Jan 2024, Volume 31 Issue 1
    

  • Select all
  • REVIEW
    Jinzhi Niu, Ruoyu Chen, Jin-Jun Wang
    PDF

    RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.

  • ORIGINAL ARTICLE
    Shuang Lei, Shi-Jiang Yu, Qi Pan, Li-Li Ding, Si-Chen Li, Lu-Yan Cheng, Shu-Qi Wang, Bing-Hai Lou, Jun He, Cui-Yun Lei, Lin Cong, Hao-Qiang Liu, Xue-Feng Wang, Chun Ran
    PDF

    Diaphorina citri is a global citrus pest. As a vector insect, it can transmit the causative agents of citrus huanglongbing, causing irreversible losses to the citrus industry. The acquisition of genomic information can provide a molecular genetic basis for effective control of D. citri. Here, the DNBSEQ™, Oxford Nanopore Technologies, and Hi-C technologies are applied to generate a high-quality chromosome-level genome of D. citri. The genome size of D. citri was 523.78 Mb with a scaffold N50 of 47.05 Mb distributed on 13 chromosomes. A total of 250.64 Mb (47.85%) repeat sequences and 24 048 protein-coding genes were predicted. Genome resequencing of female and male individuals indicated that the sex chromosome system of D. citri is XO. Phylogenetic analysis demonstrated that D. citri and Pachypsylla venusta, which separated from their most recent common ancestor about 336.62 million years ago, were the most closely related. Additionally, we identified genes potentially involved in detoxification metabolism, pathogen transmission, and honeydew secretion for further investigation. The high-quality genome provides an important reference for developing effective management strategies of D. citri.

  • ORIGINAL ARTICLE
    Dingpei Long, Rongpeng Liu, Yang Huang, Anyao Fu, Yuli Zhang, Zhanzhang Hao, Qiang Li, Hanfu Xu, Zhonghuai Xiang, Aichun Zhao
    PDF

    The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.

  • ORIGINAL ARTICLE
    Hao Sun, Jingya Chen, Ruolin Wang, Dan Liu, Na Zhang, Tong Zhang, Ling Jia, Sanyuan Ma, Qingyou Xia
    PDF

    Metamorphosis is a complex developmental process involving multiple pathways and a large number of genes that are regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Despite important progress in understanding various aspects of silkworm biology, the hormone signaling pathway in the silkworm remains poorly understood. Genome-wide screening using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-based libraries has recently emerged as a novel method for analyzing genome function, enabling further research into essential genes, drug targets, and virus–host interaction. Previously, we constructed a genome-wide CRISPR/Cas9-based library of the silkworm (Bombyx mori) and successfully revealed the genes involved in biotic or abiotic stress factor responses. In this study, we used our silkworm CRISPR library and large-scale genome-wide screening to analyze the key genes in the silkworm 20E signaling pathway and their mechanisms of action. Functional annotation showed that 20E regulates key proteins in processes that mainly occur in the cytoplasm and nucleus. Pathway enrichment analysis showed that 20E can activate phosphorylation and may affect innate immunity, interfere with intracellular nutrition and energy metabolism, and eventually cause cell apoptosis. The screening results were experimentally validated by generating cells with knockout alleles of the relevant genes, which had increased tolerance to 20E. Our findings provide a panoramic overview of signaling in response to 20E in the silkworm, underscoring the utility of genome-wide CRISPR mutant libraries in deciphering hormone signaling pathways and the mechanisms that regulate metamorphosis in insects.

  • ORIGINAL ARTICLE
    Qi Chen, Xiaoyan Zhu, Guoqing Kang, Qiling Yu, Qingxin Liu, Lin Du, Yi Yang, Xinyu He, Ying Zhao, Junjie Zhang, Ying Hu, Bingzhong Ren
    PDF

    The Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae), a globally distributed storage pest, relies on odors that are emitted from stored foods to select a suitable substrate for oviposition. However, the molecular mechanism underlying the chemical communication between P. interpunctella and its host remains elusive. In this study, 130 chemosensory genes were identified from the transcriptomes of 7 P. interpunctella tissues, and the quantitative expression levels of all 56 P. interpunctella odorant receptor genes (PintORs) were validated using real-time quantitative polymerase chain reaction. The functional characteristics of 5 PintORs with female antennae-biased expression were investigated using 2-electrode voltage clamp recordings in Xenopus laevis oocytes. PintOR23 was found to be specifically tuned to acetophenone. Acetophenone could elicit a significant electrophysiological response and only attracted mated females when compared with males and virgin females. In addition, molecular docking predicted that the hydrogen bonding sites, TRP-335 and ALA-167, might play key roles in the binding of PintOR23 to acetophenone. Our study provides valuable insights into the olfactory mechanism of oviposition substrate detection and localization in P. interpunctella and points toward the possibility of developing eco-friendly odorant agents to control pests of stored products.

