:348-357.

[10]

Yu H, Chen C, Sun J, et al. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano Micro Lett. 2022;14:135.

[11]

Zhang H, He Q, Yu H, Qin M, Feng Y, Feng W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv Funct Mater. 2023;33:2211985.

[12]

Gu Y, Qiu Z, Müllen K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J Am Chem Soc. 2022;144:11499-11524.

[13]

Baldridge KK, Siegel JS. Corannulene-based fullerene fragments C20H10-C50H10: when does a buckybowl become a buckytube? Theor Chem Acc. 1997;97:67-71.

[14]

Bunz UHF, Menning S, Martín N. para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? Angew Chem Int Ed. 2012;51:7094-7101.

[15]

Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J Am Chem Soc. 2012;134:107-110.

[16]

Lewis SE. Cycloparaphenylenes and related nanohoops. Chem Soc Rev. 2015;44:2221-2304.

[17]

Cheung KY, Chan CK, Liu Z, Miao Q. A twisted nanographene consisting of 96 carbon atoms. Angew Chem Int Ed. 2017;56:9003-9007.

[18]

Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Synthesis of a carbon nanobelt. Science. 2017;356:172-175.

[19]

Guo QH, Qiu Y, Wang MX, Fraser Stoddart J. Aromatic hydrocarbon belts. Nat Chem. 2021;13:402-419.

[20]

Wang MW, Fan W, Li X, et al. Molecular carbons: how far can we go? ACS Nano. 2023;17:20734-20752.

[21]

Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic applications of oxidative aromatic coupling-from biphenols to nanographenes. Angew Chem Int Ed. 2020;59:2998-3027.

[22]

Anderson HV, Gois ND, Chalifoux WA. New advances in chiral nanographene chemistry. Org Chem Front. 2023;10:4167-4197.

[23]

Fang M, Wang B, Qu X, et al. State-of-the-art of biomass-derived carbon dots: preparation, properties, and applications. Chin Chem Lett. 2024;35:108423.

[24]

Zhao WL, Li M, Lu HY, Chen CF. Advances in helicene derivatives with circularly polarized luminescence. Chem Commun. 2019;55:13793-13803.

[25]

Gingras M. One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. Chem Soc Rev. 2013;42:1051-1095.

[26]

Gingras M. One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem Soc Rev. 2013;42:968-1006.

[27]

Newman MS, Lednicer D. The synthesis and resolution of hexahelicene. J Am Chem Soc. 2002;78:4765-4770.

[28]

Yagi A, Segawa Y, Itami K. Armchair and chiral carbon nanobelts: scholl reaction in strained nanorings. Chem. 2019;5:746-748.

[29]

Zhang R, Zhu J, An D, Lu X, Liu Y. Synthetic strategies and applications towards carbon nanorings and carbon nanobelts. Sci Bull. 2023;68:247-250.

[30]

Zhang Y, Pun SH, Miao Q. The scholl reaction as a powerful tool for synthesis of curved polycyclic aromatics. Chem Rev. 2022;122:14554-14593.

[31]

Fernández-García JM, Izquierdo-García P, Buendía M, Filippone S, Martín N. Synthetic chiral molecular nanographenes: the key figure of the racemization barrier. Chem Commun. 2022;58:2634-2645.

[32]

Xu K, Fu Y, Zhou Y, et al. Cationic nitrogen-doped helical nanographenes. Angew Chem Int Ed. 2017;56:15876-15881.

[33]

Qiu Z, Asako S, Hu Y, et al. Negatively curved nanographene with heptagonal and [5]helicene units. J Am Chem Soc. 2020;142:14814-14819.

[34]

Izquierdo-García P, Fernández-García JM, Medina Rivero S, et al. Helical bilayer nanographenes: impact of the helicene length on the structural, electrochemical, photophysical, and chiroptical properties. J Am Chem Soc. 2023;145:11599-11610.

[35]

Medel MA, Cruz CM, Miguel D, Blanco V, Morcillo SP, Campaña AG. Chiral distorted hexa-peri-hexabenzocoronenes bearing a nonagon-embedded carbohelicene. Angew Chem Int Ed. 2021;60:22051-22056.

