Single-element amorphous metals

Xiao Han , Geng Wu , Dong Sheng He , Xun Hong

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 480 -491.

PDF (3397KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 480 -491. DOI: 10.1002/idm2.12171
REVIEW

Single-element amorphous metals

Author information +
History +
PDF (3397KB)

Abstract

To unveil the nature of amorphous states, single-element amorphous metals have been the perfect research subject due to the simplest composition. However, the extreme crystal nucleation and growth rate in single-element metal make the synthesis of single-element amorphous metals seemingly impossible in the past. Fortunately, benefited by several delicate synthetic strategies developed recently, the single-element amorphous metals have been successfully demonstrated. This review aims to provide a systematic overview of the synthesis of single-element amorphous metals covering the challenges in physics and recent achievements. In addition, current understanding of the atomic and electronic structures of single-element amorphous metal has also been included. Finally, the challenges that worth further investigation are discussed. By identifying the potential avenues for further exploration, this review aims to contribute valuable insights that will propel the cognition of single-element amorphous metals.

Keywords

amorphous / metal / single-element / structure / synthesis

Cite this article

Download citation ▾
Xiao Han, Geng Wu, Dong Sheng He, Xun Hong. Single-element amorphous metals. Interdisciplinary Materials, 2024, 3(4): 480-491 DOI:10.1002/idm2.12171

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han X, Wu G, Du J, Pi J, Yan M, Hong X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chem Commun. 2022;58:223-237.

[2]

Li J, Doubek G, McMillon-Brown L, Taylor AD. Recent advances in metallic glass nanostructures: synthesis strategies and electrocatalytic applications. Adv Mater. 2019;31:1802120.

[3]

Wu G, Han X, Hong X. Order in disordered monolayer carbon. Matter. 2023;6:2528-2530.

[4]

Wu G, Han X, Hong X. Short-to-medium-range order in amorphous nanocatalysts. Mater Today Catal. 2023;3:100025.

[5]

Ma E, Zhang Z. Reflections from the glass maze. Nat Mater. 2011;10:10-11.

[6]

Wu G, Han X, Cai J, et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat Commun. 2022;13:4200.

[7]

Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun. 2019;10:4855.

[8]

Li R, Rao D, Zhou J, et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat Commun. 2021;12:3102.

[9]

Yu J, Wu G, Han X, et al. Amorphous gallium oxide nanosheets with broad absorption and spin polarization for Si-based UV-vis-NIR photodetectors. Adv Opt Mater. 2024;2302410.

[10]

Tang H, Cheng Y, Yuan X, et al. Toughening oxide glasses through paracrystallization. Nat Mater. 2023;22:1189-1195.

[11]

Qiao JC, Liu XD, Wang Q, Liu CT, Lu J, Yang Y. Fast secondary relaxation and plasticity initiation in metallic glasses. Natl Sci Rev. 2018;5:616-618.

[12]

Shen LQ, Luo P, Hu YC, et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass. Nat Commun. 2018;9:4414.

[13]

Wu B, Niu S, Wang C, et al. Amorphous vanadium oxide nanosheets with alterable polyhedron configuration for fast-charging lithium-ion batteries. Small. 2023;19:2303360.

[14]

Ma Q, Mu S. Acidic oxygen evolution reaction: mechanism, catalyst classification, and enhancement strategies. Interdiscip Mater. 2023;2:53-90.

[15]

Zhang L, Zhu J, Li X, et al. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip Mater. 2022;1:51-87.

[16]

Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nat Mater. 2011;10:439-442.

[17]

Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature. 1960;187:869-870.

[18]

Jiang R, Da Y, Chen Z, et al. Progress and perspective of metallic glasses for energy conversion and storage. Adv Energy Mater. 2022;12:2101092.

[19]

Johny J, Li Y, Kamp M, et al. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res. 2022;15:4807-4819.

[20]

Li X, Cai W, Li D-S, Xu J, Tao H, Liu B. Amorphous alloys for electrocatalysis: the significant role of the amorphous alloy structure. Nano Res. 2023;16:4277-4288.

[21]

Duwez P, Willens RH, Crewdson RC. Amorphous phase in palladium-silicon alloys. J Appl Phys. 1965;36:2267-2269.

[22]

Schroers J. Processing of bulk metallic glass. Adv Mater. 2010;22:1566-1597.

[23]

Halim Q, Mohamed NAN, Rejab MRM, Naim WNWA, Ma Q. Metallic glass properties, processing method and development perspective: a review. Int J Adv Manuf Technol. 2021;112:1231-1258.

[24]

Kumar G, Desai A, Schroers J. Bulk metallic glass: the smaller the better. Adv Mater. 2011;23:461-476.

[25]

Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46:2817-2829.

[26]

Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279-306.

[27]

Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci. 2011;56:379-473.

[28]

Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10:473-488.

[29]

Schroers J. Glasses made from pure metals. Nature. 2014;512:142-143.

[30]

Cohen MH, Turnbull D. Composition requirements for glass formation in metallic and ionic systems. Nature. 1961;189:131-132.

[31]

Kbirou M, Trady S, Hasnaoui A, Mazroui M. Cooling rate dependence and local structure in aluminum monatomic metallic glass. Philos Mag. 2017;97:2753-2771.

