Simultaneous resistance switching and rectifying effects in a single hybrid perovskite

Xuefen Song , Junran Zhang , Yuchi Qian , Zhongjing Xia , Jinlian Chen , Hao Yin , Jing Liu , Linbo Feng , Tianyu Liu , Zihong Zhu , Yuyang Hua , You Liu , Jiaxiao Yuan , Feixiang Ge , Dawei Zhou , Mubai Li , Yang Hang , Fangfang Wang , Tianshi Qin , Lin Wang

InfoMat ›› 2024, Vol. 6 ›› Issue (9) : e12562

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (9) : e12562 DOI: 10.1002/inf2.12562
RESEARCH ARTICLE

Simultaneous resistance switching and rectifying effects in a single hybrid perovskite

Author information +
History +
PDF

Abstract

Halide perovskites with naturally coupled electron-ion dynamics hold great potential for nonvolatile memory applications. Self-rectifying memristors are promising as they can avoid sneak currents and simplify device configuration. Here we report a self-rectifying memristor firstly achieved in a single perovskite (NH═CINH3)3PbI5 (abbreviated as (IFA)3PbI5), which is sandwiched by Ag and ITO electrodes as the simplest cell in a crossbar array device configuration. The iodide ions of (IFA)3PbI5 can be easily activated, of which the migration in the bulk contributes to the resistance hysteresis and the reaction with Ag at the interface contributes to the spontaneous formation of AgI. The perfect combination of n-type AgI and p-type (IFA)3PbI5 gives rise to the rectification function like a p–n diode. Such a self-rectifying memristor exhibits the record-low set power consumption and voltage. This work emphasizes that the multifunction of ions in perovskites can simplify the fabrication procedure, decrease the programming power, and increase the integration density of future memory devices.

Keywords

halide perovskite / low power / low SET voltage / memristor / self-rectifying

Cite this article

Download citation ▾
Xuefen Song, Junran Zhang, Yuchi Qian, Zhongjing Xia, Jinlian Chen, Hao Yin, Jing Liu, Linbo Feng, Tianyu Liu, Zihong Zhu, Yuyang Hua, You Liu, Jiaxiao Yuan, Feixiang Ge, Dawei Zhou, Mubai Li, Yang Hang, Fangfang Wang, Tianshi Qin, Lin Wang. Simultaneous resistance switching and rectifying effects in a single hybrid perovskite. InfoMat, 2024, 6(9): e12562 DOI:10.1002/inf2.12562

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ielmini D, Philip WHS. In-memory computing with resistive switching devices. Nat Electron. 2018; 1(6): 333-343.

[2]

Sebastian A, Gallo ML, Khaddam-Aljameh R. Eleftheriou E. Memory devices and applications for in-memory computing. Nat Nanotechnol. 2020; 15(7): 529-544.

[3]

Wang Y, Tang H, Xie Y, et al. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat Commun. 2021; 12(1): 3347.

[4]

Im IH, Kim SJ, Jang HW. Memristive devices for new computing paradigms. Adv Intell Syst. 2020; 2(11): 2000105.

[5]

Linn E, Rosezin R, Kugeler C, Waser R. Complementary resistive switches for passive nanocrossbar memories. Nat Mater. 2010; 9(5): 403-406.

[6]

Feng X, Li S, Wong SL, et al. Self-selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano. 2021; 15(1): 1764-1774.

[7]

Jung S, Lee H, Myung S, et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature. 2022; 601(7892): 211-216.

[8]

Zhang H, Jiang B, Cheng C, et al. A self-rectifying synaptic memristor array with ultrahigh weight potentiation linearity for a self-organizing-map neural network. Nano Lett. 2023; 23(8): 3107-3115.

[9]

Lee DY, Tsai TL, Tseng TY. Unipolar resistive switching behavior in Pt/HfO2/TiN device with inserting ZrO2 layer and its 1 diode-1 resistor characteristics. Appl Phys Lett. 2013; 103(3): 032905.

[10]

Li H, Wang S, Zhang X, et al. Memristive crossbar arrays for storage and computing applications. Adv Intell Syst. 2021; 3(9): 2100017.

[11]

Dongale TD, Kamble GU, Kang DY, Kundale SS, An HM, Kim TG. Recent progress in selector and self-rectifying devices for resistive random-access memory application. Phys Status Solidi-RRL. 2021; 15(9): 2100199.

[12]

Yan X, Hao H, Chen Y, et al. Self-rectifying performance in the sandwiched structure of Ag/In-Ga-Zn-O/Pt bipolar resistive switching memory. Nanoscale Res Lett. 2014; 9(1): 548.

