High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system

Di Zhang , Katherine J. Harmon , Michael J. Zachman , Ping Lu , Doyun Kim , Zhan Zhang , Nicholas Cucciniello , Reid Markland , Ken William Ssennyimba , Hua Zhou , Yue Cao , Matthew Brahlek , Hao Zheng , Matthew M. Schneider , Alessandro R. Mazza , Zach Hughes , Chase Somodi , Benjamin Freiman , Sarah Pooley , Sundar Kunwar , Pinku Roy , Qing Tu , Rodney J. McCabe , Aiping Chen

InfoMat ›› 2024, Vol. 6 ›› Issue (9) : e12561

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (9) : e12561 DOI: 10.1002/inf2.12561
RESEARCH ARTICLE

High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system

Author information +
History +
PDF

Abstract

Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}N superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.

Keywords

ferroelectrics / high-resolution x-ray diffraction / high-throughput combinatorial synthesis / pulsed laser deposition / scanning transmission electron microscopy / superlattices

Cite this article

Download citation ▾
Di Zhang, Katherine J. Harmon, Michael J. Zachman, Ping Lu, Doyun Kim, Zhan Zhang, Nicholas Cucciniello, Reid Markland, Ken William Ssennyimba, Hua Zhou, Yue Cao, Matthew Brahlek, Hao Zheng, Matthew M. Schneider, Alessandro R. Mazza, Zach Hughes, Chase Somodi, Benjamin Freiman, Sarah Pooley, Sundar Kunwar, Pinku Roy, Qing Tu, Rodney J. McCabe, Aiping Chen. High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system. InfoMat, 2024, 6(9): e12561 DOI:10.1002/inf2.12561

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shvartsman VV, Lupascu DC. Lead-free relaxor ferroelectrics. J Am Ceram Soc. 2012; 95(1): 1-26.

[2]

Panda PK. Environmental friendly lead-free piezoelectric materials. J Mater Sci. 2009; 44(19): 5049-5062.

[3]

Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci. 2019; 102: 72-108.

[4]

Acosta M, Novak N, Rojas V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev. 2017; 4(4): 041305.

[5]

Tsur Y, Dunbar TD, Randall CA. Crystal and defect chemistry of rare earth cations in BaTiO3. J Electroceram. 2001; 7(1): 25-34.

[6]

Li Y, Chen W, Zhou J, Xu Q, Sun H, Xu R. Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics. Mater Sci Eng B. 2004; 112(1): 5-9.

[7]

Ye HJ, Qian XS, Jeong DY, et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl Phys Lett. 2014; 105(15): 152908.

[8]

Li WB, Zhou D, Pang LX. Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl Phys Lett. 2017; 110(13): 132902.

[9]

Liu Z, Yuan R, Xue D, Cao W, Lookman T. Origin of large electrostrain in Sn4+ doped Ba(Zr0.2Ti0.8)O3–x (Ba0.7Ca0.3)TiO3 ceramics. Acta Mater. 2018; 157: 155-164.

[10]

Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett. 2009; 103(25): 257602.

[11]

Xue D, Zhou Y, Bao H, Zhou C, Gao J, Ren X. Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J Appl Phys. 2011; 109(5): 054110.

[12]

Chen W, Zhao X, Sun J, Zhang L, Zhong L. Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J Alloys Compd. 2016; 670: 48-54.

[13]

Huang Y, Zhao C, Zhong S, Wu J. Highly tunable multifunctional BaTiO3-based ferroelectrics via site selective doping strategy. Acta Mater. 2021; 209: 116792.

[14]

Chen A, Su Q, Han H, Enriquez E, Jia Q. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv Mater. 2019; 31(4): 1803241.

[15]

Xiang DX, Sun X, Briceno G, et al. A combinatorial approach to materials discovery. Science. 1995; 268(5218): 1738-1740.

[16]

Koinuma H, Takeuchi I. Combinatorial solid-state chemistry of inorganic materials. Nat Mater. 2004; 3(7): 429-438.

[17]

Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Comput Mater. 2019; 5(1): 70.

[18]

Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. The high-throughput highway to computational materials design. Nat Mater. 2013; 12(3): 191-201.

[19]

Cui J, Chu YS, Famodu OO, et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater. 2006; 5(4): 286-290.

[20]

Green ML, Takeuchi I, Hattrick-Simpers JR. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-relate. materials. J Appl Phys. 2013; 113(23): 231101.