  • ORIGINAL ARTICLE
    Qihao Hu, Yanhong Xiao, Runnan Wei, Ting Tang, Liang Wen, Yuzhen Lu, Xiao-Qiang Yu
    PDF

    Spermatogenesis is a critical part of reproduction in insects; however, its molecular mechanism is still largely unknown. In this study, we identified a testis-specific gene CG3526 in Drosophila melanogaster. Bioinformatics analysis showed that CG3526 contains a zinc binding domain and 2 C2H2 type zinc fingers, and it is clustered to the vertebrate really interesting new gene (RING) family E3 ubiquitin-protein ligases. When CG3526 was knocked down by RNA interference (RNAi), the testis became much smaller in size, and the apical tip exhibited a sharp and thin end instead of the blunt and round shape in the control testis. More importantly, compared to the control flies, only a few mature sperm were present in the seminal vesicle of C587-Gal4 > CG3526 RNAi flies. Immunofluorescence staining of the testis from CG3526 RNAi flies showed that the homeostasis of testis stem cell niche was disrupted, cell distribution in the apical tip was scattered, and the process of spermatogenesis was not completed. Furthermore, we found that the phenotype of CG3526 RNAi flies’ testis was similar to that of testis of Stat92E RNAi flies, the expression level of CG3526 was significantly downregulated in the Stat92EF06346 mutant flies, and the promoter activity of CG3526 was upregulated by STAT92E. Taken together, our results indicated that CG3526 is a downstream effector gene in the JAK-STAT signaling pathway that plays a key role in the spermatogenesis of Drosophila.

  • ORIGINAL ARTICLE
    Jia-Bao Lu, Peng-Peng Ren, Qiao Li, Fang He, Zhong-Tian Xu, Sai-Nan Wang, Jian-Ping Chen, Jun-Min Li, Chuan-Xi Zhang
    PDF

    Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1−10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1−10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3−5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1−10 can be clustered into 5 clades, with NlApoD3−5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3−5/9, NlApoD3−5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2O2, and ultraviolet-C, respectively, indicating their potential roles in stress resistance.

  • ORIGINAL ARTICLE
    Yi Yan, Dong-Dong Qin, Hong Yang, Kang-Kang Xu, Can Li, Wen-Jia Yang
    PDF

    High fecundity is a common characteristic of insect pests which increases the difficulty of population control. Serine/threonine kinase Akt is an indispensable component of the insulin signaling pathway. Silencing of LsAkt severely hinders reproduction in Lasioderma serricorne, a stored product insect pest. However, the post-transcriptional pathway of LsAkt in L. serricorne remains unknown. This study identified 2 binding sites of miR-9c-5p and novel-mir50 in the coding sequences of LsAkt. The expression profiles of 2 microRNAs (miRNAs) and LsAkt displayed an opposite pattern during the adult stages. Luciferase reporter assay showed that novel-mir50 and miR-9c-5p could downregulate the expression of LsAkt. Overexpression of miR-9c-5p and novel-mir50 by injection of mimics inhibited the expression of LsAkt and reduced oviposition, decreased egg hatchability, and blocked ovarian development. It also decreased the expression of genes involved in ovarian development (LsVg and LsVgR) and the nutritional signaling pathway (LsTOR, LsS6K, and Ls4EBP), and reduced the phosphorylation of Akt. Conversely, injection of miR-9c-5p and novel-mir50 inhibitors induced the expressions of LsAkt, LsVg, LsVgR, LsTOR, LsS6K, and Ls4EBP, enhanced Akt phosphorylation level, and accelerated ovarian development. Injection of bovine insulin downregulated the expression of miR-9c-5p and novel-mir50 and upregulated the LsAkt expression. It also rescued the reproductive development defects associated with miR-9c-5p/novel-mir50 overexpression, forming a positive regulatory loop of insulin signaling. These results indicate that miR-9c-5p/novel-mir50 regulates the female reproduction of L. serricorne by targeting Akt in response to insulin signaling. The data also demonstrate the effects of the insulin/miRNA/Akt regulatory axis in insect reproduction.

