Recent progress and perspective on electrocatalysis in neutral media: Mechanisms, materials, and advanced characterizations

Fayuan Lai , Haochuan Shang , Yuchao Jiao , Xinyi Chen , Tianran Zhang , Xiangfeng Liu

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 492 -529.

PDF (7057KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 492 -529. DOI: 10.1002/idm2.12172
REVIEW

Recent progress and perspective on electrocatalysis in neutral media: Mechanisms, materials, and advanced characterizations

Author information +
History +
PDF (7057KB)

Abstract

Electrocatalysis, which involves oxidation and reduction reactions with direct electron transfer, is essential for a variety of clean energy conversion devices. Currently, the vast majority of studies regarding electrocatalysis reactions focus on strong acidic or alkaline media because of the higher catalytic activity. Nevertheless, some inherent drawbacks, including the corrosive environment, expensive proton exchange membranes, and side effects, are still hard to break through. A sustainably promising way to overcome these shortcomings is to deploy neutral/near-neutral electrolytes for electrocatalysis reactions. Unfortunately, insufficient research in this area due to the lack of attention to related issues has slowed down the development process. In this review, we systematically review the catalytic reaction mechanisms, neutral electrolytes, electrocatalysts, and modification strategies carried out in neutral media on the three most common electrocatalytic reactions, that is, hydrogen evolution reaction, oxygen reduction reaction, and oxygen evolution reaction. Furthermore, the advanced characterization tools for guiding catalyst synthesis and mechanistic studies are also summarized. Eventually, we propose some challenges and perspectives on electrocatalysis reactions in neutral media and hope it will attract more research interest and provide guidance in neutral electrocatalysis.

Keywords

advanced characterizations / electrocatalysis / HER/ORR/OER / mechanism studies / neutral/near-neutral electrolyte

Cite this article

Download citation ▾
Fayuan Lai, Haochuan Shang, Yuchao Jiao, Xinyi Chen, Tianran Zhang, Xiangfeng Liu. Recent progress and perspective on electrocatalysis in neutral media: Mechanisms, materials, and advanced characterizations. Interdisciplinary Materials, 2024, 3(4): 492-529 DOI:10.1002/idm2.12172

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shih CF, Zhang T, Li J, Bai C. Powering the future with liquid sunshine. Joule. 2018;2(10):1925-1949.

[2]

Koohi-Fayegh S, Rosen MA. A review of energy storage types, applications and recent developments. J Energy Storage. 2020;27:101047.

[3]

Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43-51.

[4]

Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy. 2019;4(6):430-433.

[5]

Dresp S, Luo F, Schmack R, Kühl S, Gliech M, Strasser P. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ Sci. 2016;9(6):2020-2024.

[6]

Zhao D, Zhuang Z, Cao X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev. 2020;49(7):2215-2264.

[7]

Yu M, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew Chem Int Ed. 2022;61(1):e202103824.

[8]

Xue D, Cheng J, Yuan P, et al. Boron-tethering and regulative electronic states around iridium species for hydrogen evolution. Adv Funct Mater. 2022;32(21):2113191.

[9]

Chen Y, Xu J, He P, et al. Metal-air batteries: progress and perspective. Sci Bull. 2022;67(23):2449-2486.

[10]

Cullen DA, Neyerlin KC, Ahluwalia RK, et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat Energy. 2021;6(5):462-474.

[11]

Cheng T, Wang L, Merinov BV, Goddard WA. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH. J Am Chem Soc. 2018;140(25):7787-7790.

[12]

Dinh CT. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat Energy. 2019;4:107-114.

[13]

Zheng X. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat Commun. 2023;14:4209.

[14]

Zhou W, Su H, Cheng W, et al. Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat Commun. 2022;13(1):6414.

[15]

Li A, Kong S, Guo C, et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat Catal. 2022;5(2):109-118.

[16]

Ortiz Peña N, Ihiawakrim D, Han M, et al. Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation. ACS Nano. 2019;13(10):11372-11381.

[17]

Kim U, Lee S, Koo D, et al. Crystal facet and electronic structure modulation of perovskite oxides for water oxidation. ACS Energy Lett. 2023;8(3):1575-1583.

[18]

Zhang Z, Ma P, Luo L, Ding X, Zhou S, Zeng J. Regulating spin states in oxygen electrocatalysis. Angew Chem Int Ed. 2023;62(15):e202216837.

[19]

Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science. 2011;334(6061):1383-1385.

[20]

Bao J, Zhang X, Fan B, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed. 2015;54(25):7399-7404.

[21]

Zhang Q, Zhe Ru ZL, Daiyan R, et al. Surface reconstruction enabled efficient hydrogen generation on a cobalt–iron phosphate electrocatalyst in neutral water. ACS Appl Mater Interfaces. 2021;13(45):53798-53809.

[22]

Zhang Y, Wu C, Jiang H, et al. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv Mater. 2018;30(18):1707522.

[23]

Cai Z, Wang P, Zhang J, et al. Reinforced layered double hydroxide oxygen-evolution electrocatalysts: a polyoxometallic acid wet-etching approach and synergistic mechanism. Adv Mater. 2022;34(26):2110696.

[24]

Wan X, Liu Q, Liu J, et al. Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat Commun. 2022;13(1):2963.

[25]

Salonen LM, Petrovykh DY, Kolen’ko YV. Sustainable catalysts for water electrolysis: selected strategies for reduction and replacement of platinum-group metals. Mater Today Sustain. 2021;11-12:100060.