[13]

Tran XA, Zhu W, Liu WJ, Yeo YC, Nguyen BY, Yu HY. A self-rectifying AlOy bipolar RRAM with sub-50-µA set/reset current for crossbar architecture. IEEE Electron Device Lett. 2012; 33(10): 1402-1404.

[14]

Li C, Han L, Jiang H, et al. Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat Commun. 2017; 8(1): 15666.

[15]

Kim SE, Lee JG, Ling L, et al. Sodium-doped titania self-rectifying memristors for crossbar array neuromorphic architectures. Adv Mater. 2022; 34(6): e2106913.

[16]

Jiang X, Wang X, Wang X, et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat Commun. 2022; 13(1): 574.

[17]

Xu X, Huang FT, Du K, Cheong SW. Multifunctionality of Li2SrNb2O7: memristivity, tunable rectification, ferroelasticity, and ferroelectricity. Adv Mater. 2022; 34(44): e2206022.

[18]

Han Y, Nickle C, Zhang Z, et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat Mater. 2020; 19(8): 843-848.

[19]

Yao Z, Pan L, Liu L, et al. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci Adv. 2019; 5(8): eaaw4515.

[20]

Banerjee S, Bera S, Pradhan N. Chemically sculpturing the facets of CsPbBr3 perovskite platelet nanocrystals. ACS Nano. 2023; 17(1): 678-686.

[21]

Chen S, Yin H, Liu P, Wang Y, Zhao H. Stabilization and performance enhancement strategies for halide perovskite photocatalysts. Adv Mater. 2023; 35(6): e2203836.

[22]

Wu S, Zabihi F, Yeap RY, et al. Cesium lead halide perovskite decorated polyvinylidene fluoride nanofibers for wearable piezoelectric nanogenerator yarns. ACS Nano. 2023; 17(2): 1022-1035.

[23]

Yuan J, Zhang X, Zhou D, et al. Excessive iodine enabled ultrathin inorganic perovskite growth at the liquid-air interface. Angew Chem Int Ed. 2023; 135(19): e202218546.

[24]

Xiao Z, Yuan Y, Shao Y, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater. 2015; 14(12): 193-198.

[25]

Hwang B, Lee JS. A strategy to design high-density nanoscale devices utilizing vapor deposition of metal halide perovskite materials. Adv Mater. 2017; 29(29): 1701048.

[26]

Kang K, Ahn H, Song Y, et al. High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv Mater. 2019; 31(21): e1804841.

[27]

Di J, Du J, Lin Z, et al. Recent advances in resistive random access memory based on lead halide perovskite. InfoMat. 2020; 3(3): 293-315.

[28]

Kim H, Choi MJ, Suh JM, et al. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109. NPG Asia Mater. 2020; 12(1): 21.

[29]

Kim SY, Yang JM, Choi ES, Park NG. Layered (C6H5CH2NH3)2CuBr4 perovskite for multilevel storage resistive switching memory. Adv Funct Mater. 2020; 30(27): 2002653.

[30]

Li MZ, Guo LC, Ding GL, et al. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl Mater Interfaces. 2021; 13(26): 30861-30873.

[31]

Thien GSH, Ab Rahman M, Yap BK, et al. Recent advances in halide perovskite resistive switching memory devices: a transformation from lead-based to lead-free perovskites. ACS Omega. 2022; 7(44): 39472-39481.

[32]

Kang K, Niu W, Zhang Y, Li A, Zou X, Hu W. Dual resistive switching performance derived from ionic migration in halide perovskite based memory. J Phys Chem Lett. 2023; 14(2): 347-353.

[33]

Kim SJ, Kim S, Jang HW. Competing memristors for brain-inspired computing. iScience. 2021; 24(1): 101889.

[34]

Kim SJ, Lee TH, Yang JM, et al. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater Today. 2022; 52: 19-30.

[35]

Kwak KJ, Lee DE, Kim SJ, Jang HW. Halide perovskites for memristive data storage and artificial synapses. J Phys Chem Lett. 2021; 12(37): 8999-9010.

[36]

Kwak KJ, Baek JH, Lee DE, et al. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett. 2022; 22(14): 6010-6017.

[37]

Song X, Yin H, Chang Q, et al. One-dimensional (NH=CINH3)3PbI5 perovskite for ultralow power consumption resistive memory. Research. 2021; 2021: 9760729.

[38]

Li D, Wu B, Zhu X, et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano. 2018; 12(9): 9240-9252.