[36]

Niu W, Fu Y, Qiu ZL, et al. π-extended helical multilayer nanographenes with layer-dependent chiroptical properties. J Am Chem Soc. 2023;145:26824-26832.

[37]

Zhu Y, Xia Z, Cai Z, et al. Synthesis and characterization of hexapole [7]helicene, a circularly twisted chiral nanographene. J Am Chem Soc. 2018;140:4222-4226.

[38]

Liu C, Cheng P, Shi R, et al. Second harmonic generation from tetraphenylethylene functionalized graphdiyne. 2D Mater. 2021;9:014006.

[39]

Zhu Y, Guo X, Li Y, Wang J. Fusing of seven hbcs toward a green nanographene propeller. J Am Chem Soc. 2019;141:5511-5517.

[40]

Shen YJ, Yao NT, Diao LN, Yang Y, Chen XL, Gong HY. A π-extended pentadecabenzo[9]helicene. Angew Chem Int Ed. 2023;62:e202300840.

[41]

Segawa Y, Watanabe T, Yamanoue K, et al. Synthesis of a Möbius carbon nanobelt. Nature Synthesis. 2022;1:535-541.

[42]

Herges R, Deichmann M, Wakita T, Okamoto Y. Synthesis of a chiral tube. Angew Chem Int Ed. 2003;42:1170-1172.

[43]

Van Raden JM, Leonhardt EJ, Zakharov LN, et al. Precision nanotube mimics via self-assembly of programmed carbon nanohoops. J Org Chem. 2019;85:129-141.

[44]

Chen Y, Lin C, Luo Z, et al. Double π-extended undecabenzo[7]helicene. Angew Chem Int Ed. 2021;60:7796-7801.

[45]

Cruz CM, Castro-Fernández S, Maçôas E, Cuerva JM, Campaña AG. Undecabenzo[7]superhelicene: a helical nanographene ribbon as a circularly polarized luminescence emitter. Angew Chem Int Ed. 2018;57:14782-14786.

[46]

Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. Hexa-peri-hexabenzo[7]helicene: homogeneously π-extended helicene as a primary substructure of helically twisted chiral graphenes. J Am Chem Soc. 2018;140:4317-4326.

[47]

Narita A, Wang XY, Feng X, Müllen K. New advances in nanographene chemistry. Chem Soc Rev. 2015;44:6616-6643.

[48]

Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Controlled Release. 2018;286:64-73.

[49]

Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114:10869-10939.

[50]

Wang XY, Yao X, Narita A, Müllen K. Heteroatom-doped nanographenes with structural precision. Acc Chem Res. 2019;52:2491-2505.

[51]

Liu Z, Fu S, Liu X, et al. Small size, big impact: recent progress in bottom-up synthesized nanographenes for optoelectronic and energy applications. Adv Sci. 2022;9:2106055.

[52]

Lin A, Huimin L, Rui L, et al. Dual sensitivity of spiropyran-functionalized carbon dots for full color conversions. Chin Chem Lett. 2022;65:2274-2282.

[53]

Nakakuki Y, Hirose T, Matsuda K. Synthesis of a helical analogue of kekulene: a flexible π-expanded helicene with large helical diameter acting as a soft molecular spring. J Am Chem Soc. 2018;140:15461-15469.

[54]

Li R, Wang D, Li S, An P. Construction of hexabenzocoronene-based chiral nanographenes. Beilstein J Org Chem. 2023;19:736-751.

[55]

Shen C, Zhang G, Ding Y, et al. Oxidative cyclo-rearrangement of helicenes into chiral nanographenes. Nat Commun. 2021;12:2786.

[56]

Reger D, Haines P, Amsharov KY, et al. A family of superhelicenes: easily tunable, chiral nanographenes by merging helicity with planar π systems. Angew Chem Int Ed. 2021;60:18073-18081.

[57]

Milton M, Schuster NJ, Paley DW, et al. Defying strain in the synthesis of an electroactive bilayer helicene. Chem Sci. 2019;10:1029-1034.

[58]

Míguez-Lago S, Mariz IFA, Medel MA, et al. Highly contorted superhelicene hits near-infrared circularly polarized luminescence. Chem Sci. 2022;13:10267-10272.