[26]

Anwar S, Khan F, Zhang Y, Djire A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int J Hydrogen Energy. 2021;46(63):32284-32317.

[27]

Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells. Nature. 2021;595(7867):361-369.

[28]

Yin P, Niu X, Li SB, et al. Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell catalysts. Nat Commun. 2024;15(1):415.

[29]

Ahmad S, Nawaz T, Ali A, Orhan MF, Samreen A, Kannan AM. An overview of proton exchange membranes for fuel cells: materials and manufacturing. Int J Hydrogen Energy. 2022;47(44):19086-19131.

[30]

Chang J, Wang G, Yang Y. Recent advances in electrode design for rechargeable zinc–air batteries. Small Science. 2021;1(10):2100044.

[31]

Deng YP, Liang R, Jiang G, Jiang Y, Yu A, Chen Z. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020;5(5):1665-1675.

[32]

Lv XW, Wang Z, Lai Z, et al. Rechargeable zinc–air batteries: advances, challenges, and prospects. Small. 2024;20(4):2306396.

[33]

Iqbal A, El-Kadri OM, Hamdan NM. Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J Energy Storage. 2023;62:106926.

[34]

Zhou Z, Pei Z, Wei L, Zhao S, Jian X, Chen Y. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ Sci. 2020;13(10):3185-3206.

[35]

Santoro C, Bollella P, Erable B, Atanassov P, Pant D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat Catal. 2022;5(6):473-484.

[36]

Murthy AP, Govindarajan D, Theerthagiri J, Madhavan J, Parasuraman K. Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media. Electrochim Acta. 2018;283:1525-1533.

[37]

Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ Sci. 2020;13(5):1318-1325.

[38]

Zhao Y, Adiyeri Saseendran DP, Huang C, et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem Rev. 2023;123(9):6257-6358.

[39]

Thorarinsdottir AE, Erdosy DP, Costentin C, Mason JA, Nocera DG. Enhanced activity for the oxygen reduction reaction in microporous water. Nat Catal. 2023;6(5):425-434.

[40]

Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev. 2010;110(11):6474-6502.

[41]

Lasia A. Mechanism and kinetics of the hydrogen evolution reaction. Int J Hydrogen Energy. 2019;44(36):19484-19518.

[42]

Zheng Y, Jiao Y, Vasileff A, Qiao SZ. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed. 2018;57(26):7568-7579.

[43]

Gennero De Chialvo MR, Arvia AJ. The electrochemical behaviour of copper in alkaline solutions containing sodium sulphide. J Appl Electrochem. 1985;15(5):685-696.

[44]

Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci. 2014;7(7):2255-2260.

[45]

Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy. 2016;29:29-36.

[46]

Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv. 2016;2(3):e1501602.

[47]

Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci. 2018;5(2):1700464.

[48]

Cao R, Lee JS, Liu M, Cho J. Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater. 2012;2(7):816-829.

[49]

Mukhopadhyay RD, Ajayaghosh A. Metallosupramolecular polymers: current status and future prospects. Chem Soc Rev. 2023;52:8635-8650.

[50]

Li Y, Dai H. Recent advances in zinc–air batteries. Chem Soc Rev. 2014;43(15):5257-5275.

[51]

Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108(46):17886-17892.

[52]

Song J, Wei C, Huang ZF, et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev. 2020;49(7):2196-2214.

[53]

Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46(2):337-365.

[54]

Lin C, Li JL, Li X, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal. 2021;4(12):1012-1023.

[55]

Koper MTM. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci. 2013;4(7):2710-2723.

[56]

Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. Electrolysis of water on oxide surfaces. J Electroanal Chem. 2007;607(1):83-89.

[57]

Huang ZF, Song J, Dou S, Li X, Wang J, Wang X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter. 2019;1(6):1494-1518.

[58]

Ma Q, Mu S. Acidic oxygen evolution reaction: mechanism, catalyst classification, and enhancement strategies. Interdiscip Mater. 2023;2(1):53-90.

[59]

Zhang L, Wang L, Wen Y, Ni F, Zhang B, Peng H. Boosting neutral water oxidation through surface oxygen modulation. Adv Mater. 2020;32(31):2002297.

[60]

Wang Q, Xu CQ, Liu W, et al. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat Commun. 2020;11(1):4246.

[61]

Silva AL, Esteves LM, Silva LPC, Ramos VS, Passos FB, Carvalho NMF. Mn-doped Co3O4 for acid, neutral and alkaline electrocatalytic oxygen evolution reaction. RSC Adv. 2022;12(41):26846-26858.

[62]

Rong X, Parolin J, Kolpak AM. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016;6(2):1153-1158.

[63]

Amin HMA, Königshoven P, Hegemann M, Baltruschat H. Role of lattice oxygen in the oxygen evolution reaction on Co3O4: isotope exchange determined using a small-volume differential electrochemical mass spectrometry cell design. Anal Chem. 2019;91(20):12653-12660.

[64]

Mefford JT, Rong X, Abakumov AM, et al. Water electrolysis on La1–xSrxCoO3–δperovskite electrocatalysts. Nat Commun. 2016;7(1):11053.

[65]

Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem. 2017;9(5):457-465.

[66]

Katsounaros I, Meier JC, Klemm SO, et al. The effective surface pH during reactions at the solid–liquid interface. Electrochem Commun. 2011;13(6):634-637.

[67]

Sun K, Wu X, Zhuang Z, et al. Interfacial water engineering boosts neutral water reduction. Nat Commun. 2022;13(1):6260.

