Risk of Flash Floods in Urban and Rural Municipalities Triggered by Intense Precipitation in Wielkopolska of Poland

Iwona Pińskwar , Adam Choryński , Dariusz Graczyk

International Journal of Disaster Risk Science ›› 2023, Vol. 14 ›› Issue (3) : 440 -457.

PDF
International Journal of Disaster Risk Science ›› 2023, Vol. 14 ›› Issue (3) : 440 -457. DOI: 10.1007/s13753-023-00493-y
Article

Risk of Flash Floods in Urban and Rural Municipalities Triggered by Intense Precipitation in Wielkopolska of Poland

Author information +
History +
PDF

Abstract

This research analyzed interventions of State Fire Service (SFS) units in the Wielkopolska region of Poland that were triggered by extreme precipitation for the period 2010–2021. Our results demonstrated that the most populated and urbanized towns in the Wielkopolska (Greater Poland, west of Warsaw) region are at the most risk in the event of extreme precipitation occurrence as measured by the total number of interventions made by the SFS. The number of SFS unit interventions in towns, standardized to 10,000 inhabitants, indicates that the highest proportional volume of interventions also occurred in smaller towns. In the rural municipalities the number of SFS unit interventions increases along with higher population density and proportion of infrastructure areas. As analyzed in this study, the 12 years from 2010 to 2021 were characterized by a higher number of days with heavy precipitation, for example, 20, 30, 40, and 50 mm, in comparison to the previous periods 1961–2010 and 1981–2010. Intervention databases collected by emergency services are a valuable source of information for hazard mapping. Based on those and other available data, a statistical model was created and factors influencing the local and regional occurrence of interventions were determined. Increasing suburbanization, the rising proportion of impermeable surfaces, and the impact of climate change are of considerable importance in urban flood risk. It is necessary to help municipalities develop abilities to absorb larger amounts of rainwater.

Keywords

Flash flood risk / Poland / Risk exposure / Social vulnerability / State Fire Service / Wielkopolska

Cite this article

Download citation ▾
Iwona Pińskwar, Adam Choryński, Dariusz Graczyk. Risk of Flash Floods in Urban and Rural Municipalities Triggered by Intense Precipitation in Wielkopolska of Poland. International Journal of Disaster Risk Science, 2023, 14(3): 440-457 DOI:10.1007/s13753-023-00493-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson B. Governing emergencies: The politics of delay and the logic of response. Transaction of the Institute of British Geographers, 2016, 41(1): 14-26

[2]

Ban N, Schmidli J, Schär C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?. Geophisical Research Letters, 2015, 42(4): 1165-1172

[3]

Berg P, Moseley C, Haerter JO. Strong increase in convective precipitation in response to higher temperatures. Nature Geosciensce, 2013, 6: 181-185

[4]

Budner W. Suburbanization in the area of the Poznań metropolis (Suburbanizacja w obszarze metropolii Poznań). Biuletyn Stowarzyszenia Rzeczoznawców Majątkowych Województwa Wielkopolskiego (Bulletin of the Association of Property Valuers of the Wielkopolska Region), 2018, 49: 26-34 (in Polish)

[5]

Chen, Y., Z. Liao, Y. Shi, Y. Tian, and P. Zhai. 2021. Detectable increases in sequential flood-heatwave events across China during 1961–2018. Geophysical Research Letters 48(6): Article e2021GL092549.

[6]

Choryński, A., I. Pińskwar, D. Graczyk, and M. Krzyżaniak. 2022. The emergence of different local resilience arrangements regarding extreme weather events in small municipalities – A case study from the Wielkopolska Region, Poland. Sustainability 14(4): Article 2052.

[7]

Coles D, Yu D, Wilby RL, Green D, Herring Z. Beyond “flood hotspots”: Modelling emergency service accessibility during flooding in York, UK. Journal of Hydrology, 2017, 546: 419-436

[8]

Cortès M, Turco M, Llasat-Botija M, Llasat MC. The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain). Natuaral Hazards Earth System Science, 2018, 18(3): 857-868

[9]

Crichton D. Ingleton J. The risk triangle. Natural disaster management, 1999, London: Tudor Rose 102-103.

[10]

Einfalt, T., I. Frerk, B. Schäfers, S. Schlauss, S. Luers, and M. Grottker. 2016. Improvement of the resilience of the City of Luebeck to heavy rainfall: The RainAhead project. In Proceedings of Novatech 2016 – 9th International Conference on Planning and Technologies for Sustainable Management of Water in the City, 28 June–1 Jualy 2016, Lyon, France.

