Hot-carrier engineering for two-dimensional integrated infrared optoelectronics

Yuanfang Yu , Jialin Zhang , Lianhui Wang , Zhenhua Ni , Junpeng Lu , Li Gao

InfoMat ›› 2024, Vol. 6 ›› Issue (9) : e12556

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (9) : e12556 DOI: 10.1002/inf2.12556
REVIEW ARTICLE

Hot-carrier engineering for two-dimensional integrated infrared optoelectronics

Author information +
History +
PDF

Abstract

Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices. The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors, enabling detection of sub-bandgap infrared photons. By harvesting hot carriers prior to thermalization, energy dissipation is minimized, leading to highly efficient photoelectric conversion. Distinguished from conventional band-edge carriers, the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion. However, a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking, and the utilization of this strategy for tailoring infrared response is in its early stages. This review aims to provide a comprehensive overview of the generation, transfer and transport dynamics of hot carriers. Basic principles of hot-carrier conversion in heterostructures are discussed in detail. In addition, progresses of two-dimensional (2D) infrared hot-carrier optoelectronic devices are summarized, with a specific emphasis on photodetectors, solar cells, light-emitting devices and novel functionalities through hot-carrier engineering. Furthermore, challenges and prospects of hot-carrier device towards infrared applications are highlighted.

Keywords

hot carriers / infrared optoelectronic devices / surface plasmon resonance / two-dimensional materials

Cite this article

Download citation ▾
Yuanfang Yu, Jialin Zhang, Lianhui Wang, Zhenhua Ni, Junpeng Lu, Li Gao. Hot-carrier engineering for two-dimensional integrated infrared optoelectronics. InfoMat, 2024, 6(9): e12556 DOI:10.1002/inf2.12556

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu P, Ye L, Tong L, et al. Van der Waals two-color infrared photodetector. Light Sci Appl. 2022; 11(1): 6.

[2]

Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv. 2017; 3(6): e1700589.

[3]

Rogalski A. HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys. 2005; 68(10): 2267-2336.

[4]

Long M, Wang Y, Wang P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano. 2019; 13(2): 2511-2519.

[5]

Hu W, Cong H, Huang W, et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci Appl. 2019; 8(1): 106.

[6]

Paul KK, Kim J-H, Lee YH. Hot carrier photovoltaics in van der Waals heterostructures. Nat Rev Phys. 2021; 3(3): 178-192.

[7]

Esmaielpour H, Dorman KR, Ferry DK, et al. Exploiting intervalley scattering to harness hot carriers in III-V solar cells. Nat Energy. 2020; 5(4): 336-343.

[8]

Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol. 2015; 10(1): 25-34.

[9]

Wu D, Yan K, Zhou Y, et al. Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions. J Am Chem Soc. 2013; 135(30): 10926-10929.

[10]

Li M, Bhaumik S, Goh TW, et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat Commun. 2017; 8(1): 14350.

[11]

Ross RT, Nozik AJ. Efficiency of hot-carrier solar energy converters. J Appl Phys. 1982; 53(5): 3813-3818.

[12]

Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science. 2011; 332(6030): 702-704.

[13]

Yu Y, Sun Y, Hu Z, et al. Fast photoelectric conversion in the near-infrared enabled by plasmon-induced hot-electron transfer. Adv Mater. 2019; 31(43): e1903829.

[14]

Sun D, Aivazian G, Jones AM, et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat Nanotechnol. 2012; 7(2): 114-118.

[15]

Castilla S, Vangelidis I, Pusapati VV, et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat Commun. 2020; 11(1): 4872.

[16]

Fang Z, Wang Y, Liu Z, et al. Plasmon-induced doping of graphene. ACS Nano. 2012; 6(11): 10222-10228.

[17]

Lu X, Sun L, Jiang P, Bao X. Progress of photodetectors based on the photothermoelectric effect. Adv Mater. 2019; 31(50): e1902044.

[18]

Wang F, Zhang Y, Gao Y, et al. 2D metal chalcogenides for IR photodetection. Small. 2019; 15(30): e1901347.

[19]

Wu S, Wang L, Lai Y, et al. Multiple hot-carrier collection in photo-excited graphene Moiré superlattices. Sci Adv. 2016; 2(5): e1600002.

[20]

Lin Y, Ma Q, Shen PC, et al. Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions. Sci Adv. 2019; 5(6): eaav1493.