[59]

Xu Q, Wang C, He J, et al. Corannulene-based nanographene containing helical motifs. Org Chem Front. 2021;8:2970-2976.

[60]

Ogawa N, Yamaoka Y, Takikawa H, Yamada K, Takasu K. Helical nanographenes embedded with contiguous azulene units. J Am Chem Soc. 2020;142:13322-13327.

[61]

Zhang B, Ruan L, Zhang YK, Zhang H, Li R, An P. Azepine-embedded seco-hexabenzocoronene-based helix nanographenes: access to modification of the core by n-h functionalization. Org Lett. 2023;25:732-737.

[62]

Medel MA, Tapia R, Blanco V, Miguel D, Morcillo SP, Campaña AG. Octagon-embedded carbohelicene as a chiral motif for circularly polarized luminescence emission of saddle-helix nanographenes. Angew Chem Int Ed. 2021;60:6094-6100.

[63]

Fernández-García JM, Evans PJ, Medina Rivero S, et al. π-extended corannulene-based nanographenes: selective formation of negative curvature. J Am Chem Soc. 2018;140:17188-17196.

[64]

Hossain MA, Yamashita K, Hirabayashi K, Shimizu T, Goto K, Sugiura K. Thiophene-fused dinaphthopentaphenes: versatile applications of 1, 2-bis(pyren-2-yl)aromatics in the synthesis of π-expanded molecules. ChemistrySelect. 2017;2:4343-4348.

[65]

Maeda C, Nagahata K, Shirakawa T, Ema T. Azahelicene-fused BODIPY analogues showing circularly polarized luminescence. Angew Chem Int Ed. 2020;59:7813-7817.

[66]

Maeda C, Nomoto S, Akiyama K, Tanaka T, Ema T. Facile synthesis of azahelicenes and diaza[8]circulenes through the intramolecular scholl reaction. Chem –Eur J. 2021;27:15699-15705.

[67]

Qiu Z, Ju CW, Frédéric L, et al. Amplification of dissymmetry factors in π-extended [7]- and [9]helicenes. J Am Chem Soc. 2021;143:4661-4667.

[68]

Reger D, Haines P, Heinemann FW, Guldi DM, Jux N. Oxa[7]superhelicene: a π-extended helical chromophore based on hexa-peri-hexabenzocoronenes. Angew Chem Int Ed. 2018;57:5938-5942.

[69]

Uehara K, Kano H, Matsuo K, et al. Mirror-image cofacial coronene dimers characterized by cd and cpl spectroscopy: a twisted bilayer nanographene. ChemPhotoChem. 2021;5:974-978.

[70]

Evans PJ, Ouyang J, Favereau L, et al. Synthesis of a helical bilayer nanographene. Angew Chem Int Ed. 2018;57:6774-6779.

[71]

Dusold C, Sharapa DI, Hampel F, Hirsch A. π-extended diaza[7]helicenes by hybridization of naphthalene diimides and hexa-peri-hexabenzocoronenes. Chem – Eur J. 2021;27:2332-2341.

[72]

Ju YY, Chai L, Li K, et al. Helical trilayer nanographenes with tunable interlayer overlaps. J Am Chem Soc. 2023;145:2815-2821.

[73]

Wang J, Zhu Y, Zhuang G, et al. Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nat Commun. 2022;13:1239.

[74]

Li S, Li R, Zhang YK, et al. BINOL-like atropisomeric chiral nanographene. Chem Sci. 2023;14:3286-3292.

[75]

Izquierdo-García P, Fernández-García JM, Fernández I, Perles J, Martín N. Helically arranged chiral molecular nanographenes. J Am Chem Soc. 2021;143:11864-11870.

[76]

Krzeszewski M, Kodama T, Espinoza EM, Vullev VI, Kubo T, Gryko DT. Nonplanar butterfly-shaped π-expanded pyrrolopyrroles. Chem –Eur J. 2016;22:16478-16488.

[77]

Liu Y, Ma Z, Wang Z, Jiang W. Boosting circularly polarized luminescence performance by a double π-helix and heteroannulation. J Am Chem Soc. 2022;144:11397-11404.

[78]

Li C, Wu H, Zhang T, et al. Functionalized π stacks of hexabenzoperylenes as a platform for chemical and biological sensing. Chem. 2018;4:1416-1426.

