Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands

Alexander Fekete

International Journal of Disaster Risk Science ›› 2019, Vol. 10 ›› Issue (2) : 220 -232.

PDF
International Journal of Disaster Risk Science ›› 2019, Vol. 10 ›› Issue (2) : 220 -232. DOI: 10.1007/s13753-019-0213-1
Article

Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands

Author information +
History +
PDF

Abstract

While social vulnerability assessments (SVA) use spatial indicators and indices that have become state of the art, they also receive substantial critique. This article analyzes, by means of a literature review of 63 articles, if and in which aspects such an indicator approach is regarded as useful by scientific studies. The findings indicate a need for more research on the validation and justification of indicators. This article supports the conceptual development of SVA by adding to reflection about advancements and applications, but also shortcomings. The main advancement area discussed is validation and the demand for establishing benchmark criteria for vulnerability. Based on this, longitudinal monitoring of vulnerability and validation studies are conceivable based on existing SVA, but these efforts demand more conceptual development.

Keywords

Disaster risk / Indicator selection / Social vulnerability index / Validation criteria / Vulnerability indicators

Cite this article

Download citation ▾
Alexander Fekete. Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands. International Journal of Disaster Risk Science, 2019, 10(2): 220-232 DOI:10.1007/s13753-019-0213-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson MB, Woodrow PJ. Rising from the ashes: Development strategies in times of disaster, 1998, Boulder: Lynne Rienner

[2]

Armaș I, Gavriș A. Social vulnerability assessment using spatial multi-criteria analysis (Sevi Model) and the social vulnerability index (Sovi Model)—A case study for Bucharest, Romania. Natural Hazards and Earth System Sciences, 2013, 13(6): 1481-1499.

[3]

Asadzadeh A, Kötter T, Zebardast E. An augmented approach for measurement of disaster resilience using connective factor analysis and analytic network process (F’anp) model. International Journal of Disaster Risk Reduction, 2015, 14: 504-518.

[4]

Balica SF, Wright NG, van der Meulen F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards, 2012, 64(1): 73-105.

[5]

Bergstrand K, Mayer B, Brumback B, Zhang Y. Assessing the relationship between social vulnerability and community resilience to hazards. Social Indicators Research, 2015, 122(2): 391-409.

[6]

Birkmann J. Birkmann J. Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. Measuring vulnerability to natural hazards: Towards disaster resilient societies, 2006 1 Tokyo: United Nations University Press 9-54.

[7]

Birkmann J. Birkmann J. Measuring vulnerability to promote disaster-resilient societies and to enhance adaptation: Conceptual frameworks and definitions. Measuring vulnerability to natural hazards: Towards disaster resilient societies, 2013 2 Tokyo: United Nations University Press 9-79 (completely revised)

[8]

Bui DT, Pradhan B, Nampak H, Bui Q-T, Tran Q-A, Nguyen Q-P. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 2016, 540: 317-330.

[9]

Cai H, Lam NS-N, Zou L, Qiang Y, Li K. Assessing community resilience to coastal hazards in the lower Mississippi River Basin. Water, 2016, 8: 46

[10]

Castillo ME, Baldwin EM, Casarin RS, Vanegas GP, Juaréz MA. Characterization of risks in coastal zones: A review. Clean—Soil, Air, Water, 2012, 40(9): 894-905.

[11]

Cutter SL. Vulnerability to environmental hazards. Progress in Human Geography, 1996, 20(4): 529-539.

[12]

Cutter SL, Boruff BJ, Shirley WL. Social vulnerability to environmental hazards. Social Science Quarterly, 2003, 84(2): 242-261.

[13]

Cutter, S.L., C.G. Burton, and C.T. Emrich. 2010. Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management 7(1): Article 51.

[14]

Cutter SL, Emrich CT, Morath DP, Dunning CM. Integrating social vulnerability into federal flood risk management planning. Journal of Flood Risk Management, 2013, 6(4): 332-344.