[39]

Yang JM, Kim SG, Seo JY, et al. 1D hexagonal HC(NH2)2PbI3 for multilevel resistive switching nonvolatile memory. Adv Electron Mater. 2018; 4(9): 1800190.

[40]

Gu C, Lee JS. Flexible hybrid organic-inorganic perovskite memory. ACS Nano. 2016; 10(5): 5413-5418.

[41]

Choi J, Park S, Lee J, et al. Organo lead halide perovskites for low operating voltage multilevel resistive switching. Adv Mater. 2016; 28(31): 6562-6567.

[42]

Zhou F, Liu Y, Shen X, Wang M, Yuan F, Chai Y. Low-voltage optoelectronic CH3NH3PbI3-xClx memory with integrated sensing and logic. Adv Funct Mater. 2018; 28(15): 1800080.

[43]

Poddar S, Zhang Y, Gu L, et al. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett. 2021; 21(12): 5036-5044.

[44]

Yang J, Zhang F, Xiao HM, et al. A perovskite memristor with large dynamic space for analog-encoded image recognition. ACS Nano. 2022; 16(12): 21324-21333.

[45]

Patil H, Kim H, Kadam KD, et al. Flexible organic-inorganic halide perovskite-based diffusive memristor for artificial nociceptors. ACS Appl Mater Interfaces. 2023; 15(10): 13238-13248.

[46]

Tang L, Huang Y, Wang C, et al. Flexible threshold switching selectors with ultrahigh endurance based on halide perovskites. Adv Electron Mater. 2022; 8(2): 2100771.

[47]

Im IH, Kim SJ, Baek JH, et al. Controlling threshold and resistive switch functionalities in Ag-incorporated organometallic halide perovskites for memristive crossbar array. Adv Funct Mater. 2023; 33(8): 2211358.

[48]

Im IH, Baek JH, Kim SJ, et al. Halide perovskites-based diffusive memristors for artificial mechano-nociceptive system. Adv Mater. 2024; 36(1): 2307334.

[49]

Cuhadar C, Kim SG, Yang JM, Seo JY, Lee D, Park NG. All-inorganic bismuth halide perovskite-like materials A3Bi2I9 and A3Bi1.8Na0.2I8.6 (A = Rb and Cs) for low-voltage switching resistive memory. ACS Appl Mater Interfaces. 2018; 10(35): 29741-29749.

[50]

Ye H, Sun B, Wang Z, et al. High performance flexible memristors based on a lead free AgBiI4 perovskite with an ultralow operating voltage. J Mater Chem C. 2020; 8(40): 14155-14163.

[51]

Han JS, Le QV, Choi J, et al. Air-stable cesium lead iodide perovskite for ultra-low operating voltage resistive switching. Adv Funct Mater. 2018; 28(5): 1705783.

[52]

Xiong Z, Hu W, She Y, et al. Air-stable lead-free perovskite thin film based on CsBi3I10 and its application in resistive switching devices. ACS Appl Mater Interfaces. 2019; 11(33): 30037-30044.

[53]

Guo Z, Xiong R, Zhu Y, et al. High-performance and humidity robust multilevel lead-free all-inorganic Cs3Cu2Br5 perovskite-based memristors. Appl Phys Lett. 2023; 122(5): 053502.

[54]

Oh SI, Rani JR, Hong SM, Jang JH. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid. Nanoscale. 2017; 9(40): 15314-15322.

[55]

Qin R, Cao H, Liang L, et al. Semiconducting ZnSnN2 thin films for Si/ZnSnN2 p–n junctions. Appl Phys Lett. 2016; 108(14): 142104.

[56]

Yoon JH, Song SJ, Yoo IH, et al. Highly uniform, electroforming-free, and self-rectifyin. resistive memory in the Pt/Ta2O5/HfO2–x/TiN structure. Adv Funct Mater. 2014; 24(32): 5086-5095.

[57]

Zhu X, Lee J, Lu WD. Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects. Adv Mater. 2017; 29(29): 1700527.

[58]

Han JS, Le QV, Choi J, et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl Mater Interfaces. 2019; 11(8): 8155-8263.

[59]

Ge S, Huang Y, Chen X, et al. Silver iodide induced resistive switching in CsPbI3 perovskite-based memory device. Adv Mater Interfaces. 2019; 6(7): 1802071.

[60]

Kato Y, Ono LK, Lee MV, Wang S, Raga SR, Qi Y. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv Mater Interfaces. 2015; 2(13): 1500195.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/