[79]

Ma S, Gu J, Lin C, Luo Z, Zhu Y, Wang J. Supertwistacene: a helical graphene nanoribbon. J Am Chem Soc. 2020;142:16887-16893.

[80]

Shan L, Liu D, Li H, et al. Monolayer field-effect transistors of nonplanar organic semiconductors with brickwork arrangement. Adv Mater. 2015;27:3418-3423.

[81]

Castro-Fernández S, Cruz CM, Mariz IFA, et al. Two-photon absorption enhancement by the inclusion of a tropone ring in distorted nanographene ribbons. Angew Chem Int Ed. 2020;59:7139-7145.

[82]

Fujikawa T, Segawa Y, Itami K. Synthesis, structures, and properties of π-extended double helicene: a combination of planar and nonplanar π-systems. J Am Chem Soc. 2015;137:7763-7768.

[83]

Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl reaction of perylene-based polyphenylene precursors under different conditions: formation of hexagon or octagon? Angew Chem Int Ed. 2021;60:17654-17663.

[84]

Roy M, Berezhnaia V, Villa M, et al. Stereoselective syntheses, structures, and properties of extremely distorted chiral nanographenes embedding hextuple helicenes. Angew Chem Int Ed. 2020;59:3264-3271.

[85]

Berezhnaia V, Roy M, Vanthuyne N, et al. Chiral nanographene propeller embedding six enantiomerically stable [5]helicene units. J Am Chem Soc. 2017;139:18508-18511.

[86]

Voigt J, Roy M, Baljozović M, et al. Unbalanced 2D chiral crystallization of pentahelicene propellers and their planarization into nanographenes. Chem –Eur J. 2021;27:10251-10254.

[87]

Zhong Q, Barát V, Csókás D, et al. On-surface stereochemical characterization of a highly curved chiral nanographene by noncontact atomic force microscopy and scanning tunneling microscopy. CCS Chemistry. 2023;5:2888-2896.

[88]

Meng D, Fu H, Xiao C, et al. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J Am Chem Soc. 2016;138:10184-10190.

[89]

Hahn U, Maisonhaute E, Nierengarten JF. Twisted N-doped nano-graphenes: synthesis, characterization, and resolution. Angew Chem Int Ed. 2018;57:10635-10639.

[90]

Cruz CM, Márquez IR, Castro-Fernández S, Cuerva JM, Maçôas E, Campaña AG. A triskelion-shaped saddle-helix hybrid nanographene. Angew Chem Int Ed. 2019;58:8068-8072.

[91]

Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of crowded oligoarylene into perylene-cored chiral nanographene by sequential oxidative cyclization and 1, 2-phenyl migration. Angew Chem Int Ed. 2022;61:e202115979.

[92]

Urieta-Mora J, Krug M, Alex W, et al. Homo and hetero molecular 3D nanographenes employing a cyclooctatetraene scaffold. J Am Chem Soc. 2020;142:4162-4172.

[93]

Liu G, Koch T, Li Y, Doltsinis NL, Wang Z. Nanographene imides featuring dual-core sixfold [5]helicenes. Angew Chem Int Ed. 2019;58:178-183.

[94]

Li JK, Chen XY, Zhao WL, et al. Synthesis of highly luminescent chiral nanographene. Angew Chem Int Ed. 2023;62:e202215367.

[95]

Balahoju SA, Maurya YK, Chmielewski PJ, et al. Helicity modulation in nir-absorbing porphyrin-ryleneimides. Angew Chem Int Ed. 2022;61:e202200781.

[96]

Xu X, Yang Q, Zhao H, et al. Chiral nanographene-based near-infrared fluorophore with self-blinking properties. Adv Funct Mater. 2023;23(11):2308110.

[97]

Hossain MM, Thakur K, Talipov MR, Lindeman SV, Mirzaei S, Rathore R. Regioselectivity in the Scholl reaction: mono and double [7]Helicenes. Org Lett. 2021;23:5170-5174.

[98]

Yang Y, Yuan L, Shan B, Liu Z, Miao Q. Twisted polycyclic arenes from tetranaphthyldiphenylbenzenes by controlling the scholl reaction with substituents. Chem – Eur J. 2016;22:18620-18627.