[11]

Fowler HJ, Lenderink G, Prein P, Westra S, Allan RP, Ban N, Barbero R, Berg P Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2020, 2(2): 107-122

[12]

Frei C, Schär C. Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine Region. Journal of Climate, 2001, 14(7): 1568-1584

[13]

Gaitan S, van de Giesen NC, ten Veldhuis JAE. Can urban pluvial flooding be predicted by open spatial data and weather data?. Environmental Modelling & Software, 2016, 85: 156-171

[14]

Golroudbary VR, Zeng Y, Mannaerts CM, Su Z. Urban impacts on air temperature and precipitation over The Netherlands. Climate Research, 2018, 75(2): 95-109

[15]

Graczyk D, Kundzewicz ZW, Choryński A, Førland EJ, Pińskwar I, Szwed M. Heat-related mortality during hot summers in Polish cities. Theoretical and Applied Climatology, 2019, 136(3–4): 1259-1273

[16]

Graczyk, D., I. Pińskwar, and A. Choryński. 2022. Heat-related mortality in two regions of Poland: Focus on urban and rural areas during the most severe and long-lasting heatwaves. Atmosphere 13(3): Article 390.

[17]

Graham DN, Butts MB. Singh VP, Frevert DK. Flexible, integrated watershed modelling with MIKE SHE. Watershed Models, 2005, Boca Raton, FL: CRC Press 245-272.

[18]

Groemping U. Relative importance for Linear Regression in R: The package relaimpo. Journal of Statistical Software, 2006, 17(1): 1-27.

[19]

Guerreiro, S.B., V. Glenis, R.J. Dawson, and C. Kilsby. 2017. Pluvial flooding in European cities – A continental approach to urban flood modelling. Water 9(4): Article 296.

[20]

Hänsel S, Ustrnul Z, Łupikasza E, Skalak P. Assessing seasonal drought variations and trends over Central Europe. Advances in Water Resources, 2019, 127: 53-75

[21]

Hettiarachchi S, Wasko C, Sharma A. Increase in flood risk resulting from climate change in a developed urban watershed: The role of storm temporal patterns. Hydrology Earth System Science, 2018, 22(3): 2041-2056

[22]

Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S. Global flood risk under climate change. Nature Climate Change, 2013, 3(9): 816-821

[23]

Huo R, Li L, Chen H, Xu C-Y, Chen J, Guo S. Extreme precipitation changes in Europe from the last millennium to the end of the twenty-first century. Journal of Climate, 2021, 34(2): 567-588

[24]

Jaszczak, A., E. Pochodyła, and B. Płoszaj-Witkowska. 2022. Transformation of green areas in Central Squares after revitalization: Evidence from Cittaslow Towns in northeast Poland. Land 11(4): Article 470.

[25]

Journal of Laws. 2007. Item 89/590, Act of 26.04.2007 on crisis management. https://www.dziennikustaw.gov.pl/DU/2007/s/89/590. Accessed 6 Jun 2022 (in Polish).

[26]

Journal of Laws. 2019. Item 1215, Regulation of the Minister of Maritime Economy and Inland Navigation of 28.06.2019 on warnings, forecasts, communications, bulletins and yearbooks of the state hydrological and meteorological service and the state hydrogeological service. https://www.dziennikustaw.gov.pl/DU/rok/2019/pozycja/1215. Accessed 6 Jun 2022 (in Polish).

[27]

Kaźmierczak A, Cavan G. Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landscape and Urban Planning, 2011, 103(2): 185-197

[28]

Konieczny R, Pińskwar I, Kundzewicz ZW. The September 2017 flood in Elbląg (Poland) in perspective. Meteorology, Hydrology and Water Management, 2018, 6(2): 67-78

[29]

Kox T, Lüder C, Gerhold L. Anticipation and response: Emergency services in severe weather situations in Germany. International Journal of Disaster Risk Science, 2018, 9(1): 116-128

[30]

Kundzewicz, Z.W., A. Dobrowolski, H. Lorenc, T. Niedźwiedź, I. Pińskwar, and P. Kowalczak. 2012. Floods in Poland. In Changes in flood risk in Europe, ed. Z.W. Kundzewicz, A. Dobrowolski, H. Lorenc, T. Niedźwiedź, I. Pińskwar, and P. Kowalczak. London: CRC Press.

[31]

Lenderink G, van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience, 2008, 1(8): 511-514

[32]

Li, Y., W. Wang, M. Chang, and X. Wang 2021. Impacts of urbanization on extreme precipitation in the Guangdong-Hong Kong-Macau Greater Bay Area. Urban Climate 38(8): Article 100904.

[33]

Lin, L., T. Gao, M. Luo, E. Ge, Y. Yang, Z. Liu, Y. Zhao, and G. Ning. 2020. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Science of the Total Environment 744: Article 140264.

[34]

Löwe, R., J. Böhm, D. Getreuer Jensen, J. Leandro, and S. Højmark Rasmussen. 2021. U-FLOOD – Topographic deep learning for predicting urban pluvial flood water depth. Journal of Hydrology 603(A): Article 126898.