[32]

Assouli S, Jabraoui H, El hafi T, et al. Exploring the impact of cooling rates and pressure on fragility and structural transformations in iron monatomic metallic glasses: insights from molecular dynamics simulations. J Non-Cryst Solids. 2023;621:122623.

[33]

Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting. Mater Today. 2013;16:37-41.

[34]

Greer AL. New horizons for glass formation and stability. Nat Mater. 2015;14:542-546.

[35]

Orava J, Greer AL. Fast and slow crystal growth kinetics in glass-forming melts. J Chem Phys. 2014;140:214504.

[36]

Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267:1924-1935.

[37]

Burr GW, Tchoulfian P, Topuria T, et al. Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5. J Appl Phys. 2012;111:104308.

[38]

Zhong L, Wang J, Sheng H, Zhang Z, Mao SX. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature. 2014;512:177-180.

[39]

Eckler K, Gärtner F, Assadi H, Norman AF, Greer AL, Herlach DM. Phase selection, growth, and interface kinetics in undercooled Fe-Ni melt droplets. Mater Sci Eng A. 1997;226-228:410-414.

[40]

Davies HA, Aucote J, Hull JB. Amorphous nickel produced by splat quenching. Nat Phys Sci. 1973;246:13-14.

[41]

Kim Y-W, Lin H-M, Kelly TF. Amorphous solidification of pure metals in submicron spheres. Acta Metall. 1989;37:247-255.

[42]

Bhat MH, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid. Nature. 2007;448:787-790.

[43]

Tang D-M, Ren C-L, Lv R, et al. Amorphization and directional crystallization of metals confined in carbon nanotubes investigated by in situ transmission electron microscopy. Nano Lett. 2015;15:4922-4927.

[44]

Cheng H, Yang N, Liu G, et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv Mater. 2020;32:1902964.

[45]

He DS, Huang Y, Myers BD, et al. Single-element amorphous palladium nanoparticles formed via phase separation. Nano Res. 2022;15:5575-5580.

[46]

Suslick KS, Choe S-B, Cichowlas AA, Grinstaff MW. Sonochemical synthesis of amorphous iron. Nature. 1991;353:414-416.

[47]

Zhao R, Jiang HY, Luo P, et al. A facile strategy to produce monatomic tantalum metallic glass. Appl Phys Lett. 2020;117:131903.

[48]

Johnson W. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog Mater Sci. 1986;30:81-134.

[49]

Davies HA, Hull JB. The formation, structure and crystallization of non-crystalline nickel produced by splat-quenching. J Mater Sci. 1976;11:215-223.

[50]

Salinga M, Kersting B, Ronneberger I, et al. Monatomic phase change memory. Nat Mater. 2018;17:681-685.

[51]

Molinero V, Sastry S, Angell CA. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Phys Rev Lett. 2006;97:075701.

[52]

Mo J, Liu H, Zhang Y, et al. Effects of pressure on structure and mechanical property in monatomic metallic glass. J Non-Cryst Solids. 2017;464:1-4.

[53]

Lachtioui Y, Kbirou M, Saadouni K, Sajieddine M, Mazroui M. Glass formation and structure evolution in the rapidly solidified monatomic metallic liquid Pt under high pressure. Chem Phys. 2020;538:110805.

[54]

Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature. 2001;410:259-267.

[55]

Berthier L, Ediger MD. Facets of glass physics. Phys Today. 2016;69:40-46.

[56]

Han X, Wu G, Zhao S, et al. Nanoscale high-entropy alloy for electrocatalysis. Matter. 2023;6:1717-1751.

[57]

Zhu C, Yang J, Zhang J, et al. Single-atom materials: the application in energy conversion. Interdiscip Mater. 2024;3:74-86.

[58]

Wang L, Wu J, Wang S, et al. The reformation of catalyst: from a trial-and-error synthesis to rational design. Nano Res. 2024;17:3261-3301.

[59]

Sheng HW, Liu HZ, Cheng YQ, et al. Polyamorphism in a metallic glass. Nat Mater. 2007;6:192-197.

[60]

Swallen SF, Kearns KL, Mapes MK, et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science. 2007;315:353-356.

[61]

Yu H-B, Luo Y, Samwer K. Ultrastable metallic glass. Adv Mater. 2013;25:5904-5908.

[62]

Trady S, Hasnaoui A, Mazroui M, Saadouni K. Local atomic structures of single-component metallic glasses. Eur Phys J B. 2016;89:223.

[63]

Khmich A, Sbiaai K, Hasnaoui A. Structural behavior of Tantalum monatomic metallic glass. J Non-Cryst Solids. 2019;510:81-92.

[64]

Yuan Y, Kim DS, Zhou J, et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat Mater. 2022;21:95-102.

[65]

Huang Y, Xie L, He D, He J. Surface crystallization of amorphous palladium nanoparticles. J Phys Chem C. 2020;125:1107-1112.

[66]

Qiao C, Xu M, Wang S, et al. Structure, bonding nature and transition dynamics of amorphous Te. Scr Mater. 2021;202:114011.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (3397KB)

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/