[21]

Wang B, Yu P, Wang W, et al. High-Q plasmonic resonances: fundamentals and applications. Adv Optical Mater. 2021; 9(7): 2001520.

[22]

Zhang Y, Guo W, Zhang Y, Wei WD. Plasmonic photoelectrochemistry: in view of hot carriers. Adv Mater. 2021; 33(46): e2006654.

[23]

Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics. 2010; 4(2): 83-91.

[24]

Nweze C, Glier TE, Rerrer M, et al. Plasmonic hot carrier injection from single gold nanoparticles into topological insulator Bi2Se3 nanoribbons. Nanoscale. 2023; 15(2): 507-514.

[25]

Ghods S, Esfandiar A. Plasmonic enhancement of photocurrent generation in two-dimensional heterostructure of WSe2/MoS2. Nanotechnology. 2021; 32(32): 325203.

[26]

Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005; 308(5721): 534-537.

[27]

Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016; 535(7610): 127-130.

[28]

Zhang Y, Chen W, Fu T, et al. Simultaneous surface-enhanced resonant Raman and fluorescence spectroscopy of monolayer MoSe2: determination of ultrafast decay rates in nanometer dimension. Nano Lett. 2019; 19(9): 6284-6291.

[29]

Wang Y, Yu J, Mao YF, et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature. 2020; 581(7809): 401-405.

[30]

Papagiannouli I, Aloukos P, Rioux D, Meunier M, Couris S. Effect of the composition on the nonlinear optical response of AuxAg1–x Nano-alloys. J Phys Chem C. 2015; 119(12): 6861-6872.

[31]

Henkel A, Jakab A, Brunklaus G, Sönnichsen C. Tuning plasmonic properties by alloying copper into gold nanorods. J Phys Chem C. 2009; 113(6): 2200-2204.

[32]

Stofela SKF, Kizilkaya O, Diroll BT, et al. A noble-transition alloy excels at hot-carrier generation in the near infrared. Adv Mater. 2020; 32(23): e1906478.

[33]

Kim J, Agrawal A, Krieg F, Bergerud A, Milliron DJ. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett. 2016; 16(6): 3879-3884.

[34]

Guo Y, Xu Z, Curto AG, Zeng Y-J, Van Thourhout D. Plasmonic semiconductors: materials, tunability and applications. Prog Mater Sci. 2023; 138: 101158.

[35]

Yu Y, Zhong F, Li R, Cui Y, Wu J, Zhang J. High-performance infrared photodetection beyond bandgap limitation based on surface plasmon resonance in sub-stoichiometry molybdenum oxide nanostructures. 2D Mater. 2023; 10(2): 025012.

[36]

Agrawal A, Johns RW, Milliron DJ. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu Rev Mat Res. 2017; 47(1): 1-31.

[37]

Naldoni A, Guler U, Wang Z, et al. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv Optical Mater. 2017; 5(15): 1601031.

[38]

Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 2012; 487(7405): 82-85.

[39]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021; 372(6547): eabf1581.

[40]

Chaudhuri K, Alhabeb M, Wang Z, Shalaev VM, Gogotsi Y, Boltasseva A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics. 2018; 5(3): 1115-1122.

[41]

Liu T, Zhang C, Li X. 2D MXenes for hot-carrier photodetection. Adv Optical Mater. 2022; 10(20): 2201153.

[42]

Pacheco-Pena V, Hallam T, Healy N. MXene supported surface plasmons on telecommunications optical fibers. Light Sci Appl. 2022; 11(1): 22.

[43]

Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics. 2014; 8(2): 95-103.

[44]

Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev. 2018; 118(6): 3121-3207.

[45]

Deng B, Guo Q, Li C, et al. Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano. 2016; 10(12): 11172-11178.

[46]

Liu Z, Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus. Nano Lett. 2016; 16(6): 3457-3462.

[47]

Liu T, Besteiro LV, Wang Z, Govorov AO. Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials. Faraday Discuss. 2019; 214: 199-213.

[48]

Liu JG, Zhang H, Link S, Nordlander P. Relaxation of plasmon-induced hot carriers. ACS Photonics. 2017; 5(7): 2584-2595.