  • ORIGINAL ARTICLE
    Jie-Yu Zhang, Jing Zhao, Keyan Zhu-Salzman, Qin-Qin Ji, Yi-Ping Jiang, Liu-Bin Xiao, De-Jin Xu, Guang-Chun Xu, Lin-Quan Ge, Yong-An Tan
    PDF

    RNA interference (RNAi) is a powerful tool that post-transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double-stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+-binding site were similar to those of other insects’ dsRNases. The signal peptide and endonuclease non-specific domain shared high sequence identity with the brown-winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.

  • ORIGINAL ARTICLE
    Ruinan Yang, Dongzhen Li, Shancheng Yi, Yi Wei, Manqun Wang
    PDF

    Monochamus alternatus is the primary carrier of pine wood nematodes, which pose a serious threat to Pinus spp. in many countries. Newly emerging M. alternatus adults feed on heathy host pines, while matured adults transfer to stressed host pines for mating and oviposition. Several odorant-binding proteins (OBPs) of M. alternatus have been proved to aid in the complex process of host location. To clarify the corresponding relations between OBPs and pine volatiles, more OBPs need to be studied. In this research, MaltOBP19 showed a specific expression in the antennae and mouthparts of M. alternatus, and it was marked in 4 types of antenna sensilla by immunolocalization. Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro. In Y-tube olfactory experiments, M. alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index. Myrcene induced phobotaxis, but RNAi had no significant effect on this behavior. Further, we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19. These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene, which has been identified to be strongly released in stressed host pines. In addition, it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M. alternatus adults, providing a new perspective in the control of M. alternatus.

  • ORIGINAL ARTICLE
    Linmeng Tang, Dehong Yang, Zhiwei Liu, Yaohui Wang, Xu Yang, Yujia Liu, Dongbin Chen, Zheng Tang, Yongping Huang
    PDF

    After a millennium of domestication, numerous silkworm mutants have emerged that exhibit transparent epidermis, which is caused by abnormally low levels of uric acid. We identified the Bombyx mori gene Bmcap (BMSK0003832) as the homolog of cappuccino, a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1) that has been extensively characterized in human, mouse, and insect species, by analyzing the amino acid sequences of putative purine metabolism genes. Using the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 system, we disrupted Bmcap, resulting in decreased uric acid levels in the silkworm epidermis and a translucent skin phenotype. In the Bmcap mutant, the purine metabolism, nitrogen metabolism, pyrimidine metabolism, and membrane system were altered compared to the wild type. Biogenesis of lysosome-related organelle complex genes play a role in the pigmentation and biogenesis of lysosome-related organelles (LROs) in platelets, melanocytes, and megakaryocytes. LROs exhibit unique morphologies and functions in various tissues and cells. Investigation of the Bmcap mutant will enhance our understanding of the uric acid metabolic pathway in silkworms, and this mutant offers a valuable silkworm model for LRO studies.

  • ORIGINAL ARTICLE
    Shihui Long, Wenxin Cao, Yongyu Qiu, Ruohan Deng, Jiali Liu, Lidan Zhang, Renke Dong, Fengxin Liu, Sheng Li, Haigang Zhao, Na Li, Kang Li
    PDF