[99]

Shi H, Xiong B, Chen Y, et al. A fan-shaped synthetic chiral nanographene. Chin Chem Lett. 2023;34:107520.

[100]

Meng D, Liu G, Xiao C, et al. Corannurylene pentapetalae. J Am Chem Soc. 2019;141:5402-5408.

[101]

Guo T, Li A, Xu J, Baldridge KK, Siegel J. Enantiopure C (5) pentaindenocorannulenes: chiral graphenoid materials. Angew Chem Int Ed. 2021;60:25809-25814.

[102]

Żyła-Karwowska M, Zhylitskaya H, Cybińska J, Lis T, Chmielewski PJ, Stępień M. An electron-deficient azacoronene obtained by radial π extension. Angew Chem Int Ed. 2016;55:14658-14662.

[103]

Wang Y, Yin Z, Zhu Y, Gu J, Li Y, Wang J. Hexapole [9] Helicene. Angew Chem Int Ed. 2019;58:587-591.

[104]

Gan F, Shen C, Cui W, Qiu H. [1,4]Diazocine-embedded electron-rich nanographenes with cooperatively dynamic skeletons. J Am Chem Soc. 2023;145:5952-5959.

[105]

Sala J, Capdevila L, Berga C, et al. Luminescent chiral furanol-pahs via straightforward ni-catalysed Csp2-F functionalization: mechanistic insights into the scholl reaction. Chem. 2023;30(5):e202303200.

[106]

Wu X, Huang JW, Su BK, et al. Fabrication of circularly polarized MR-TADF emitters with asymmetrical peripheral-lock enhancing helical b/n-doped nanographenes. Adv Mater. 2022;34:e2105080.

[107]

Urgel JI, Di Giovannantonio M, Segawa Y, et al. Negatively curved warped nanographene self-assembled on metal surfaces. J Am Chem Soc. 2019;141:13158-13164.

[108]

Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nat Chem. 2013;5:739-744.

[109]

Kirschbaum T, Rominger F, Mastalerz M. A chiral polycyclic aromatic hydrocarbon monkey saddle. Angew Chem Int Ed. 2020;59:270-274.

[110]

Yang X, Rominger F, Mastalerz M. Contorted polycyclic aromatic hydrocarbons with two embedded azulene units. Angew Chem Int Ed. 2019;58:17577-17582.

[111]

Müller M, Iyer VS, Kübel C, Enkelmann V, Müllen K. Polycyclic aromatic hydrocarbons by cyclodehydrogenation and skeletal rearrangement of oligophenylenes. Angew Chem Int Ed. 1997;36:1607-1610.

[112]

Scholz M, Mühlstädt M, Dietz F. Chemie angeregter zustände. I. Mitt. Die richtung der photocyclisierung naphthalinsubstituierter äthylene. Tetrahedron Lett. 1967;8:665-668.

[113]

Flammang-Barbieux M, Nasielski J, Martin RH. Synthesis of heptahelicene (1) benzo [c] phenanthro [4, 3-g]phenanthrene. Tetrahedron Lett. 1967;8:743-744.

[114]

Ooe H, Ikeda K, Yokoyama T. Two-step on-surface synthesis of one-dimensional nanographene chains. J Phys Chem C. 2023;127:7659-7665.

[115]

Kübel C, Eckhardt K, Enkelmann V, Wegner G, Müllen K. Synthesis and crystal packing of large polycyclic aromatic hydrocarbons: hexabenzo[bc,ef,hi,kl,no,qr]coronene and dibenzo[fg,ij]phenanthro[9,10,1,2,3-pqrst]pentaphene. J Mater Chem. 2000;10:879-886.

[116]

Ponugoti N, Parthasarathy V. Rearrangements in scholl reaction. Chem – Eur J. 2022;28:e202103530.

[117]

Zhao M, Pun SH, Gong Q, Miao Q. Carbazole-fused polycyclic aromatics enabled by regioselective scholl reactions. Angew Chem Int Ed. 2021;60:24124-24130.

[118]

Waghray D, de Vet C, Karypidou K, Dehaen W. Oxidative transformation to naphthodithiophene and thia[7]helicenes by intramolecular Scholl reaction of substituted 1, 2-bis(2-thienyl)benzene precursors. J Org Chem. 2013;78:11147-11154.