[49]

Jermyn AS, Tagliabue G, Atwater HA, Goddard WA, Narang P, Sundararaman R. Transport of hot carriers in plasmonic nanostructures. Phys Rev Mater. 2019; 3(7): 075201.

[50]

Guo Z, Wan Y, Yang M, Snaider J, Zhu K, Huang L. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science. 2017; 356(6333): 59-62.

[51]

Cortes E, Xie W, Cambiasso J, et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat Commun. 2017; 8(1): 14880.

[52]

Huang X, Li H, Zhang C, et al. Efficient plasmon-hot electron conversion in Ag-CsPbBr3 hybrid nanocrystals. Nat Commun. 2019; 10(1): 1163.

[53]

Wu K, Chen J, McBride JR, Lian T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science. 2015; 349(6248): 632-635.

[54]

Li Y, DiStefano JG, Murthy AA, et al. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano. 2017; 11(10): 10321-10329.

[55]

Zhu Y, Guo H, Cui Q, et al. Active manipulation of luminescent dynamics via Au NPs-CsPbBr3 ivnterfacial engineering. Laser Photonics Rev. 2022; 17(1): 2200497.

[56]

Li J, Cushing SK, Meng F, Senty TR, Bristow AD, Wu N. Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photonics. 2015; 9(9): 601-607.

[57]

Kim JK, Shi X, Jeong MJ, et al. Enhancing Mo:BiVO4 solar water splitting with patterned Au nanospheres by plasmon-induced energy transfer. Adv Energy Mater. 2017; 8(5): 1701765.

[58]

Li J, Cushing SK, Zheng P, Meng F, Chu D, Wu N. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat Commun. 2013; 4(1): 2651.

[59]

Anshu Pandey PG-S. Slow electron cooling in colloidal quantum dots. Science. 2008; 322(5903): 929-932.

[60]

Shan H, Yu Y, Zhang R, et al. Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures. Mater Today. 2019; 24: 10-16.

[61]

Lian Z, Sakamoto M, Matsunaga H, et al. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat Commun. 2018; 9(1): 2314.

[62]

Blandre E, Jalas D, Petrov AY, Eich M. Limit of efficiency of generation of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics. 2018; 5(9): 3613-3620.

[63]

Ratchford DC, Dunkelberger AD, Vurgaftman I, Owrutsky JC, Pehrsson PE. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. 2017; 17(10): 6047-6055.

[64]

Tagliabue G, DuChene JS, Abdellah M, et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat Mater. 2020; 19(12): 1312-1318.

[65]

Safaei A, Chandra S, Shabbir MW, Leuenberger MN, Chanda D. Dirac plasmon-assisted asymmetric hot carrier generation for room-temperature infrared detection. Nat Commun. 2019; 10(1): 3498.

[66]

Shautsova V, Sidiropoulos T, Xiao X, et al. Plasmon induced thermoelectric effect in graphene. Nat Commun. 2018; 9(1): 5190.

[67]

Gong T, Krayer L, Munday JN. Design concepts for hot carrier-based detectors and energy converters in the near ultraviolet and infrared. J Photon Energy. 2016; 6(4): 042510.

[68]

Wang W, Klots A, Prasai D, Yang Y, Bolotin KI, Valentine J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015; 15(11): 7440-7444.

[69]

Zhou D, Li X, Zhou Q, Zhu H. Infrared driven hot electron generation and transfer from non-noble metal plasmonic nanocrystals. Nat Commun. 2020; 11(1): 2944.

[70]

Li Z, Hu S, Zhang Q, et al. Telecom-band waveguide-integrated MoS2 photodetector assisted by hot electrons. ACS Photonics. 2022; 9(1): 282-289.

[71]

Shinde SL, Ishii S, Nagao T. Sub-band gap photodetection from the titanium nitride/germanium heterostructure. ACS Appl Mater Interfaces. 2019; 11(24): 21965-21972.

[72]

Lee C, Nedrygailov II, Lee YK, et al. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes. Nanotechnology. 2015; 26(44): 445201.

[73]

Amiri Naeini MS, Berini P. Infrared surface plasmons open a hole tunneling channel in metal-oxide-semiconductor structures. ACS Photonics. 2023; 10(9): 3321-3330.

[74]

Li L, Liu W, Gao A, et al. Plasmon excited ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett. 2019; 19(5): 3295-3304.