[68]

Chung DY, Yoo JM, Sung YE. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv Mater. 2018;30(42):1704123.

[69]

Shinagawa T, Takanabe K. Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions. J Power Sources. 2015;287:465-471.

[70]

Wu WF, Yan X, Zhan Y. Recent progress of electrolytes and electrocatalysts in neutral aqueous zinc-air batteries. Chem Eng J. 2023;451:138608.

[71]

Zhou X, Tian Y, Luo J, et al. MoC quantum dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: from electrocatalysis to photocatalysis. Adv Funct Mater. 2022;32(27):2201518.

[72]

Benzbiria N, Zertoubi M, Azzi M. Oxygen reduction reaction kinetics on pure copper in neutral sodium sulfate solution. SN Appl Sci. 2020;2(12):2101.

[73]

Pal B, Yang S, Ramesh S, Thangadurai V, Jose R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. 2019;1(10):3807-3835.

[74]

Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP. Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun. 2008;10(10):1652-1655.

[75]

Jin H, Xu J, Liu H, et al. Emerging materials and technologies for electrocatalytic seawater splitting. Sci Adv. 2023;9(42):eadi7755.

[76]

Shinagawa T, Takanabe K. Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions. J Phys Chem C. 2016;120(3):1785-1794.

[77]

Xiao D, Zhang L, Li Z, Dou H, Zhang X. Design strategies and research progress for Water-in-Salt electrolytes. Energy Storage Mater. 2022;44:10-28.

[78]

Murthy AP, Theerthagiri J, Madhavan J, Murugan K. Enhancement of hydrogen evolution activities of low-cost transition metal electrocatalysts in near-neutral strongly buffered aerobic media. Electrochem Commun. 2017;83:6-10.

[79]

Jin H, Wang X, Tang C, et al. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv Mater. 2021;33(13):2007508.

[80]

Yu H, Wan J, Goodsite M, Jin H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth. 2023;6(3):267-277.

[81]

McCrum IT. Cations in alkaline hydrogen electrocatalysis. Nat Catal. 2022;5(10):846-847.

[82]

Xie H, Zhao Z, Liu T, et al. A membrane-based seawater electrolyser for hydrogen generation. Nature. 2022;612(7941):673-678.

[83]

Suo L, Borodin O, Gao T, et al. “Water-in-salt”electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350(6263):938-943.

[84]

Guo Y, Terban MW, Moudrakovski I, et al. Ion transport in semi-solid in-salt electrolytes: LiTFSI–H2O as a model system. J Mater Chem A. 2023;11(7):3427-3436.

[85]

Sun W, Küpers V, Wang F, Bieker P, Winter M. A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air. Angew Chem Int Ed. 2022;61(38):e202207353.

[86]

Ramsundar RM, Debgupta J, Pillai VK, Joy PA. Co3O4 nanorods-efficient non-noble metal electrocatalyst for oxygen evolution at neutral pH. Electrocatalysis. 2015;6(4):331-340.

[87]

Shinagawa T, Ng MTK, Takanabe K. Electrolyte engineering towards efficient water splitting at mild pH. ChemSusChem. 2017;10(21):4155-4162.

[88]

Xu J, Li J, Lian Z, et al. Atomic-step enriched ruthenium–iridium nanocrystals anchored homogeneously on MOF-derived support for efficient and stable oxygen evolution in acidic and neutral media. ACS Catal. 2021;11(6):3402-3413.

[89]

Nam JY, Kim HW, Lim KH, Shin HS, Logan BE. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosens Bioelectron. 2010;25(5):1155-1159.

[90]

Zhang L, Han L, Liu H, Liu X, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed. 2017;56(44):13694-13698.

[91]

Dong J, Zhang X, Huang J, Hu J, Chen Z, Lai Y. In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction. Chem Eng J. 2021;412:128556.

[92]

Ni Y, Ma X, Wang S, et al. Heterostructured nickel/vanadium nitrides composites for efficient electrocatalytic hydrogen evolution in neutral medium. J Power Sources. 2022;521:230934.

[93]

Li Y, Peng CK, Hu H, et al. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat Commun. 2022;13(1):1143.

[94]

Sohrabi S, Dehghanpour S, Ghalkhani M. A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. J Mater Sci. 2018;53(5):3624-3639.

[95]

Tan Y, Xie R, Zhao S, et al. Facile fabrication of robust hydrogen evolution electrodes under high current densities via Pt@Cu interactions. Adv Funct Mater. 2021;31(45):2105579.

[96]

Liu Y, Ding J, Li F, et al. Modulating hydrogen adsorption via charge transfer at the semiconductor–metal heterointerface for highly efficient hydrogen evolution catalysis. Adv Mater. 2023;35(1):2207114.

[97]

Zhao Y, Wang H, Li J, et al. Regulating the spin-state of rare-earth Ce single atom catalyst for boosted oxygen reduction in neutral medium. Adv Funct Mater. 2023;33(47):2305268.

[98]

Xue W, Zhou Q, Cui X, et al. Atomically dispersed FeN2P2 motif with high activity and stability for oxygen reduction reaction over the entire pH range. Angew Chem Int Ed. 2023;62(41):e202307504.

[99]

Du K, Zhang L, Shan J, et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat Commun. 2022;13(1):5448.

[100]

Li Z, Zou J, Liang T, et al. MOF-derived ultrasmall Ru@RuO2 heterostructures as bifunctional and pH-universal electrocatalysts for 0.79 V asymmetric amphoteric overall water splitting. Chem Eng J. 2023;460:141672.