    Apoptosis is an important process for organism development that functions to eliminate cell damage, maintain homeostasis, and remove obsolete tissues during morphogenesis. In mammals, apoptosis is accompanied by the release of cytochrome C (Cyt-c) from mitochondria to the cytoplasm. However, whether this process is conserved in the fruit fly, Drosophila melanogaster, remains controversial. In this study, we discovered that during the degradation of Drosophila salivary gland, the transcription of mitochondria apoptosis factors (MAPFs), Cyt-c, and death-associated APAF1-related killer (Dark) encoding genes are all upregulated antecedent to initiator and effector caspases encoding genes. The proteins Cyt-c and the active caspase 3 appear gradually in the cytoplasm during salivary gland degradation. Meanwhile, the Cyt-c protein colocates with mito-GFP, the marker indicating cytoplasmic mitochondria, and the change in mitochondrial membrane potential coincides with the appearance of Cyt-c in the cytoplasm. Moreover, impeding or promoting 20E-induced transcription factor E93 suppresses or enhances the staining of Cyt-c and the active caspase 3 in the cytoplasm of salivary gland, and accordingly decreases or increases the mitochondrial membrane potential, respectively. Our research provides evidence that cytoplasmic Cyt-c appears before apoptosis during Drosophila salivary gland degradation, shedding light on partial conserved mechanism in apoptosis between insects and mammals.

  • ORIGINAL ARTICLE
    Chan Wang, Lei Liu, Tian-Yu Huang, Yu Zhang, Yang Liu, Gui-Rong Wang
    PDF

    Pheromone receptors (PRs) are key proteins in the molecular mechanism of pheromone recognition, and exploring the functional differentiation of PRs between closely related species helps to understand the evolution of moth mating systems. Pheromone components of the agricultural pest Mythimna loreyi have turned into (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), and (Z)-11-hexadecen-1-yl acetate, while the composition differs from that of M. separata in the genus Mythimna. To understand the molecular mechanism of pheromone recognition, we sequenced and analyzed antennal transcriptomes to identify 62 odorant receptor (OR) genes. The expression levels of all putative ORs were analyzed using differentially expressed gene analysis. Six candidate PRs were quantified and functionally characterized in the Xenopus oocytes system. MlorPR6 and MlorPR3 were determined to be the receptors of major and minor components Z9-14:OAc and Z7-12:OAc. MlorPR1 and female antennae (FA)-biased MlorPR5 both possessed the ability to detect pheromones of sympatric species, including (Z,E)-9,12-tetradecadien-1-ol, (Z)-9-tetradecen-1-ol, and (Z)-9-tetradecenal. Based on the comparison of PR functions between M. loreyi and M. separata, we analyzed the differentiation of pheromone recognition mechanisms during the evolution of the mating systems of 2 Mythimna species.

  • ORIGINAL ARTICLE
    Shiming Zhu, Xiaoyi Chen, Sishi Xia, Qin Li, Ziqi Ye, Shaoting Zhao, Kexin Liu, Fangfang Liu
    PDF

    Reproduction is of great importance for the continuation of the species. In insects, the fat body is the major tissue for nutrient storage and involved in vitellogenesis, which is essential for female reproduction. Here, 2 proteins, hexamerin and allergen, were separated from the fat bodies of adult female American cockroaches (Periplaneta americana) and identified as storage proteins, encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa, respectively. The encoding genes of these 2 storage proteins are mainly expressed in the fat body. RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation, indicating that these storage proteins are involved in controlling reproduction. Importantly, the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone (JH) receptor gene Met and the primary response gene Kr-h1, and was induced by methoprene, a JH analog, in both in vivo and in vitro experiments. Altogether, we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach. The expression of their encoding genes is induced by JH signaling. Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.

  • ORIGINAL ARTICLE
    Eisuke Tasaki, Yorihiro Yamamoto, Yoshihito Iuchi
    PDF

    Termite queens and kings live longer than nonreproductive workers. Several molecular mechanisms contributing to their long lifespan have been investigated; however, the underlying biochemical explanation remains unclear. Coenzyme Q (CoQ), a component of the mitochondrial electron transport chain, plays an essential role in the lipophilic antioxidant defense system. Its beneficial effects on health and longevity have been well studied in several organisms. Herein, we demonstrated that long-lived termite queens have significantly higher levels of the lipophilic antioxidant CoQ10 than workers. Liquid chromatography analysis revealed that the levels of the reduced form of CoQ10 were 4 fold higher in the queen's body than in the worker's body. In addition, queens showed 7 fold higher levels of vitamin E, which plays a role in antilipid peroxidation along with CoQ, than workers. Furthermore, the oral administration of CoQ10 to termites increased the CoQ10 redox state in the body and their survival rate under oxidative stress. These findings suggest that CoQ10 acts as an efficient lipophilic antioxidant along with vitamin E in long-lived termite queens. This study provides essential biochemical and evolutionary insights into the relationship between CoQ10 concentrations and termite lifespan extension.