[15]

Davidson, R.A., and H.C. Shah. 1997. An urban earthquake disaster risk index. Stanford University, Department of Civil Engineering, John A. Blume Earthquake Engineering Center. Report No. 121. Stanford digital repository. Stanford, CA: John A. Blume Earthquake Engineering Center. https://www.google.com/search?source=hp&ei=HVh1XLXLD5Hj_Aasq6j4CQ&q=Davidson+Urban+Earthquake+disaster+risk+index+1997&btnK=Google+Search&oq=Davidson+Urban+Earthquake+disaster+risk+index+1997&gs_l=psy-ab.3…757.95298..104025…26.0..0.177.6865.63j12….2..0….1..gws-wiz…..0..35i39j0j0i131j0i67j0i131i10j0i10j0i22i30j33i299j33i160j33i22i29i30j33i10.dTzwZGNEfx8. Accessed 26 Feb 2019.

[16]

de Sherbinin, A. 2014. Mapping the unmeasurable? Spatial analysis of vulnerability to climate change and climate variability. Ph.D. thesis. Enschede, Netherlands: ITC-University of Twente. http://ciesin.columbia.edu/documents/de_Sherbinin_2014_PhDThesis_UTwente.pdf. Accessed 1 Apr 2018

[17]

Dickin Sarah K., Schuster-Wallace Corinne J., Elliott Susan J.. Developing a Vulnerability Mapping Methodology: Applying the Water-Associated Disease Index to Dengue in Malaysia. PLoS ONE, 2013, 8(5): e63584

[18]

Federal Ministry of the Interior (Bundesminesterium des Innern). 2008. Protecting critical infrastructures—Risk and crisis management: A guide for companies and government authorities. Berlin: Federal Ministry of the Interior. https://www.bbk.bund.de/SharedDocs/Downloads/BBK/DE/Publikationen/PublikationenKritis/Protecting-Critical-Infrastructures.pdf?__blob=publicationFile. Accessed 3 Mar 2019.

[19]

Federal Office of Cartography and Geodesy (Bundesamt für Kartographie und Geodäsie). 2017. Verwaltungsgebiete von Deutschland. Frankfurt am Main: Bundesamt für Kartographie und Geodäsie. http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile=1&gdz_unt_zeile=13&gdz_user_id=0. Accessed 1 Apr 2018 (in German).

[20]

Federal Office of Civil Protection and Disaster Assistance (Bundesamt für Bevölkerungsschutz und Katastrophenhilfe). 2010. Method for risk analysis in civil protection (Methode für Die Risikoanalyse im Bevölkerungsschutz). Wissenschaftsforum Band 8. Bonn: Bundesamt für Bevölkerungsschutz und Katastrophenhilfe. http://www.bbk.bund.de/SharedDocs/Downloads/BBK/DE/Publikationen/Wissenschaftsforum/Bd8_Methode-Risikoanalyse-BS.pdf?__blob=publicationFile. Accessed 1 Apr 2018 (in German).

[21]

Federal Office of Statistics (Statistische Ämter des Bundes und der Länder). 2017. Regional data bank of Germany (Regionaldatenbank Deutschland). https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Regionales/Regionaldatenbank/Regionaldatenbank.html. Accessed 1 Apr 2018 (in German).

[22]

Fekete A. Validation of a social vulnerability index in context to river-floods in Germany. Natural Hazards and Earth System Sciences, 2009, 9(2): 393-403.

[23]

Fekete, A. 2010. Assessment of social vulnerability to river-floods in Germany. Ph.D. dissertation. Bonn: Institute for Environment and Human Security, United Nations University.

[24]

Fekete A. Spatial disaster vulnerability and risk assessments: Challenges in their quality and acceptance. Natural Hazards, 2012, 61(3): 1161-1178.

[25]

Fekete A. Safety and security target levels: Opportunities and challenges for risk management and risk communication. International Journal of Disaster Risk Reduction, 2012, 2: 67-76.

[26]

Fekete A, Damm M, Birkmann J. Scales as a challenge for vulnerability assessment. Natural Hazards, 2010, 55(3): 729-747.