[101]

Zhong W, Yang C, Wu J, et al. Oxygen vacancies induced by charge compensation tailoring Ni-doped Co3O4 nanoflakes for efficient hydrogen evolution. Chem Eng J. 2022;436:134813.

[102]

Wu A, Gu Y, Xie Y, et al. Effective electrocatalytic hydrogen evolution in neutral medium based on 2D MoP/MoS2 heterostructure nanosheets. ACS Appl Mater Interfaces. 2019;11:25986-25995.

[103]

Yu JM, Song J, Kim YK, et al. High-performance electrochemical and photoelectrochemical water splitting at neutral pH by Ir nanocluster-anchored CoFe-layered double hydroxide nanosheets. Nano Lett. 2023;23(11):5092-5100.

[104]

Long Y, Ye F, Shi L, et al. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries. Carbon. 2021;179:365-376.

[105]

Zhong K, You H, Huang L, et al. Facile gas-steamed synthesis strategy of N, F co-doped defective porous carbon for enhanced oxygen-reduction performance in microbial fuel cells. J Power Sources. 2023;579:233232.

[106]

Luo F, Zhang Q, Yu X, et al. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting. Angew Chem Int Ed. 2018;57(45):14862-14867.

[107]

Lyu C, Cao C, Cheng J, et al. Interfacial electronic structure modulation of Ni2P/Ni5P4 heterostructure nanosheets for enhanced pH-universal hydrogen evolution reaction performance. Chem Eng J. 2023;464:142538.

[108]

Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B. Current progress and performance improvement of Pt/C catalysts for fuel cells. J Mater Chem A. 2020;8(46):24284-24306.

[109]

Smiljanić M, Panić S, Bele M, et al. Improving the HER activity and stability of Pt nanoparticles by titanium oxynitride support. ACS Catal. 2022;12(20):13021-13033.

[110]

Sun F, Su R, Zhou Y, et al. Synthesis of high-loading Pt/C electrocatalysts using a surfactant-assisted microwave discharge method for oxygen reduction reactions. ACS Appl Mater Interfaces. 2022;14(36):41079-41085.

[111]

Liu B, Zhang L, Xiong W, Ma M. Cobalt-nanocrystal-assembled hollow nanoparticles for electrocatalytic hydrogen generation from neutral-pH water. Angew Chem Int Ed. 2016;55(23):6725-6729.

[112]

Tang H, Cai S, Xie S, et al. Metal–organic-framework-derived dual metal-and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv Sci. 2016;3(2):1500265.

[113]

Li Y, Zhu X, Chen Y, Zhang S, Li J, Liu J. Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid. J Energy Chem. 2020;47:138-145.

[114]

Ryu JH, Park J, Park J, et al. Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Storage Mater. 2022;45:281-290.

[115]

Yao Y, Gao X, Meng X. Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. Int J Hydrogen Energy. 2021;46(13):9087-9100.

[116]

Wu Q, Luo M, Han J, et al. Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2020;5(1):192-199.

[117]

Zeng F, Mebrahtu C, Liao L, Beine AK, Palkovits R. Stability and deactivation of OER electrocatalysts: a review. J Energy Chem. 2022;69:301-329.

[118]

Vesborg PCK, Jaramillo TF. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012;2(21):7933-7947.

[119]

Xia Y, Campbell CT, Roldan Cuenya B, Mavrikakis M. Introduction: advanced materials and methods for catalysis and electrocatalysis by transition metals. Chem Rev. 2021;121(2):563-566.

[120]

You B, Liu X, Hu G, et al. Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water. J Am Chem Soc. 2017;139(35):12283-12290.

[121]

Karimi-Maleh H, Karaman C, Karaman O, et al. Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. J Nanostructure Chem. 2022;12(3):429-439.

[122]

Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule. 2018;2(7):1242-1264.

[123]

Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634-641.

[124]

Mitchell S, Pérez-Ramírez J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat Commun. 2020;11(1):4302.

[125]

Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloy catalysis. Chem Rev. 2020;120(21):12044-12088.

[126]

Single atom catalysts push the boundaries of heterogeneous catalysis. Nat Commun. 2021;12(1):5884.

[127]

Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2(6):65-81.

[128]

Zhang H, Liu G, Shi L, Ye J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater. 2018;8(1):1701343.

[129]

Li J, Gao RT, Liu X, Zhang X, Wu L, Wang L. Single-atom Pt embedded in defective layered double hydroxide for efficient and durable hydrogen evolution. ACS Appl Mater Interfaces. 2023;15(36):42501-42510.

[130]

Sun Y, Xue Z, Liu Q, et al. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat Commun. 2021;12(1):1369.

[131]

Luo X, Yang M, Song W, et al. Neutral Zn-air battery assembled with single-atom iridium catalysts for sensitive self-powered sensing system. Adv Funct Mater. 2021;31(24):2101193.

[132]

Humayun M, Israr M, Khan A, Bououdina M. State-of-the-art single-atom catalysts in electrocatalysis: from fundamentals to applications. Nano Energy. 2023;113:108570.

[133]

Wei X, Song S, Wu N, et al. Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte. Nano Energy. 2021;84:105840.

[134]

Hardisty SS, Lin X, Kucernak ARJ, Zitoun D. Single-atom Pt on carbon nanotubes for selective electrocatalysis. Carbon Energy. 2024;6(1):e409.