  • ORIGINAL ARTICLE
    Yulong Wang, Zhen Liu, Xuebing Yin, Shihong Liu, Kai Wang, Rongjie Wan, Haoran Chen, Xinyang Li, Bo Huang
    PDF

    Entomopathogenic fungi are protected by a cell wall with dynamic structure for adapting to various environmental conditions. β-1,3-Glucan recognition proteins activate the innate immune system of insects by recognizing surface molecules of fungi. However, the associations between pathogenicity and the different components of entomopathogenic fungal cell walls remain unclear. Three Beauveria bassiana strains were selected that have significantly differing virulence against Bombyx mori. The molecular mechanisms underlying the immune response in B. mori were investigated using RNA sequencing, which revealed differences in the immune response to different B. bassiana strains at 12 h post-infection. Immunofluorescence assays revealed that β-1,3-glucan content had an opposite trend to that of fungal virulence. β-1,3-Glucan injection upregulated BmβGRP4 expression and significantly reduced the virulence of the high-virulence strain but not that of the medium-virulence or low-virulence strains. BmβGRP4 silencing in B. mori with RNA interference resulted in the opposite virulence pattern, indicating that the virulence of B. bassiana was affected by the cell walls’ content of β-1,3-glucan, which could be recognized by BmβGRP4. Furthermore, interference with the gene CnA (calcineurin catalytic A subunit) involved in β-1,3-glucan synthesis eliminated differences in virulence between B. bassiana strains. These results indicate that strains of a single species of pathogenic fungi that have differing cell wall components are recognized differently by the innate immune system of B. mori.

  • ORIGINAL ARTICLE
    Qingjie Cao, Yu Zhao, Tuuli-Marjaana Koski, Huiping Li, Jianghua Sun
    PDF

    Bark beetles are an economically and ecologically important insect group, with aggregation behavior and thus host colonization success depends on pheromone-mediated communication. For some species, such as the major invasive forest pest in China, red turpentine beetle (Dendroctonus valens), gut microbiota participates in pheromone production by converting tree monoterpenes into pheromone products. However, how variation in gut microenvironment, such as pH, affects the gut microbial composition, and consequently pheromone production, is unknown. In this study, we fed wild caught D. valens with 3 different pH media (main host diet with natural pH of 4.7; a mildly acidic diet with pH 6 mimicking the beetle gut pH; and highly acidic diet with pH 4), and measured their effects on the gut pH, bacterial community and production of the main aggregation and anti-aggregation pheromone (verbenone). We further tested the verbenone production capacity of 2 gut bacterial isolates in different pH environments (pH 6 and 4). Compared to natural state or main host diet, feeding on less acidic diet (pH 6) diluted the acidity of the gut, whereas feeding on highly acidic diet (pH 4) enhanced it. Both changes in gut pH reduced the abundance of dominant bacterial genera, resulting in decreased verbenone production. Similarly, the highest pheromone conversion rate of the bacterial isolates was observed in pH mimicking the acidity in beetle gut. Taken together, these results indicate that changes in gut pH can affect gut microbiota composition and pheromone production, and may therefore have the potential to affect host colonization behavior.

  • ORIGINAL ARTICLE
    Ya Guo, Yani Zhao, Yang Yang, Yahong Zhang, Yuying Li, Honggang Tian, Tong-Xian Liu, Zhaofei Li
    PDF

    In a tritrophic context of plant–insect–entomopathogen, plants play important roles in modulating the interaction of insects and their pathogenic viruses. Currently, the influence of plants on the transmission of insect viruses has been mainly studied on baculoviruses and some RNA viruses, whereas the impact of plants on other insect viruses is largely unknown. Here, we identified a new densovirus infecting the green peach aphid Myzus persicae and tested whether and how host plants influence the transmission of the aphid densovirus. The complete single-stranded DNA genome of the virus, M. persicae densovirus 2, is 5 727 nt and contains inverted terminal repeats. Transcription and phylogenetic analysis indicated that the virus was distinct from other a few identified aphid densoviruses. The virus abundance was detected highly in the intestinal tract of aphids, compared with the lower level of it in other tissues including head, embryo, and epidermis. Cabbage and pepper plants had no obvious effect on the vertical transmission and saliva-mediated horizontal transmission of the virus. However, the honeydew-mediated horizontal transmission among aphids highly depended on host plants (65% on cabbages versus 17% on peppers). Although the virus concentration in the honeydew produced by aphids between 2 plants was similar, the honeydew production of the infected aphids reared on peppers was dramatically reduced. Taken together, our results provide evidence that plants influence the horizontal transmission of a new densovirus in an aphid population by modulating honeydew secretion of aphids, suggesting plants may manipulate the spread of an aphid-pathogenic densovirus in nature.