[75]

Nusir AI, Abbey GP, Hill AM, Manasreh O, Herzog JB. Hot electrons in microscale thin-film Schottky barriers for enhancing near-infrared detection. IEEE Photon Technol Lett. 2016; 28(20): 2241-2244.

[76]

Li W, Valentine JG. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics. 2017; 6(1): 177-191.

[77]

Wang Z, Lin CC, Ho YL, et al. Self-patterned CsPbBr3 nanocrystal based plasmonic hot-carrier photodetector at telecommunications wavelengths. Adv Optical Mater. 2021; 9(24): 2101474.

[78]

Hou C, Wang Y, Yang L, et al. Position sensitivity of optical nano-antenna arrays on optoelectronic devices. Nano Energy. 2018; 53: 734-744.

[79]

Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ. Graphene-antenna sandwich photodetector. Nano Lett. 2012; 12(7): 3808-3813.

[80]

Zhang X, Yu Y, Cui Y, et al. High-performance broadband WO3–x/Bi2O2Se photodetectors based on plasmon-induced hot-electron injection. Appl Phys Lett. 2022; 121(6): 061103.

[81]

Lee J, Gim Y, Yang J, et al. Graphene phototransistors sensitized by Cu2–xSe nanocrystals with short amine ligands. J Phys Chem C. 2017; 121(9): 5436-5443.

[82]

Gong M, Sakidja R, Liu Q, et al. Broadband photodetectors enabled by localized surface plasmonic resonance in doped iron pyrite nanocrystals. Adv Optical Mater. 2018; 6(8): 1701241.

[83]

Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3–xP colloidal nanocrystals. Small. 2017; 13(42): 1701881.

[84]

Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano. 2017; 11(10): 9854-9862.

[85]

Cui Y, Tong Z, Zhang X, et al. Mid-infrared plasmonic silicon quantum dot/HgCdTe photodetector with ultrahigh specific detectivity. Sci China Inf Sci. 2023; 66(4): 142404.

[86]

Yu Y-F, Zhang Y, Zhong F, et al. Highly sensitive mid-infrared photodetector enabled by plasmonic hot carriers in the first atmospheric window. Chin Phys Lett. 2022; 39(5): 058501.

[87]

Guo P, Schaller RD, Ketterson JB, Chang RPH. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photonics. 2016; 10(4): 267-273.

[88]

Sakamoto M, Kawawaki T, Kimura M, et al. Clear and transparent nanocrystals for infrared-responsive carrier transfer. Nat Commun. 2019; 10(1): 406.

[89]

Lu R, Ge CW, Zou YF, et al. A localized surface plasmon resonance and light confinement-enhanced near-infrared light photodetector. Laser Photonics Rev. 2016; 10(4): 595-602.

[90]

Tagliabue G, Jermyn AS, Sundararaman R, et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat Commun. 2018; 9(1): 3394.

[91]

Hong C, Jang SG, Yu YJ, Kim JH. Hot electron dynamics in MoS2/Pt van Der Waals electrode interface for self-powered hot electron photodetection. Adv Mater Interfaces. 2023; 10(13): 2300140.

[92]

Yu Y, Gao L, Niu X, et al. Deciphering adverse detrapped hole transfer in hot-electron photoelectric conversion at infrared wavelengths. Adv Mater. 2023; 35(12): e2210157.

[93]

Koepfli SM, Baumann M, Koyaz Y, et al. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science. 2023; 380(6650): 1169-1174.

[94]

Xia-Hou Y, Yu Y, Zheng J-R, et al. Graphene coated dielectric hierarchical nanostructures for highly sensitive broadband infrared sensing. Small. 2023; 19(8): 2206167.

[95]

Stewart JW, Vella JH, Li W, Fan S, Mikkelsen MH. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat Mater. 2020; 19(2): 158-162.

[96]

Hong T, Chamlagain B, Hu SR, Weiss SM, Zhou Z, Xu YQ. Plasmonic hot electron induced photocurrent response at MoS2-metal junctions. ACS Nano. 2015; 9(5): 5357-5363.

[97]

Tielrooij KJ, Massicotte M, Piatkowski L, et al. Hot-carrier photocurrent effects at graphene-metal interfaces. J Phys Condens Matter. 2015; 27(16): 164207.

[98]

Fan C, Sun X, Shi Z, et al. Wafer-scale fabrication of graphene-based plasmonic photodetector with polarization-sensitive, broadband, and enhanced response. Adv Optical Mater. 2023; 11(15): 2202860.