[135]

Zhou J, Xu Z, Xu M, Zhou X, Wu K. A perspective on oxide-supported single-atom catalysts. Nanoscale Adv. 2020;2(9):3624-3631.

[136]

Doan TLL, Nguyen DC, Prabhakaran S, et al. Single-atom Co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv Funct Mater. 2021;31(26):2100233.

[137]

Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal. 2021;4(7):615-622.

[138]

Liu Q, Wang Y, Hu Z, Zhang Z. Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Adv. 2021;11(5):3079-3095.

[139]

Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e--Type catalysts to bifunctional electrodes for environmental remediation using the electro-fenton process. Catalysts. 2023;13(4):674.

[140]

Zhang J, Zhang T, Ma J, Wang Z, Liu J, Gong X. ORR and OER of Co–N codoped carbon-based electrocatalysts enhanced by boundary layer oxygen molecules transfer. Carbon. 2021;172:556-568.

[141]

Li S, Hao X, Abudula A, Guan G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J Mater Chem A. 2019;7(32):18674-18707.

[142]

Du Y, Jiang ZQ, Chang H, et al. Co-heteroatom-based MOFs for bifunctional electrocatalysts for oxygen and hydrogen evolution reactions. Inorg Chem. 2021;60(17):13434-13439.

[143]

Xu R, Wang X, Zhang C, et al. Engineering solid–liquid-gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density. Chem Eng J. 2022;433:133685.

[144]

Yan L, Xie L, Wu XL, et al. Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Energy. 2021;3(6):856-865.

[145]

Cai Z, Du P, Liang W, et al. Single-atom-sized Ni-N4 sites anchored in three-dimensional hierarchical carbon nanostructures for the oxygen reduction reaction. J Mater Chem A. 2020;8(30):15012-15022.

[146]

Luo E, Zhang H, Wang X, et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew Chem Int Ed. 2019;58(36):12469-12475.

[147]

Ma S, Han Z, Leng K, et al. Ionic exchange of metal?organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small. 2020;16(23):2001384.

[148]

Song P, Luo M, Liu X, et al. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv Funct Mater. 2017;27(28):1700802.

[149]

Li Z, Feng Y, Liang YL, et al. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv Mater. 2020;32(25):1908521.

[150]

Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin Chem Lett. 2021;32(7):2108-2116.

[151]

Li L, Wang B, Zhang G, et al. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv Energy Mater. 2020;10(30):2001600.

[152]

Gao Y, Qi L, He F, Xue Y, Li Y. Selectively growing a highly active interface of mixed Nb–Rh oxide/2D carbon for electrocatalytic hydrogen production. Adv Sci. 2022;9(10):2104706.

[153]

Han N, Zhang W, Guo W, et al. Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano Micro Lett. 2023;15(1):185.

[154]

Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci. 2015;8(5):1404-1427.

[155]

Badreldin A, Abusrafa AE, Abdel-Wahab A. Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. ChemSusChem. 2021;14(1):10-32.

[156]

Lin F, Qin H, Wang T, Yang L, Cao X, Jiao L. Few-layered MoN–MnO heterostructures with interfacial-O synergistic active centers boosting electrocatalytic hydrogen evolution. J Mater Chem A. 2021;9(13):8325-8331.

[157]

Lu M, Kharkwal S, Ng HY, Li SFY. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells. Biosens Bioelectron. 2011;26(12):4728-4732.

[158]

Yao Z, Li Y, Chen D, et al. γ-Fe2O3 clusters embedded in 1D porous N-doped carbon matrix as pH-universal electrocatalyst for enhanced oxygen reduction reaction. Chem Eng J. 2021;415:129033.

[159]

Yu J, Yu F, Yuen MF, Wang C. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J Mater Chem A. 2021;9(15):9389-9430.

[160]

Wang Y, Zhang M, Liu Y, et al. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv Sci. 2023;10(13):2207519.

[161]

Hu J, Tang X, Dai Q, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat Commun. 2021;12(1):3409.

[162]

Yu J, Wang Q, O’Hare D, Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev. 2017;46(19):5950-5974.

[163]

Li H, Qian X, Xu C, et al. Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces. 2017;9(34):28394-28405.

[164]

Zhai Q, Xia Z, Dai L. Unifying the origin of catalytic activities for carbon-based metal-free electrocatalysts. Catal Today. 2023;418:114129.

[165]

Gao K, Wang B, Tao L, et al. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and co-doping. Adv Mater. 2019;31(13):1805121.

[166]

Qiu S, Zhang B, Wang X, et al. Interface strong-coupled 3D Mo-NiS@Ni-Fe LDH flower-cluster as exceptionally efficient electrocatalyst for water splitting in wide pH range. J Colloid Interface Sci. 2023;641:277-288.

[167]

Qiao W, Jin B, Xie W, Shao M, Wei M. Hierarchical CoNi-LDH nanosheet array with hydrogen vacancy for high-performance aqueous battery cathode. J Energy Chem. 2022;69:9-15.

[168]

Cheng F, Feng X, Chen X, Lin W, Rong J, Yang W. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochim Acta. 2017;251:336-343.

[169]

Foruzin LJ, Rezvani Z, Shishavan YH, Habibi B. Ni2Zn0.5Fe-LDH modified carbon paste electrode as an efficient electrocatalyst for water oxidation in neutral media. Int J Hydrogen Energy. 2018;43(1):150-160.

[170]

Xie Q, Ren D, Bai L, et al. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes. Chin J Catal. 2023;44:127-138.