  • ORIGINAL ARTICLE
    Xin An, Qiaoying Gu, Jing Wang, Tengyu Chang, Wei Zhang, Jin-Jun Wang, Jinzhi Niu
    PDF

    Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.

  • ORIGINAL ARTICLE
    Inon Scharf, Kimberley Hanna, Daphna Gottlieb
    PDF

    Movement is an important animal behavior contributing to reproduction and survival. Animal movement is often examined in arenas or enclosures under laboratory conditions. We used the red flour beetle (Tribolium castaneum) to examine here the effect of the arena size, shape, number of barriers, access to the arena's center, and illumination on six movement properties. We demonstrate great differences among arenas. For example, the beetles moved over longer distances in clear arenas than in obstructed ones. Movement along the arena's perimeter was greater in smaller arenas than in larger ones. Movement was more directional in round arenas than in rectangular ones. In general, the beetles stopped moving closer to the perimeter and closer to corners (in the square and rectangular arenas) than expected by chance. In some cases, the arena properties interacted with the beetle sex to affect several movement properties. All these suggest that arena properties might also interact with experimental manipulations to affect the outcome of studies and lead to results specific to the arena used. In other words, instead of examining animal movement, we in fact examine the animal interaction with the arena structure. Caution is therefore advised in interpreting the results of studies on movement in arenas under laboratory conditions and we recommend paying attention also to barriers or obstacles in field experiments. For instance, movement along the arena's perimeter is often interpreted as centrophobism or thigmotaxis but the results here show that such movement is arena dependent.

  • ORIGINAL ARTICLE
    Susana Pallarés, David Garoffolo, Belén Rodríguez, David Sánchez-Fernández
    PDF

    The climatic variability hypothesis (CVH) predicts that organisms in more thermally variable environments have wider thermal breadths and higher thermal plasticity than those from more stable environments. However, due to evolutionary trade-offs, taxa with greater absolute thermal limits may have little plasticity of such limits (trade-off hypothesis). The CVH assumes that climatic variability is the ultimate driver of thermal tolerance variation across latitudinal and altitudinal gradients, but average temperature also varies along such gradients. We explored intraspecific variation of thermal tolerance in three typical Mediterranean saline water beetles (families Hydrophilidae and Dytiscidae). For each species, we compared two populations where the species coexist, with similar annual mean temperature but contrasting thermal variability (continental vs. coastal population). We estimated thermal limits of adults from each population, previously acclimated at 17, 20, or 25 °C. We found species-specific patterns but overall, our results agree with the CVH regarding thermal ranges, which were wider in the continental (more variable) population. In the two hydrophilid species, this came at the cost of losing plasticity of the upper thermal limit in this population, supporting the trade-off hypothesis, but not in the dytiscid one. Our results support the role of local adaptation to thermal variability and trade-offs between basal tolerance and physiological plasticity in shaping thermal tolerance in aquatic ectotherms, but also suggest that intraspecific variation of thermal tolerance does not fit a general pattern among aquatic insects. Overlooking such intraspecific variation could lead to inaccurate predictions of the vulnerability of aquatic insects to global warming.

  • LETTER TO THE EDITOR
    Xingnuo Li, Peng Liang, Mingyue Wu, Shaoli Wang, Qingjun Wu, Wen Xie, Youjun Zhang
    PDF
  • LETTER TO THE EDITOR
    Xiao-lin Yang, Xia Ling, Quan Sun, Pin-pin Qiu, Kai Xiang, Jun-feng Hong, Shu-lin He, Jie Chen, Xin Ding, Hai Hu, Zheng-bo He, Cao Zhou, Bin Chen, Liang Qiao
    PDF