[119]

Ma Z, Winands T, Liang N, et al. A C2-symmetric triple [5]helicene based on N-annulated triperylene hexaimide for chiroptical electronics. Sci China Chem. 2019;63:208-214.

[120]

Yanney M, Fronczek FR, Henry WP, Beard DJ, Sygula A. Cyclotrimerization of corannulyne: steric hindrance tunes the inversion barriers of corannulene bowls. Eur J Org Chem. 2011;2011:6636-6639.

[121]

Isla H, Crassous J. Helicene-based chiroptical switches. C R Chim. 2016;19:39-49.

[122]

Yang Y, Rice B, Shi X, et al. Emergent properties of an organic semiconductor driven by its molecular chirality. ACS Nano. 2017;11:8329-8338.

[123]

Pascal, Jr., RA. Twisted acenes. Chem Rev. 2006;106:4809-4819.

[124]

Jiang W, Wang Z. Molecular carbon imides. J Am Chem Soc. 2022;144:14976-14991.

[125]

Cheung KY, Gui S, Deng C, et al. Synthesis of armchair and chiral carbon nanobelts. Chem. 2019;5:838-847.

[126]

Omachi H, Segawa Y, Itami K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org Lett. 2011;13:2480-2483.

[127]

Liu R, Liu H, Shi C, et al. Synthesis and photophysical properties of helical carbon nanohoops with twisted acene panels. Org Chem Front. 2023;10:4030-4037.

[128]

Wang J, Shi H, Wang S, et al. Tuning the (chir)optical properties and squeezing out the inherent chirality in polyphenylene-locked helical carbon nanorings. Chem – Eur J. 2022;28:e202103828.

[129]

Wang J, Zhuang G, Huang Q, et al. Precise synthesis and photophysical properties of a small chiral carbon nanotube segment: cyclo[7]paraphenylene-2,6-naphthylene. Chem Commun. 2019;55:9456-9459.

[130]

Batson J, Swager T. Towards a perylene-containing nanohoop. Synlett. 2013;24:2545-2549.

[131]

Hitosugi S, Yamasaki T, Isobe H. Bottom-up synthesis and thread-in-bead structures of finite (n, 0)-zigzag single-wall carbon nanotubes. J Am Chem Soc. 2012;134:12442-12445.

[132]

Kogashi K, Matsuno T, Sato S, Isobe H. Narrowing segments of helical carbon nanotubes with curved aromatic panels. Angew Chem Int Ed. 2019;58:7385-7389.

[133]

Matsuno T, Kamata S, Hitosugi S, Isobe H. Bottom-up synthesis and structures of π-lengthened tubular macrocycles. Chem Sci. 2013;4:3179-3183.

[134]

Sarkar P, Sun Z, Tokuhira T, Kotani M, Sato S, Isobe H. Stereoisomerism in nanohoops with heterogeneous biaryl linkages of E/Z-and R/S-geometries. ACS Cent Sci. 2016;2:740-747.

[135]

Nogami J, Nagashima Y, Miyamoto K, Muranaka A, Uchiyama M, Tanaka K. Asymmetric synthesis, structures, and chiroptical properties of helical cycloparaphenylenes. Chem Sci. 2021;12:7858-7865.

[136]

Fan Y, He J, Liu L, et al. Chiral carbon nanorings: synthesis, properties and hierarchical self-assembly of chiral ternary complexes featuring a narcissistic chiral self-recognition for chiral amines. Angew Chem Int Ed. 2023;62:e202304623.

[137]

Guo S, Liu L, Li X, et al. Highly luminescent chiral carbon nanohoops via symmetry breaking with a triptycene unit: bright circularly polarized luminescence and size-dependent properties. Small. 2023;20(14):e2308429.

[138]

He J, Yu M, Pang M, et al. Nanosized carbon macrocycles based on a planar chiral pseudo meta-[2.2]paracyclophane. Chem – Eur J. 2022;28:e202103832.

[139]

Naulet G, Sturm L, Robert A, et al. Cyclic tris-[5]helicenes with single and triple twisted Möbius topologies and Möbius aromaticity. Chem Sci. 2018;9:8930-8936.