[171]

Fu G, Lee JM. Ternary metal sulfides for electrocatalytic energy conversion. J Mater Chem A. 2019;7(16):9386-9405.

[172]

Su H, Jiang J, Song S, et al. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chin J Catal. 2023;44:7-49.

[173]

Wang H, Xu J, Zhang Q, et al. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv Funct Mater. 2022;32(17):2112362.

[174]

Wang Y, Li X, Huang Z, et al. Amorphous Mo-doped NiS0.5Se0.5 nanosheets@crystalline NiS0.5Se0.5 nanorods for high current-density electrocatalytic water splitting in neutral media. Angew Chem Int Ed. 2023;62(6):e202215256.

[175]

An L, Zhang Z, Feng J, et al. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc–air battery with neutral aqueous electrolyte. J Am Chem Soc. 2018;140(50):17624-17631.

[176]

Wang X, Zhan G, Wang Y, et al. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn–Air batteries. J Energy Chem. 2022;68:113-123.

[177]

Yang Y, Yao H, Yu Z, et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J Am Chem Soc. 2019;141(26):10417-10430.

[178]

Bai F, Qu X, Wang J, Chen X, Yang W. Confinement catalyst of Co9S8@N-doped carbon derived from intercalated Co(OH)2 precursor and enhanced electrocatalytic oxygen reduction performance. ACS Appl Mater Interfaces. 2020;12(30):33740-33750.

[179]

Guo Y, Park T, Yi JW, et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134.

[180]

Mohideen MM, Liu Y, Ramakrishna S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation. Appl Energy. 2020;257:114027.

[181]

Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev. 2021;50(21):11785-11843.

[182]

Gao R, Dai Q, Du F, Yan D, Dai L. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution. J Am Chem Soc. 2019;141(29):11658-11666.

[183]

Wang X, Gong X, Peng L, Yang Z, Liu Y. Tubular nitrogen-doped carbon materials derived from green foxtail as a metal-free electrocatalyst in microbial fuel cells for efficient electron generation. Bioelectrochemistry. 2019;127:104-112.

[184]

Ren S, Cui W, Li L, Yi Z. N-doped carbon nanotubes as an efficient electrocatalyst for O2 conversion to H2O2 in neutral electrolyte. Sustainable Energy & Fuels. 2021;5(24):6310-6314.

[185]

Yu L, Yang C, Zhang W, et al. Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts. J Colloid Interface Sci. 2020;575:406-415.

[186]

Wang H, Zhang W, Bai P, Xu L. Ultrasound-assisted transformation from waste biomass to efficient carbon-based metal-free pH-universal oxygen reduction reaction electrocatalysts. Ultrason Sonochem. 2020;65:105048.

[187]

Wang H, Wei L, Shen J. Metal-free catalyst for efficient pH-universal oxygen reduction electrocatalysis in microbial fuel cell. J Electroanal Chem. 2022;911:116233.

[188]

Lv K, Zhang H, Chen S. Nitrogen and phosphorus co-doped carbon modified activated carbon as an efficient oxygen reduction catalyst for microbial fuel cells. RSC Adv. 2018;8(2):848-855.

[189]

Lin D, Hu C, Chen H, Qu J, Dai L. Microporous N, P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen. Chemistry. 2018;24(69):18487-18493.

[190]

Zhao C, Li J, Chen Y, Chen J. Nitrogen and sulfur dual-doped graphene as an efficient metal-free electrocatalyst for the oxygen reduction reaction in microbial fuel cells. New J Chem. 2019;43(24):9389-9395.

[191]

Zhou J, He Y, Wang Y, Li X, Xu C. Metal-free N and O Co-doped carbon directly derived from bicrystal Zn-based zeolite-like metal-organic frameworks as durable high-performance pH-universal oxygen reduction reaction catalyst. Nanotechnology. 2021;32(40):405401.

[192]

Hammer B, Jacobsen KW, Nørskov JK. Role of nonlocal exchange correlation in activated adsorption. Phys Rev Lett. 1993;70(25):3971-3974.

[193]

Jiao S, Fu X, Huang H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Adv Funct Mater. 2022;32(4):2107651.

[194]

Bhattacharjee S, Waghmare UV, Lee SC. An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Sci Rep. 2016;6(1):35916.

[195]

Rezvani Z, Foruzin LJ, Nejati K, Dai H. Nest-like NiFe-LDH derived from the ethylene glycol-assisted hydrothermal route: a highly efficient electrocatalyst for water oxidation in neutral solutions. Appl Clay Sci. 2023;246:107195.

[196]

Che Q, Zhou X, Liu Q, Tan Y, Li Q. Synthesis of an in situ core–shell interlink ultrathin-nanosheet Fe@FexNiO/Ni@NiyCoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation. J Mater Chem A. 2021;9(9):5833-5847.

[197]

Yang J, Xu L, Zhu W, et al. Rh/RhOx nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions. J Mater Chem A. 2022;10(4):1891-1898.

[198]

Sirisomboonchai S, Li X, Kitiphatpiboon N, et al. Fabrication of CuOx nanowires@NiMnOx nanosheets core@shell-type electrocatalysts: crucial roles of defect modification and valence states for overall water electrolysis. J Mater Chem A. 2020;8(32):16463-16476.

[199]

Muhyuddin M, Testa D, Lorenzi R, et al. Iron-based electrocatalysts derived from scrap tires for oxygen reduction reaction: evolution of synthesis-structure-performance relationship in acidic, neutral and alkaline media. Electrochim Acta. 2022;433:141254.