[21]

Zeng M, Du Y, Jiang Q, et al. High-throughput printing of combinatorial materials from aerosols. Nature. 2023; 617(7960): 292-298.

[22]

Bjørnetun Haugen A, Forrester JS, Damjanovic D, Li B, Bowman KJ, Jones JL. Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3) from –100°C to 150°C. J Appl Phys. 2013; 113(1): 014103.

[23]

Scarisoreanu ND, Craciun F, Moldovan A, et al. High permittivity (1 – x) Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (x = 0.45) epitaxial thin films with nanoscale phase fluctuations. ACS Appl Mater Interfaces. 2015; 7(43): 23984-23992.

[24]

Zhang HT, Zhang L, Mukherjee D, et al. Wafer-scale growth of VO2 thin films using a combinatorial approach. Nat Commun. 2015; 6(1): 8475.

[25]

Lippmaa M, Koida T, Minami H, Jin ZW, Kawasaki M, Koinuma H. Design of compact pulsed laser deposition chambers for the growth of combinatorial oxide thin film libraries. Appl Surf Sci. 2002; 189(3–4): 205-209.

[26]

Lysne H, Brakstad T, Kildemo M, Reenaas T. Improved methods for design of PLD and combinatorial PLD films. J Appl Phys. 2022; 132(12): 125301.

[27]

Li F, Cabral MJ, Xu B, et al. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science. 2019; 364(6437): 264-268.

[28]

Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science. 2019; 365(6453): 578-582.

[29]

Yuan R, Kumar A, Zhuang S, et al. Machine learning-enabled superior energy storage in ferroelectric films with a slush-like polar state. Nano Lett. 2023; 23(11): 4807-4814.

[30]

Benabdallah F, Simon A, Khemakhem H, Elissalde C, Maglione M. Linking large piezoelectric coefficients to highly flexible polarization of lead free BaTiO3-CaTiO3-BaZrO3 ceramics. J Appl Phys. 2011; 109(12): 124116.

[31]

Kutnjak Z, Petzelt J, Blinc R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature. 2006; 441(7096): 956-959.

[32]

Cucciniello N, Mazza AR, Roy P, et al. Anisotropic properties of epitaxial ferroelectric lead-free 0.5[Ba(Ti0.8Zr0.2)O3]-0.5(Ba0.7Ca0.3)TiO3 films. Materials. 2023; 16(20): 6671.

[33]

Sun Z, Ma C, Liu M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater. 2017; 29(5): 1604427.

[34]

Fan Q, Liu M, Ma C, et al. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy. 2018; 51: 539-545.

[35]

Davis M, Budimir M, Damjanovic D, Setter N. Rotator and extender ferroelectrics: importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys. 2007; 101(5): 054112.

[36]

Wang X, Wu J, Xiao D, et al. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J Am Chem Soc. 2014; 136(7): 2905-2910.

[37]

Li F, Wang L, Jin L, et al. Piezoelectric activity in perovskite ferroelectric crystals. IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 61(1): 18-32.

[38]

Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. 1998; 61(9): 1267-1324.

[39]

Härdtl KH. Electrical and mechanical losses in ferroelectric ceramics. Ceram Int. 1982; 8(4): 121-127.

[40]

Warren WL, Dimos D, Waser RM. Degradation mechanisms in ferroelectric and high-permittivity perovskites. MRS Bull. 1996; 21(7): 40-45.

[41]

Chen A, Zhang W, Dedon LR, et al. Couplings of polarization with interfacial deep trap and Schottky interface controlled ferroelectric memristive switching. Adv Funct Mater. 2020; 30(43): 2000664.

[42]

Kourkoutis LF, Xin HL, Higuchi T, et al. Atomic-resolution spectroscopic imaging of oxide interfaces. Phil Mag. 2010; 90(35–36): 4731-4749.

[43]

Torres-Pardo A, Gloter A, Zubko P, et al. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys Rev B. 2011; 84(22): 220102.

[44]

Kurata H, Isojima S, Kawai M, Shimakawa Y, Isoda S. Local analysis of the edge dislocation core in BaTiO3 thin film by STEM-EELS. J Microsc. 2009; 236(2): 128-131.

[45]

Abbate M, Fuggle JC, Fujimori A, et al. Electronic structure and spin-state transition of LaCoO3. Phys Rev B. 1993; 47(24): 16124-16130.

[46]

Liu G, Wang Y, Zou B, et al. Probing the electronic structures of BaTiO3/SrTiO3 multilayered film with spatially resolved electron energy-loss spectroscopy. J Phys Chem C. 2016; 120(30): 16681-16686.