[140]

Malincik J, Gaikwad S, Mora-Fuentes JP, et al. Circularly polarized luminescence in a mobius helicene carbon nanohoop. Angew Chem Int Edit. 2022;61:e202208591.

[141]

Fan W, Fukunaga TM, Wu S, et al. Synthesis and chiral resolution of a triply twisted Möbius carbon nanobelt. Nature Synthesis. 2023;2:880-887.

[142]

Krzeszewski M, Ito H, Itami K. Infinitene: a helically twisted figure-eight [12]circulene topoisomer. J Am Chem Soc. 2022;144:862-871.

[143]

Fan W, Matsuno T, Han Y, et al. Synthesis and chiral resolution of twisted carbon nanobelts. J Am Chem Soc. 2021;143:15924-15929.

[144]

Kiel GR, Bay KL, Samkian AE, et al. Expanded helicenes as synthons for chiral macrocyclic nanocarbons. J Am Chem Soc. 2020;142:11084-11091.

[145]

Zhu K, Kamochi K, Kodama T, Tobisu M, Amaya T. Chiral cyclic [n]spirobifluorenylenes: carbon nanorings consisting of helically arranged quaterphenyl rods illustrating partial units of woven patterns. Chem Sci. 2020;11:9604-9610.

[146]

Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603-605.

[147]

Fan Y, He J, Guo S, Jiang H. Host-guest chemistry in binary and ternary complexes utilizing π-conjugated carbon nanorings. ChemPlusChem. 2023;202300536.

[148]

Esser B, Wössner JS, Hermann M. Conjugated nanohoops with dibenzo[a, e]pentalenes as nonalternant and antiaromatic π-systems. Synlett. 2022;33:737-753.

[149]

Yano Y, Mitoma N, Ito H, Itami K. A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications. J Org Chem. 2020;85:4-33.

[150]

Celzard A, Fierro V. Chemistry of carbon nanostructures. Edited by klaus müllen and xinliang feng. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2018;74:319-321.

[151]

Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett. 1992;60:2204-2206.

[152]

Sun Z, Sarkar P, Suenaga T, Sato S, Isobe H. Belt-shaped cyclonaphthylenes. Angew Chem Int Ed. 2015;54:12800-12804.

[153]

Yagi A, Segawa Y, Itami K. Synthesis and properties of [9]cyclo-1, 4-naphthylene: a π-extended carbon nanoring. J Am Chem Soc. 2012;134:2962-2965.

[154]

Yang Y, Nanjo Y, Isobe H, Sato S. Synthesis and stereoisomerism of [n]cyclo-2,9-phenanthrenylene congeners possessing alternating E/Z-and R/S-biaryl linkages. Org Biomol Chem. 2020;18:4949-4955.

[155]

Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999;294:1327-1336.

[156]

Ajami D, Oeckler O, Simon A, Herges R. Synthesis of a Möbius aromatic hydrocarbon. Nature. 2003;426:819-821.

[157]

Stępień M, Latos-Grażyński L, Sprutta N, Chwalisz P, Szterenberg L. Expanded porphyrin with a split personality: a hückel-möbius aromaticity switch. Angew Chem Int Ed. 2007;119:8015-8019.

[158]

Zhou J, Li J, Liu Z, Zhang J. Exploring approaches for the synthesis of few-layered graphdiyne. Adv Mater. 2019;31:e1803758.

[159]

Sakamoto R, Fukui N, Maeda H, Matsuoka R, Toyoda R, Nishihara H. The accelerating world of graphdiynes. Adv Mater. 2019;31:e1804211.

[160]

Li J, Wang C, Zhang B, et al. Artificial carbon graphdiyne: status and challenges in nonlinear photonic and optoelectronic applications. ACS Appl Mater Interfaces. 2020;12:49281-49296.

[161]

Ge C, Chen J, Tang S, Du Y, Tang N. Review of the electronic, optical, and magnetic properties of graphdiyne: from theories to experiments. ACS Appl Mater Interfaces. 2019;11:2707-2716.

[162]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010;46:3256-3258.

[163]

Gao X, Liu H, Wang D, Zhang J. Graphdiyne: synthesis, properties, and applications. Chem Soc Rev. 2019;48:908-936.