[200]

Dinda D, Ahmed ME, Mandal S, Mondal B, Saha SK. Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium. J Mater Chem A. 2016;4(40):15486-15493.

[201]

Cho KH, Seo H, Park S, et al. Uniform, assembled 4 nm Mn3O4 nanoparticles as efficient water oxidation electrocatalysts at neutral pH. Adv Funct Mater. 2020;30(10):1910424.

[202]

Kakizaki H, Ooka H, Hayashi T, et al. Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide. Adv Funct Mater. 2018;28(24):1706319.

[203]

Shen S, Wang Z, Lin Z, et al. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv Mater. 2022;34(13):2110631.

[204]

Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater. 2017;29(17):1606793.

[205]

Zhang B, Shan J, Wang W, Tsiakaras P, Li Y. Oxygen vacancy and core–shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. Small. 2022;18(12):2106012.

[206]

Guo Y, Yuan P, Zhang J, et al. Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv Funct Mater. 2018;28(51):1805641.

[207]

Yao M, Wang B, Sun B, et al. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl Catal B. 2021;280:119451.

[208]

Liu Y, Xiao C, Lyu M, et al. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int Ed. 2015;54(38):11231-11235.

[209]

Feng LL, Yu G, Wu Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc. 2015;137(44):14023-14026.

[210]

Li Z, Hu M, Wang P, Liu J, Yao J, Li C. Heterojunction catalyst in electrocatalytic water splitting. Coord Chem Rev. 2021;439:213953.

[211]

Gong T, Zhang J, Liu Y, Hou L, Deng J, Yuan C. Construction of hetero-phase Mo2C-CoO@N-CNFs film as a self-supported Bi-functional catalyst towards overall water splitting. Chem Eng J. 2023;451:139025.

[212]

Li J, Du X, Luo Y, Han B, Liu G, Li J. MoS2/NiVFe crystalline/amorphous heterostructure induced electronic modulation for efficient neutral-alkaline hydrogen evolution. Electrochim Acta. 2023;437:141478.

[213]

Gu Y, Wu A, Jiao Y, et al. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew Chem Int Ed. 2021;60(12):6673-6681.

[214]

Chiang CH, Yang YC, Lin JW, et al. Bifunctional monolayer WSe2/graphene self-stitching heterojunction microreactors for efficient overall water splitting in neutral medium. ACS Nano. 2022;16(11):18274-18283.

[215]

Wang H, Xu J, Zhang Q, et al. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv Funct Mater. 2022;32(17):2112362.

[216]

Xia L, Wang F, Pan K, et al. Dual CoxSy-modified tungsten disulfide double-heterojunction electrocatalyst for efficient hydrogen evolution in all-pH media. ACS Appl Mater Interfaces. 2023;15(9):11765-11776.

[217]

Song A, Song S, Duanmu M, et al. Recent progress of non-noble metallic heterostructures for the electrocatalytic hydrogen evolution. Small Science. 2023;3(9):2300036.

[218]

Wang Y, Zhang Y, Liu Z, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew Chem. 2017;129(21):5961-5965.

[219]

Favaro M, Valero-Vidal C, Eichhorn J, et al. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J Mater Chem A. 2017;5(23):11634-11643.

[220]

Sun Y, Gao S, Lei F, Liu J, Liang L, Xie Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem Sci. 2014;5(10):3976-3982.

[221]

Xie C, Yan D, Chen W, et al. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater Today. 2019;31:47-68.

[222]

Li G, Blake GR, Palstra TTM. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem Soc Rev. 2017;46(6):1693-1706.

[223]

Song J, Huang ZF, Pan L, Zou JJ, Zhang X, Wang L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015;5(11):6594-6599.

[224]

Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev. 2013;113(6):3949-3985.

[225]

Nowotny J, Alim MA, Bak T, et al. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem Soc Rev. 2015;44(23):8424-8442.

[226]

Ling T, Yan DY, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat Commun. 2016;7(1):12876.

[227]

Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed. 2016;55(17):5277-5281.

[228]

Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem. 2011;3(1):79-84.

[229]

Huang J, Li Y, Zhang Y, et al. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew Chem Int Ed. 2019;58(48):17458-17464.

[230]

Ma Q, Hu C, Liu K, et al. Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction. Nano Energy. 2017;41:148-153.

[231]

Lee WH, Han MH, Ko YJ, Min BK, Chae KH, Oh HS. Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat Commun. 2022;13(1):605.

[232]

Niu S, Tang T, Qu Y, et al. Mitigating the reconstruction of metal sulfides for ultrastable oxygen evolution at high current density. CCS Chem. 2024;6(1):137-148.

[233]

Li DH, Zhang XY, Lv JQ, et al. Photo-activating biomimetic polyoxomolybdate for boosting oxygen evolution in neutral electrolytes. Angew Chem Int Ed. 2023;62(46):e202312706.

[234]

Zhang Y, Guo P, Niu S, et al. Magnetic field enhanced electrocatalytic oxygen evolution of NiFe-LDH/Co3O4 p-n heterojunction supported on nickel foam. Small Methods. 2022;6(6):2200084.

[235]

Liu H, Cao S, Zhang J, et al. Facile control of surface reconstruction with Co2+ or Co3+-rich (oxy)hydroxide surface on ZnCo phosphate for large-current-density hydrogen evolution in alkali. Mater Today Phys. 2021;20:100448.