[27]

Fekete A, Fiedrich F. Urban disaster resilience and security: Addressing risks in societies, 2018, Cham, Switzerland: Springer

[28]

Fekete A, Hufschmidt G, Kruse S. Benefits and challenges of resilience and vulnerability for disaster risk management. International Journal of Disaster Risk Science, 2014, 5(1): 3-20.

[29]

Fekete A, Lauwe P, Geier W. Risk management goals and identification of critical infrastructures. International Journal of Critical Infrastructures, 2012, 8(4): 336-353.

[30]

Fekete A, Tzavella K, Armas I, Binner J, Garschagen M, Giupponi C, Mojtahed V, Pettita M Critical data source; tool or even infrastructure? Challenges of Geographic Information Systems and Remote Sensing for disaster risk governance. ISPRS International Journal of Geo-Information, 2015, 4(4): 1848-1869.

[31]

Fekete A, Tzavella K, Baumhauer R. Spatial exposure aspects contributing to vulnerability and resilience assessments of urban critical infrastructure in a flood and blackout context. Natural Hazards, 2017, 86(1): 151-176.

[32]

Felsenstein D, Lichter M. Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Natural Hazards, 2014, 71(1): 463-491.

[33]

Fernandez P, Mourato S, Moreira M. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova De Gaia (Portugal). Geomatics, Natural Hazards and Risk, 2015, 7(4): 1367-1389.

[34]

Finch C, Emrich CT, Cutter SL. . Disaster disparities and differential recovery in New Orleans. Population and Environment, 2010, 31(4): 179-202.

[35]

Ford JD, Keskitalo ECH, Smith T, Pearce T, Berrang-Ford L, Duerden F, Smit B. Case study and analogue methodologies in climate change vulnerability research. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1(3): 374-392.

[36]

Frigerio I, De Amicis M. Mapping social vulnerability to natural hazards in Italy: A suitable tool for risk mitigation strategies. Environmental Science & Policy, 2016, 63: 187-196.

[37]

Frigerio I, Ventura S, Strigaro D, Mattavelli M, De Amicis M, Mugnano S, Boffi M. A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Applied Geography, 2016, 74: 12-22.

[38]

Fritzsche, K., S. Schneiderbauer, P. Bubeck, S. Kienberger, M. Buth, M. Zebisch, and W. Kahlenborn. 2014. Vulnerability sourcebook: Concept and guidelines for assessments. Bonn and Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ). https://www.adelphi.de/en/system/files/mediathek/bilder/vulnerability_sourcebook_guidelines_for_assessments_adelphi_giz_2014.pdf. Accessed 1 Apr 2018.

[39]

Fuchs S, Thaler T. Vulnerability and resilience to natural hazards, 2018, New York: Cambridge University Press

[40]

Gallina V, Torresan S, Critto A, Sperotto A, Glade T, Marcomini A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of Environmental Management, 2016, 168: 123-132.

[41]

Gibson CC, Ostrom E, Ahn T-K. The concept of scale and the human dimensions of global change: A survey. Ecological Economics, 2000, 32(2): 217-239.

[42]

Grenier P, Parent A-C, Huard D, Anctil F, Chaumont D. An assessment of six dissimilarity metrics for climate analogs. Journal of Applied Meteorology and Climatology, 2013, 52(4): 733-752.

[43]

Hiete M, Merz M, Comes T, Schultmann F. Trapezoidal fuzzy dematel method to analyze and correct for relations between variables in a composite indicator for disaster resilience. OR Spectrum, 2012, 34(4): 971-995.

[44]

Holand IS, Lujala P. Replicating and adapting an index of social vulnerability to a new context: A comparison study for Norway. The Professional Geographer, 2013, 65(2): 312-328.

[45]

IRGC (International Risk Governance Council). 2012. An introduction to the IRGC risk governance framework. Geneva: International Risk Governance Council. https://www.preventionweb.net/publications/view/51238. Accessed 3 Mar 2019.