[35]

Lu M, Xu Y, Shan N, Wang Q, Yuan J, Wang J. Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. Science of the Total Environment, 2019, 673: 64-73

[36]

Lu Y, Yin J, Wang D, Yang Y, Yu H, Chen P, Zhang S. Evaluating the influence of multisource typhoon precipitation data on multiscale urban pluvial flood modeling. International Journal of Disaster Risk Science, 2022, 13(6): 974-986

[37]

Luino, F., J. De Graff, A. Roccati, M. Biddoccu, C.G. Cirio, F. Faccini, and L. Turconi. 2020. Eighty years of data collected for the determination of rainfall threshold triggering shallow landslides and mud-debris flows in the Alps. Water 12(1): Article 133.

[38]

Majewski W. Urban flash flood in Gdańsk – 2001. Case study. Meteorology, Hydrology and Water Management, 2016, 4: 41-49

[39]

Marelle, L., G. Myhre, B.M. Steensen, Ø. Hodnebrog, K. Alterskjær, and J. Sillmann. 2020. Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. Environment Research Letters 15(12): Article 124072.

[40]

Mencwel, J. 2020. Betonoza. (Concreteosis) Krytyka Polityczna, Warsaw, Poland (in Polish).

[41]

Ministry of Infrastructure and Construction and the Institute of Urban Development in Cracow. 2016. Negative effects of the chaotic dispersion of buildings (Negatywne skutki chaotycznego rozpraszania zabudowy). https://www.gov.pl/attachment/bc07dd57-d666-4cfd-b3a3-fbe1697480c1. Accessed 14 Apr 2023 (in Polish).

[42]

Mobini, S., B. Pirzamanbein, R. Berndtsson, and R. Larsson. 2022. Urban flood damage claim analyses for improved flood damage assessment. International Journal of Disaster Risk Reduction 77: Article 103099.

[43]

Mrozik, K.D. 2022. Problems of local flooding in functional urban areas in Poland. Water 14(16): Article 2453.

[44]

Myhre, G., K. Alterskjær, C.W. Stjern, Ø. Hodnebrog, L. Marelle, B.H. Samset, J. Sillmann, N. Schaller, et al. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports 9: Article 16063.

[45]

Ning G, Luo M, Zhang W, Liu Z, Wang S, Gao T. Rising risks of compound extreme heat-precipitation events in China. International Journal of Climatology, 2022, 42(11): 5785-5795

[46]

Paliaga G, Faccini F, Luino F, Turconi L. A spatial multicriteria prioritizing approach for geo-hydrological risk mitigation planning in small and densely urbanized Mediterranean basins. Natural Hazards Earth System Sciences, 2019, 19(1): 53-69

[47]

Pardowitz T. A statistical model to estimate the local vulnerability to severe weather. Natural Hazards Earth System Sciences, 2018, 18(6): 1617-1631

[48]

Pardowitz, T., and M. Göber. 2017. Forecasting weather related fire brigade operations on the basis of nowcasting data. In RIMMA risk information management, risk models, and applications, ed. H. Kremers, and A. Susini, 1–9. Berlin: CODATA-Germany. https://www.geo.fu-berlin.de/met/wexicom/Ressourcen-Ordner/pdfs/Pardowitz_and_Goeber_ForecastingFireBrigadeOperations.pdf. Accessed 3 Apr 2023.

[49]

Peña EA, Slate EH. Global validation of linear model assumptions. Journal of American Statistical Association, 2006, 101(473): 341-354

[50]

Pińskwar I. Complex changes of extreme precipitation in the warming climate of Poland. International Journal of Climatology, 2022, 42(2): 817-833

[51]

Pińskwar I, Choryński A. Falarz M. Projections of precipitation changes in Poland. Climate change in Poland: Past, present, future, 2021, Cham: Springer 529-544

[52]

Pińskwar, I., A. Choryński, and Z.W. Kundzewicz. 2020. Severe drought in the spring of 2020 in Poland – More of the same? Agronomy 10(11): Article 1646.

[53]

Piotrowicz, K., Z. Bielec-Bąkowska, and K. Krzyworzeka. 2020. Dangerous meteorological events in Cracow and the Cracow district in the light of the intervention of the State Fire Services and the police (Groźne zjawiska meteorologiczne w Krakowie i powiecie krakowskim w świetle interwencji straży pożarnej i policji). Instytut Geografii i Gospodarki Przestrzennej UJ (The Institute of Geography and Spatial Management of the Jagiellonian University), Cracow, Poland. http://denali.geo.uj.edu.pl/publikacje,000256?&page=Klimatologia. Accessed 23 Mar 2023 (in Polish).

[54]

Polish Chamber of Insurance. 2019. Climate of risk. How can prevention and insurance reduce the impact of natural disasters on the environment? Warsaw, Poland: Polish Chamber of Insurance. https://piu.org.pl/wp-content/uploads/2021/03/raport-klimatyczny-web_eng.pdf. Accessed 25 Mar 2023.