[99]

Bu Y, Ren X, Zhou J, et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination. Light Sci Appl. 2023; 12(1): 176.

[100]

Li W, Coppens ZJ, Besteiro LV, Wang W, Govorov AO, Valentine J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun. 2015; 6(1): 8379.

[101]

Sobhani A, Knight MW, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun. 2013; 4(1): 1643.

[102]

Guo S, Zhang D, Zhou J, et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities. Carbon. 2020; 170: 49-58.

[103]

Dai X, Yu Y, Ye T, et al. Dynamically reconfigurable on-chip polarimeters based on nanoantenna enabled polarization dependent optoelectronic computing. Nano Lett. 2024; 24(3): 983-992.

[104]

Lian Z, Kobayashi Y, Vequizo JJM, et al. Harnessing infrared solar energy with plasmonic energy upconversion. Nat Sustain. 2022; 5(12): 1092-1099.

[105]

Li M, Fu J, Xu Q, Sum TC. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv Mater. 2019; 31(47): e1802486.

[106]

Nguyen D-T, Lombez L, Gibelli F, et al. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature. Nat Energy. 2018; 3(3): 236-242.

[107]

Farrell DJ, Sodabanlu H, Wang Y, Sugiyama M, Okada Y. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons. Nat Commun. 2015; 6(1): 8685.

[108]

Urcuyo R, Duong DL, Sailer P, Burghard M, Kern K. Hot carrier extraction from multilayer graphene. Nano Lett. 2016; 16(11): 6761-6766.

[109]

Park Y, Choi J, Lee C, et al. Elongated lifetime and enhanced flux of hot electrons on a perovskite plasmonic nanodiode. Nano Lett. 2019; 19(8): 5489-5495.

[110]

Kim YD, Kim H, Cho Y, et al. Bright visible light emission from graphene. Nat Nanotechnol. 2015; 10(8): 676-681.

[111]

Liu C, Lu Y, Yu X, et al. Hot carriers assisted mixed-dimensional graphene/MoS2/p-GaN light emitting diode. Carbon. 2022; 197: 192-199.

[112]

Kim L, Kim S, Jha PK, Brar VW, Atwater HA. Mid-infrared radiative emission from bright hot plasmons in graphene. Nat Mater. 2021; 20(6): 805-811.

[113]

Liu Q, Xu W, Li X, et al. Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures. Int J Extrem Manuf. 2024; 6(1): 015501.

[114]

Karnetzky C, Zimmermann P, Trummer C, et al. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat Commun. 2018; 9(1): 2471.

[115]

Luo Z, Xie Y, Li Z, et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res. 2021; 15(4): 3539-3547.

[116]

Namgung SD, Kim RM, Lim YC, et al. Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles. Nat Commun. 2022; 13(1): 5081.

[117]

Li L, Shao L, Liu X, et al. Room-temperature valleytronic transistor. Nat Nanotechnol. 2020; 15(9): 743-749.

[118]

Deng J, Zheng Y, Zhou J, et al. Absorption enhancement in all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors. Opt Express. 2020; 28(11): 16427-16438.

[119]

Hoffman AJ, Alekseyev L, Howard SS, et al. Negative refraction in semiconductor metamaterials. Nat Mater. 2007; 6(12): 946-950.

[120]

Fehrenbacher M, Winnerl S, Schneider H, et al. Plasmonic superlensing in doped GaAs. Nano Lett. 2015; 15(2): 1057-1061.

[121]

Law S, Adams DC, Taylor AM, Wasserman D. Mid-infrared designer metals. Opt Express. 2012; 20(11): 12155-12165.

[122]

Ciappina MF, Perez-Hernandez JA. Landsman AS, et al. Attosecond physics at the nanoscale. Rep Prog Phys. 2017; 80(5): 054401.

[123]

Pitruzzello G. A bright future for attosecond physics. Nat Photonics. 2022; 16(8): 550-552.

[124]

Wu Q, Li X, Wang W, et al. Comparison of different neural network architectures for plasmonic inverse design. ACS Omega. 2021; 6(36): 23076-23082.

[125]

Gao L, Qu Y, Wang L, Yu Z. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics. 2022; 11(11): 2507-2529.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/