[46]

ISO (International Organization for Standardization). 2009. Iso/Iec 31000:2009. Risk management—Principles and guidelines. Geneva: ISO. https://www.iso.org/iso-31000-risk-management.html. Accessed 3 Mar 2019.

[47]

Karagiorgos K, Thaler T, Heiser M, Hübl J, Fuchs S. Integrated flash flood vulnerability assessment: Insights from East Attica. Greece. Journal of Hydrology, 2016, 541(Part A): 553-562.

[48]

Karagiorgos K, Thaler T, Hübl J, Maris F, Fuchs S. Multi-vulnerability analysis for flash flood risk management. Natural Hazards, 2016, 82(1 Supplement): 63-87.

[49]

Khan S. Vulnerability assessments and their planning implications: A case study of the Hutt Valley. New Zealand. Natural Hazards, 2012, 64(2): 1587-1607.

[50]

Khan FA, Salman A. A simple human vulnerability index to climate change hazards for Pakistan. International Journal of Disaster Risk Science, 2012, 3(3): 163-176.

[51]

Khazai B, Kunz-Plapp T, Büscher C, Wegner A. Vuwiki: An ontology-based semantic wiki for vulnerability assessments. International Journal of Disaster Risk Science, 2014, 5(1): 55-73.

[52]

Kienberger S. Spatial modelling of social and economic vulnerability to floods at the district level in Búzi. Mozambique. Natural Hazards, 2012, 64(3): 2001-2019.

[53]

Kienberger S, Lang S, Zeil P. Spatial vulnerability units—Expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria. Natural Hazards and Earth System Sciences, 2009, 9: 767-778.

[54]

Kok M, Lüdeke M, Lucas P, Sterzel T, Walther C, Janssen P, Sietz D, de Soysa I. A new method for analysing socio-ecological patterns of vulnerability. Regional Environmental Change, 2016, 16(1): 229-243.

[55]

Koks EE, Jongman B, Husby TG, Botzen WJW. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science & Policy, 2015, 47: 42-52.

[56]

Kreibich H, Thieken AH, Petrow T, Müller M, Merz B. Flood loss reduction of private households due to building precautionary measures—Lessons learned from the Elbe flood in August 2002. Natural Hazards and Earth System Sciences, 2005, 5(1): 117-126.

[57]

Kubal C, Haase D, Meyer V, Scheuer S. Integrated urban flood risk assessment—Adapting a multicriteria approach to a city. Natural Hazards and Earth System Sciences, 2009, 9(6): 1881-1895.

[58]

Kuhlicke C, Scolobig A, Tapsell S, Steinführer A, De Marchi B. Contextualizing social vulnerability: Findings from case studies across Europe. Natural Hazards, 2011, 58(2): 789-810.

[59]

Kuhlicke C, Steinführer A, Begg C, Bianchizza C, Bründl M, Buchecker M, De Marchi B, Tarditti MDM Perspectives on social capacity building for natural hazards: Outlining an emerging field of research and practice in Europe. Environmental Science & Policy, 2011, 14(7): 804-814.

[60]

Künzler M, Huggel C, Ramírez JM. A risk analysis for floods and lahars: Case study in the cordillera Central of Colombia. Natural Hazards, 2012, 64(1): 767-796.

[61]

Lee G, Jun KS, Chung ES. Integrated multi-criteria flood vulnerability approach using fuzzy topsis and Delphi technique. Natural Hazards and Earth System Sciences, 2013, 13(5): 1293-1312.

[62]

Lee M-H, Jung IW, Bae D-H. Korean flood vulnerability assessment on climate change. Journal of Korea Water Resources Association, 2011, 44(8): 653-666.

[63]

Mazumdar J, Paul SK. Socioeconomic and infrastructural vulnerability indices for cyclones in the eastern coastal states of India. Natural Hazards, 2016, 82(3): 1621-1643.