[55]

Rojas, R., L. Feyen, A. Bianchi, and A. Dosio. 2012. Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. Journal of Geophysical Research: Atmospheres 117(D17). https://doi.org/10.1029/2012JD017461

[56]

Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskandar, et al. 2021. Weather and climate extreme events in a changing climate. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, et al., 1513–1766. Cambridge, UK and New York, NY: Cambridge University Press.

[57]

Skonieczna, M., A. Hański, J. Topiłko, M. Barszczewska, and M. Wdowikowski. 2021. Urban floods – Guilty climate or human? (Miejskie powodzie – Winny klimat czy czlowiek?). Gazeta Obserwatora IMGW (IMGW Observer newspaper). https//obserwator.imgw.pl/miejskie-powodzie-winny-klimat-czy-czlowiek/. Accessed 14 Apr 2023 (in Polish).

[58]

Sohn, W., J.-H. Kim, M.-H. Li, R.D. Brown, and F.H. Jaber. 2020. How does increasing impervious surfaces affect urban flooding in response to climate variability? Ecological Indicators 118: Article 106774.

[59]

Statistical Office in Poznań. Wielkopolski Regional Research Centre. Division of Aggregate Studies. 2021. Demographic situation of Wielkopolskie Voivodship in 2020. Poznań, Poland: Statistical Office in Poznań.

[60]

Statistics Poland. Local Data Bank. 2020. Web page. https://bdl.stat.gov.pl/bdl/start. Accessed 14 Apr 2023.

[61]

Sun Q, Zhang X, Zwiers F, Westra S, Alexander LV. A global, continental, and regional analysis of changes in extreme precipitation. Journal of Climate, 2021, 34(1): 243-258

[62]

Sung CY, Yi Y-J, Li M-H. Impervious surface regulation and urban sprawl as its unintended consequence. Land Use Policy, 2013, 32: 317-323

[63]

Tabari, H., K. Madani, and P. Willems. 2020. The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environment Research Letters 15(10): Article 104077.

[64]

Trenberth KE, Dai A, Rasmussen RM, Parsons DB. The changing character of precipitation. Bulletin of the American Meteorological Society, 2003, 84(9): 1205-1217

[65]

Ustrnul Z, Wypych A, Czekierda D. Falarz M. Air temperature change. Climate change in Poland: Past, present, future, 2021, Cham: Springer International Publishing 275-330

[66]

Van Der Knijff JM, Younis J, De Roo APJ. Lisflood: A GIS-based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 2008, 24(2): 189-212

[67]

ten Veldhuis JAE, Clemens FHLR, van Gelder PHAJM. Quantitative fault tree analysis for urban water infrastructure flooding. Structure and Infrastructure Engineering, 2011, 7(11): 809-821

[68]

Voss M, Wagner K. Learning from (small) disasters. Natural Hazards, 2010, 55(3): 657-669

[69]

Walczykiewicz, T., and M. Skonieczna. 2020. Rainfall flooding in urban areas in the context of geomorphological aspects. Geosciences 10(11): Article 457.

[70]

Wan Mohtar, W.H.M., J. Abdullah, K.N. Abdul Maulud, and N.S. Muhammad. 2020. Urban flash flood index based on historical rainfall event. Sustainable Cities and Society 56: Article 102088.

[71]

Wang Y, Zhang X, Tang Q, Mu M, Zhang C, Lv A, Jia S. Assessing flood risk in Baiyangdian Lake area in a changing climate using an integrated hydrological-hydrodynamic modelling. Hydrological Sciences Journal, 2019, 64(16): 2006-2014

[72]

Yin, D., C. Xu, H. Jia, Y. Yang, C. Sun, Q. Wang, and S. Liu. 2022. Sponge city practices in China: From pilot exploration to systemic demonstration. Water 14(10): Article 1531.

[73]

You, J., and S. Wang. 2021. Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall. Geophysical Research Letters 48(17): Article e2021GL094831.

[74]

Zanetti M., E. Allegri, A. Sperotto, S. Torresan, and A. Critto. 2022. Spatio-temporal cross-validation to predict pluvial flood events in the Metropolitan City of Venice. Journal of Hydrology 612(B): Article 128150.

[75]

Zevenbergen, C., D. Fu, and A. Pathirana. 2018. Transitioning to sponge cities: Challenges and opportunities to address urban water problems in China. Water 10(9): Article 1230.

[76]

Zhou Q, Leng G, Huang M. Impacts of future climate change on urban flood volumes in Hohhot in northern China: Benefits of climate change mitigation and adaptations. Hydrology Earth System Science, 2018, 22(1): 305-316

AI Summary AI Mindmap
PDF

284

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/