[164]

Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: together we shine, united we soar! Chem Rev. 2015;115:11718-11940.

[165]

Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater. 2014;26:5429-5479.

[166]

Feng HT, Yuan YX, Xiong JB, Zheng YS, Tang BZ. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem Soc Rev. 2018;47:7452-7476.

[167]

Yuan YX, Jia JH, Song YP, Ye FY, Zheng YS, Zang SQ. Fluorescent TPE macrocycle relayed light-harvesting system for bright customized-color circularly polarized luminescence. J Am Chem Soc. 2022;144:5389-5399.

[168]

Liu H, Zhang Z, Wu C, Pan Q, Zhao Y, Li Z. Interfacial synthesis of conjugated crystalline 2d fluorescent polymer film containing aggregation-induced emission unit. Small. 2019;15:e1804519.

[169]

Hu G, He J, Chen J, Li Y. Synthesis of a wheel-shaped nanographdiyne. J Am Chem Soc. 2023;145:5400-5409.

[170]

Yang X, Li X, Wang B, et al. Advances, opportunities, and challenge for full-color emissive carbon dots. Chin Chem Lett. 2022;33:613-625.

[171]

Peng L, Yu H, Chen C, et al. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv Sci. 2023;10:e2205962.

[172]

Xia Y, Zhang C, Wang Y, Liu S, Zhang X. From oxygenated monomers to well-defined low-carbon polymers. Chin Chem Lett. 2024;35:108860.

[173]

Li Z, Wang L, Li Y, Feng Y, Feng W. Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol. 2019;179:10-40.

[174]

Yang Q, Jiang N, Shao Y, et al. Functional carbon materials addressing dendrite problems in metal batteries: surface chemistry, multi-dimensional structure engineering, and defects. Sci China Chem. 2022;65:2351-2368.

[175]

Sang Y, Han J, Zhao T, Duan P, Liu M. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv Mater. 2020;32:1900110.

[176]

MacKenzie LE, Pal R. Circularly polarized lanthanide luminescence for advanced security inks. Nat Rev Chem. 2021;5:109-124.

[177]

Martin RH, Baes M. Helicenes. Tetrahedron. 1975;31:2135-2137.

[178]

Kartau M, Skvortsova A, Tabouillot V, et al. Chiral metafilms and surface enhanced Raman scattering for enantiomeric discrimination of helicoid nanoparticles. Adv Opt Mater. 2023;11:2202991.

[179]

Janesko BG, Scuseria GE. Molecule?surface orientational averaging in surface enhanced Raman optical activity spectroscopy. J Phys Chem C. 2009;113:9445-9449.

[180]

Kalachyova Y, Guselnikova O, Elashnikov R, et al. Helicene-SPP-based chiral plasmonic hybrid structure: toward direct enantiomers SERS discrimination. ACS Appl Mater Interfaces. 2019;11:1555-1562.

[181]

Torsi L, Magliulo M, Manoli K, Palazzo G. Organic field-effect transistor sensors: a tutorial review. Chem Soc Rev. 2013;42:8612-8628.

[182]

Tarabella G, Mahvash Mohammadi F, Coppedè N, et al. New opportunities for organic electronics and bioelectronics: ions in action. Chem Sci. 2013;4:1395-1409.

[183]

Someya T, Dodabalapur A, Huang J, See KC, Katz HE. Chemical and physical sensing by organic field-effect transistors and related devices. Adv Mater. 2010;22:3799-3811.

[184]

Cui DX, Geng Y, Kou JN, et al. Chiral self-sorting and guest recognition of porous aromatic cages. Nat Commun. 2022;13:4011.

[185]

Ślepokura K, Cabreros TA, Muller G, Lisowski J. Sorting phenomena and chirality transfer in fluoride-bridged macrocyclic rare earth complexes. Inorg Chem. 2021;60:18442-18454.

[186]

López-Francés A, del Corte X, Serna-Burgos Z, de los Santos JM, de Cózar A, Vicario J. Chiral self-recognition in a bispericyclic cyclodimerisation reaction of 1-azadienes. Org Chem Front. 2023;10:6103-6111.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (6415KB)

1286

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/