[64]

Mendes JM, Tavares AO, Cunha L, Freiria S. Social vulnerability from natural and technological hazards in Portugal (A vulnerabilidade social aos perigos naturais e tecnológicos em Portugal). Revista Crítica de Ciências Sociais, 2011, 93: 95-128.

[65]

Merz M, Hiete M, Comes T, Schultmann F. A composite indicator model to assess natural disaster risks in industry on a spatial level. Journal of Risk Research, 2013, 16(9): 1077-1099.

[66]

Müller A, Reiter J, Weiland U. Assessment of urban vulnerability towards floods using an indicator-based approach—A case study for Santiago De Chile. Natural Hazards and Earth System Sciences, 2011, 11(8): 2107-2123.

[67]

Nelson KS, Abkowitz MD, Camp JV. A method for creating high resolution maps of social vulnerability in the context of environmental hazards. Applied Geography, 2015, 63: 89-100.

[68]

Nguyen, K.V., and H. James. 2013. Measuring household resilience to floods: A case study in the Vietnamese Mekong River Delta. Ecology and Society 18(3): Article 13.

[69]

Nguyen TTX, Bonetti J, Rogers K, Woodroffe CD. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean & Coastal Management, 2016, 123: 18-43.

[70]

Oulahen G, Mortsch L, Tang K, Harford D. Unequal vulnerability to flood hazards: “Ground truthing” a social vulnerability index of five municipalities in metro Vancouver, Canada. Annals of the Association of American Geographers, 2015, 105(3): 473-495.

[71]

Park M, Song Y, Kim S, Park M. A study on the assessment method for high-risk urban inundation area using flood vulnerability index. Journal of the Korean Society of Hazard Mitigation, 2012, 12(2): 245-254.

[72]

Preston BL, Yuen EJ, Westaway RM. Putting vulnerability to climate change on the map: A review of approaches, benefits, and risks. Sustainability Science, 2011, 6(2): 177-202.

[73]

Roy DC, Blaschke T. Spatial vulnerability assessment of floods in the coastal regions of Bangladesh. Geomatics, Natural Hazards and Risk, 2015, 6(1): 21-44.

[74]

Rufat S, Tate E, Burton CG, Maroof AS. Social vulnerability to floods: Review of case studies and implications for measurement. International Journal of Disaster Risk Reduction, 2015, 14(4): 470-486.

[75]

Sa’adah R. The eight-minute ALS response time standard: A review and discussion of its use as a strategic results goal by the district of Colombia, 2004, Washington, DC: District of Colombia, Fire and Emergency Medical Services Department

[76]

Scheuer S, Haase D, Meyer V. Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: From a starting point view towards an end point view of vulnerability. Natural Hazards, 2011, 58(2): 731-751.

[77]

Schneiderbauer S, Ehrlich D. Birkmann J. Social levels and hazard (in)dependence in determining vulnerability. Measuring vulnerability to natural hazards: Towards disaster resilient societies, 2006, Tokyo: United Nations University Press 78-102.

[78]

Siagian TH, Purhadi P, Suhartono S, Ritonga H. Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Natural Hazards, 2014, 70(2): 1603-1617.

[79]

Sietz D, Choque SEM, Lüdeke MKB. Typical patterns of smallholder vulnerability to weather extremes with regard to food security in the Peruvian Altiplano. Regional Environmental Change, 2012, 12(3): 489-505.

[80]

Solangaarachchi D, Griffin AL, Doherty MD. Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: A case study of the Blue Mountains and Ku-Ring-Gai local council areas. Natural Hazards, 2012, 64(2): 1873-1898.

[81]

Stângă IC, Grozavu A. Quantifying human vulnerability in rural areas: Case study of Tutova Hills (Eastern Romania). Natural Hazards and Earth System Sciences, 2012, 12(6): 1987-2001.

[82]

Sterzel T, Lüdeke M, Kok M, Walther C, Sietz D, de Soysa I, Lucas P, Janssen P. Armed conflict distribution in global drylands through the lens of a typology of socio-ecological vulnerability. Regional Environmental Change, 2014, 14(4): 1419-1435.