[236]

Jiang K, Back S, Akey AJ, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun. 2019;10(1):3997.

[237]

You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y. Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015;5(12):7068-7076.

[238]

Ma G, Ye J, Qin M, et al. Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting. Nano Energy. 2023;115:108679.

[239]

Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009;323(5915):760-764.

[240]

Zhou X, Liao X, Pan X, et al. Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by on-chip micro-device. Nano Energy. 2021;83:105748.

[241]

Xie X, Zhai Z, Peng L, Zhang J, Shang L, Zhang T. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries. Sci Bull. 2023;68(22):2862-2875.

[242]

Zeng WJ, Wang C, Yan QQ, Yin P, Tong L, Liang HW. Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat Commun. 2022;13(1):7654.

[243]

Shi F, Li F, Ma Y, et al. In situ transmission electron microscopy study of nanocrystal formation for electrocatalysis. ChemNanoMat. 2019;5(12):1439-1455.

[244]

Gao W, Tieu P, Addiego C, Ma Y, Wu J, Pan X. Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. Sci Adv. 2019;5(1):eaau9590.

[245]

Li H, Chen S, Zhang Y, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun. 2018;9(1):2452.

[246]

Lonkar SP, Pillai VV, Alhassan SM. Scalable solid-state synthesis of MoS2–NiS2/graphene nanohybrids as bifunctional electrocatalysts for enhanced overall water splitting. Mater Adv. 2020;1(4):794-803.

[247]

Li H, Sang Y, Chang S, et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015;15(4):2372-2379.

[248]

Horikoshi S, Hidaka H, Serpone N. Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chem Phys Lett. 2003;376(3):475-480.

[249]

Niether C, Faure S, Bordet A, et al. Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat Energy. 2018;3(6):476-483.

[250]

Yan J, Wang Y, Zhang Y, Xia S, Yu J, Ding B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv Mater. 2021;33(5):2007525.

[251]

Ma Y, Zhou Y, Wang C, et al. Photothermal–magnetic synergistic effects in an electrocatalyst for efficient water splitting under optical–magnetic fields. Adv Mater. 2023;35(41):2303741.

[252]

Yao D, Hao W, Weng S, et al. Local photothermal effect enabling Ni3Bi2S2 nanoarray efficient water electrolysis at large current density. Small. 2022;18(12):2106868.

[253]

You D, Xu C, Zhang W, Zhao J, Qin F, Shi Z. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy. 2019;62:310-318.

[254]

Li J, Zhang J, Jiao X, et al. NIR-driven PtCu-alloy nanocages via photothermal enhanced fenton catalytic degradation of pollutant dyes under neutral pH. J Alloys Compd. 2022;895:162624.

[255]

Yan B, Shi Z, Lin J, et al. Boosting heterogeneous Fenton reactions for degrading organic dyes via the photothermal effect under neutral conditions. Environ Sci: Nano. 2022;9(2):532-541.

[256]

Li Z, Wang D, Wu Y, Li Y. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl Sci Rev. 2018;5(5):673-689.

[257]

Han Z, Han D, Chen Z, et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat Commun. 2022;13(1):3158.

[258]

Liu Z, Tan H, Li B, et al. Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nat Commun. 2023;14(1):3374.

[259]

Nian Y, Huang X, Liu M, Zhang J, Han Y. Insight into the dynamic evolution of supported metal catalysts by in situ/operando techniques and theoretical simulations. ACS Catal. 2023;13(16):11164-11171.

[260]

Wang J, Hsu CS, Wu TS, et al. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun. 2023;14(1):6576.

[261]

Yoo RMS, Yesudoss D, Johnson D, Djire A. A review on the application of in-situ raman spectroelectrochemistry to understand the mechanisms of hydrogen evolution reaction. ACS Catal. 2023;13(16):10570-10601.

[262]

Pan H, Zhang C, Lu Z, et al. Self-standing electrospun Co/Zn@N-doped carbon nanofiber electrode for highly stable liquid and solid-state rechargeable zinc-air batteries and performance evaluated by scanning electrochemical microscopy at various temperatures. Chem Eng J. 2023;477:147022.

[263]

Wan G, Zhang G, Chen JZ, Toney MF, Miller JT, Tassone CJ. Reaction-mediated transformation of working catalysts. ACS Catal. 2022;12(13):8007-8018.

[264]

Liu L, Corma A. Evolution of isolated atoms and clusters in catalysis. Trends Chem. 2020;2(4):383-400.

[265]

Cho KH, Park S, Seo H, et al. Capturing manganese oxide intermediates in electrochemical water oxidation at neutral pH by in situ Raman spectroscopy. Angew Chem Int Ed. 2021;60(9):4673-4681.

[266]

Ye JY, Jiang YX, Sheng T, Sun SG. In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy. 2016;29:414-427.

[267]

Jiang K, Liu B, Luo M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun. 2019;10(1):1743.

[268]

Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando scanning electrochemical probe microscopy during electrocatalysis. Chem Rev. 2023;123(8):4972-5019.

[269]

Zhang M, Zhang K, Ai X, et al. Theory-guided electrocatalyst engineering: from mechanism analysis to structural design. Chin J Catal. 2022;43(12):2987-3018.

[270]

Han ZK, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko SV. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat Commun. 2021;12(1):1833.

[271]

Wu S, Wang Z, Zhang H, Cai J, Li J. Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy & Environmental Materials. 2023;6(1):e12259.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (7057KB)

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/