[47]

Muller DA, Nakagawa N, Ohtomo A, Grazul JL, Hwang HY. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature. 2004; 430(7000): 657-661.

[48]

Klie RF, Browning ND. Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. MRS Online Proc Libr. 2000; 654: 171-176.

[49]

Schmid HK, Mader W. Oxidation states of Mn and Fe in various compound oxide systems. Micron. 2006; 37(5): 426-432.

[50]

Tan H, Verbeeck J, Abakumov A, Van Tendeloo G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy. 2012; 116: 24-33.

[51]

Shao Y, Maunders C, Rossouw D, Kolodiazhnyi T, Botton GA. Quantification of the Ti oxidation state in BaTi1–xNbxO3 compounds. Ultramicroscopy. 2010; 110(8): 1014-1019.

[52]

Varela M, Oxley MP, Luo W, et al. Atomic-resolution imaging of oxidation states in manganites. Phys Rev B. 2009; 79(8): 085117.

[53]

Li D, Wang H, Li K, et al. Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO3 thin films. Nat Commun. 2023; 14(1): 3638.

[54]

Stoyanov E, Langenhorst F, Steinle-Neumann G. The effect of valence state and site geometry on Ti L3, 2 and O K electron energy-loss spectra of TixOy phases. Am Mineral. 2007; 92(4): 577-586.

[55]

Nelson CT, Winchester B, Zhang Y, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 2011; 11(2): 828-834.

[56]

Tang YL, Zhu YL, Ma XL, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science. 2015; 348(6234): 547-551.

[57]

Yadav AK, Nelson CT, Hsu SL, et al. Observation of polar vortices in oxide superlattices. Nature. 2016; 530(7589): 198-201.

[58]

Kumar A, Baker JN, Bowes PC, et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat Mater. 2021; 20(1): 62-67.

[59]

O’Connell EN, Moore K, McFall E, et al. TopoTEM: a python package for quantifying and visualizing scanning transmission electron microscopy data of polar topologies. Microsc Microanal. 2022; 28(4): 1444-1452.

[60]

Hoffmann M, Schroeder U, Schenk T, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys. 2015; 118(7): 072006.

[61]

Park MH, Lee YH, Kim HJ, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater. 2015; 27(11): 1811-1831.

[62]

Fina I, Sanchez F. Epitaxial ferroelectric HfO2 films: growth, properties, and devices. ACS Appl Electron Mater. 2021; 3(4): 1530-1549.

[63]

Schroeder U, Park MH, Mikolajick T, Hwang CS. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater. 2022; 7(8): 653-669.

[64]

Das S, Tang YL, Hong Z, et al. Observation of room-temperature polar skyrmions. Nature. 2019; 568(7752): 368-372.

[65]

Das S, Hong Z, Stoica VA, et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat Mater. 2021; 20(2): 194-201.

[66]

Shao YT, Das S, Hong Z, et al. Emergent chirality in a polar meron to skyrmion phase transition. Nat Commun. 2023; 14(1): 1355.

[67]

Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015; 518(7540): 529-533.

[68]

Wei J, Chu X, Sun X, et al. Machine learning in materials science. InfoMat. 2019; 1(3): 338-358.

[69]

Ziatdinov MA, Liu Y, Morozovska AN, et al. Hypothesis learning in automated experiment: application to combinatorial materials libraries. Adv Mater. 2022; 34(20): 2201345.

[70]

Jones L, Wenner S, Nord M, et al. Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping. Ultramicroscopy. 2017; 179: 57-62.

[71]

Jones L, Yang H, Pennycook TJ, et al. Smart align—a new tool for robust non-rigid registration of scanning microscope data. Adv Struct Chem Imaging. 2015; 1(1): 1-16.

[72]

Hüe F, Hÿtch M, Bender H, Houdellier F, Claverie A. Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy. Phys Rev Lett. 2008; 100(15): 156602.

[73]

Du K, Tu Q, Zhang X, et al. Two-dimensional lead (II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg Chem. 2017; 56(15): 9291-9302.

[74]

Gao P, Kumamoto A, Ishikawa R, Lugg N, Shibata N, Ikuhara Y. Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy. 2018; 184(Pt A): 177-187.

[75]

Nord M, Vullum PE, MacLaren I, Tybell T, Holmestad R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv Struct Chem Imaging. 2017; 3(1): 1-12.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/