[83]

Tate E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Natural Hazards, 2012, 63(2): 325-347.

[84]

Tate E. Uncertainty analysis for a social vulnerability index. Annals of the Association of American Geographers, 2013, 103(3): 526-543.

[85]

Terti G, Ruin I, Anquetin S, Gourley JJ. Dynamic vulnerability factors for impact-based flash flood prediction. Natural Hazards, 2015, 79(3): 1481-1497.

[86]

Thieken A, Kreibich H, Müller M, Merz B. Coping with floods: Preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrological Sciences - Journal des Sciences Hydrologiques, 2007, 52(5): 1016-1037.

[87]

Tripathi R, Sengupta SK, Patra A, Chang H, Jung Il W. Climate change, urban development, and community perception of an extreme flood: A case study of Vernonia, Oregon, USA. Applied Geography, 2014, 46: 137-146.

[88]

United Nations. 2015. Sendai framework for disaster risk reduction 20152030. Geneva: United Nations UNISDR. https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf. Accessed 26 Feb 2019.

[89]

US DoD (United States Department of Defense) Mil-Sta-1629a. Military standard. Procedures for performing a failure mode, effects, and criticality analysis, 1980, Washington, DC: US DoD

[90]

Weber M. Brandschutzbedarfsplanung im Europäischen Vergleich (Fire Protection Planning in European Comparison). BRANDSchutz, 2013, 67(September): 720-727 (in German)

[91]

Weichselgartner J, Kasperson R. Barriers in the science-policy-practice interface: Toward a knowledge-action-system in global environmental change research. Global Environmental Change, 2010, 20(2): 266-277.

[92]

Weichselgartner J, Kelman I. Geographies of resilience: Challenges and opportunities of a descriptive concept. Progress in Human Geography, 2014, 39(3): 249-267.

[93]

Weichselgartner J, Pigeon P. The role of knowledge in disaster risk reduction. International Journal of Disaster Risk Science, 2015, 6(2): 107-116.

[94]

Welle T, Depietri Y, Angignard M, Birkmann J, Renaud F, Greiving S. Birkmann J, Kienberger S, Alexander DE. Vulnerability assessment to heat waves, floods, and earthquakes using the move framework: Test case Cologne, Germany. Assessment of vulnerability to natural hazards, 2014, Bonn: Elsevier 91-124.

[95]

Werg J, Grothmann T, Schmidt P. Assessing social capacity and vulnerability of private households to natural hazards—Integrating psychological and governance factors. Natural Hazards and Earth System Sciences, 2013, 13(6): 1613-1628.

[96]

Wilhelmi OV, Morss RE. Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study. Environmental Science & Policy, 2013, 26: 49-62.

[97]

Wisner B, Blaikie P, Cannon T, Davis I. At risk: Natural hazards, people´s vulnerability and disasters, 2004 2 London: Routledge

[98]

Wrathall DJ, Oliver-Smith A, Fekete A, Gencer E, Reyes ML, Sakdapolrak P. Problematising loss and damage. International Journal of Global Warming, 2015, 8(2): 274-294.

[99]

Yang S, He S, Du J, Sun X. Screening of social vulnerability to natural hazards in China. Natural Hazards, 2015, 76(1): 1-18.

[100]

Yoon DK. Assessment of social vulnerability to natural disasters: A comparative study. Natural Hazards, 2012, 63(2): 823-843.

[101]

Zhang N, Huang H. Social vulnerability for public safety: A case study of Beijing. China. Chinese Science Bulletin, 2013, 58(19): 2387-2394.

[102]

Zhou Y, Li N, Wu W, Wu J. Assessment of provincial social vulnerability to natural disasters in China. Natural Hazards, 2014, 71(3): 2165-2186.

[103]

Zhou Y, Li N, Wu W, Wu J, Shi P. Local spatial and temporal factors influencing population and societal vulnerability to natural disasters. Risk Analysis, 2014, 34(4): 614-639.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/