Technologies to Support Community Flood Disaster Risk Reduction
Ian McCallum , Wei Liu , Linda See , Reinhard Mechler , Adriana Keating , Stefan Hochrainer-Stigler , Junko Mochizuki , Steffen Fritz , Sumit Dugar , Miguel Arestegui , Michael Szoenyi , Juan-Carlos Laso Bayas , Peter Burek , Adam French , Inian Moorthy
International Journal of Disaster Risk Science ›› 2016, Vol. 7 ›› Issue (2) : 198 -204.
Technologies to Support Community Flood Disaster Risk Reduction
Floods affect more people globally than any other type of natural hazard. Great potential exists for new technologies to support flood disaster risk reduction. In addition to existing expert-based data collection and analysis, direct input from communities and citizens across the globe may also be used to monitor, validate, and reduce flood risk. New technologies have already been proven to effectively aid in humanitarian response and recovery. However, while ex-ante technologies are increasingly utilized to collect information on exposure, efforts directed towards assessing and monitoring hazards and vulnerability remain limited. Hazard model validation and social vulnerability assessment deserve particular attention. New technologies offer great potential for engaging people and facilitating the coproduction of knowledge.
Crowdsourcing / Disaster risk reduction / Flood resilience / Social media / Volunteered geographic information (VGI)
| [1] |
Abel, F., C. Hauff, G.-J. Houben, R. Stronkman, and K. Tao. 2012. Twitcident: Fighting fire with information from social web streams. In Proceedings of the 21st International Conference Companion on World Wide Web, 305–308. WWW’12 Companion. Lyon, France: Association for Computing Machinery. doi:10.1145/2187980.2188035. |
| [2] |
Cardona, O.D., M.K. van Aalst, J. Birkmann, M. Fordham, G. McGregor, R. Perez, R.S. Pulwarty, E.L.F. Schipper, and B.T. Sinh. 2012. Determinants of risk: Exposure and vulnerability. In Managing the risks of extreme events and disasters to advance climate change adaption. A special report of the Working Groups I and II of the Intergovernmental Panel on Climate Change, ed. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, et al., 65–108. Cambridge and New York: Cambridge University Press. |
| [3] |
|
| [4] |
Clark, L. 2015. How Nepal’s earthquake was mapped in 48 hours. Wired UK. http://www.wired.co.uk/news/archive/2015-04/28/mapping-nepal-after-the-earthquake. Accessed 23 May 2016. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
GFDRR (Global Facility for Disaster Reduction and Recovery). 2014. Understanding risk: The evolution of disaster risk assessment. http://www.drrinacp.org/sites/drrinacp.org/files/publication/_Understanding_Risk-Web_Version-rev_1.7.3.pdf. Accessed 23 May 2016. |
| [9] |
GFDRR (Global Facility for Disaster Reduction and Recovery). 2015. Bringing resilience to scale, GFDRR Annual Report’14. Washington, DC: GFDRR. https://www.gfdrr.org/sites/gfdrr/files/publication/GFDRR%20ANNUAL%20REPORT%202014.pdf. Accessed 23 May 2016. |
| [10] |
|
| [11] |
Government Office for Science. 2012. Foresight reducing risks of future disasters: Priorities for decision makers. Executive Summary. London: The Government Office for Science. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/286480/12-1322-reducing-risks-of-future-disasters-summary.pdf. Accessed 23 May 2016. |
| [12] |
Hallegatte, S. 2011. How economic growth and rational decisions can make disaster losses grow faster than wealth. Policy research working paper. Washington, DC: World Bank. |
| [13] |
Helgeson, J.F., S. Dietz, and S. Hochrainer-Stigler. 2013. Vulnerability to weather disasters: The choice of coping strategies in rural Uganda. Ecology and Society 18(2): Article no. 2. doi:10.5751/ES-05390-180202. |
| [14] |
|
| [15] |
Holderness, T., and E. Turpin. 2015. PetaJakarta.org: Assessing the role of social media for civic co-management during monsoon flooding in Jakarta, Indonesia. White paper. SMART Infrastructure Facility, University of Wollongong. |
| [16] |
|
| [17] |
IPCC (Intergovernmental Panel on Climate Change). 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. ed. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, et al. Cambridge and New York: Cambridge University Press. |
| [18] |
Jung, C. 2011. Mobile data collection systems: A review of the current state of the field. Centre National d’Etudes Spatiales. http://www.parkdatabase.org/files/documents/nomad_mdc_research.pdf. Accessed 23 May 2016. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Pastor-Escuredo, D., A. Morales-Guzman, Y. Torres-Fernandez, J.-M. Bauer, A. Wadhwa, C. Castro-Correa, L. Romanoff, J.G. Lee, A. Rutherford, V. Frias-Martinez, N. Oliver, E. Frias-Martinez, and M. Luengo-Oroz. 2014. Flooding through the lens of mobile phone activity. In Proceedings of the IEEE Global Humanitarian Technology Conference, 10–13 October 2014, San Jose, CA, 279–286. |
| [27] |
|
| [28] |
|
| [29] |
See, L., P. Mooney, G. Foody, L. Bastin, A. Comber, J. Estima, S. Fritz, et al. 2016. Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS International Journal of Geo-Information 5(5): Article no. 55. doi:10.3390/ijgi5050055. |
| [30] |
|
| [31] |
UNISDR (United Nations International Strategy for Disaster Reduction) Making development sustainable: The future of disaster risk management. Global assessment report on disaster risk reduction, 2015, Geneva: UNISDR |
| [32] |
|
/
| 〈 |
|
〉 |