Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin

Gábor Mezősi , Teodóra Bata , Burghard C. Meyer , Viktória Blanka , Zsuzsanna Ladányi

International Journal of Disaster Risk Science ›› 2014, Vol. 5 ›› Issue (2) : 136 -146.

PDF
International Journal of Disaster Risk Science ›› 2014, Vol. 5 ›› Issue (2) : 136 -146. DOI: 10.1007/s13753-014-0016-3
Article

Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin

Author information +
History +
PDF

Abstract

The potential impacts of climate change on the Great Hungarian Plain based on two regional climate models, REMO and ALADIN, were analyzed using indicators for environmental hazards. As the climate parameters (temperature, precipitation, and wind) will change in the two investigated periods (2021–2050 and 2071–2100), their influences on drought, wind erosion, and inland excess water hazards are modeled by simple predictive models. Drought hazards on arable lands will increasingly affect the productivity of agriculture compared to the reference period (1961–1990). The models predict an increase between 12.3 % (REMO) and 20 % (ALADIN) in the first period, and between 35.6 % (REMO) and 45.2 % (ALADIN) in the second period. The increase of wind erosion hazards is not as obvious (+15 % for the first period in the REMO model). Inland excess water hazards are expected to be slightly reduced (−4 to 0 %) by both model predictions in the two periods without showing a clear tendency on reduction. All three indicators together give a first regional picture of potential hazards of climate change. The predictive model and data combinations of the regional climate change models and the hazard assessment models provide insights into regional and subregional impacts of climate change and will be useful in planning and land management activities.

Keywords

Carpathian Basin / Drought / Great Hungarian Plain / Inland excess water / Regional modeling / Wind erosion

Cite this article

Download citation ▾
Gábor Mezősi, Teodóra Bata, Burghard C. Meyer, Viktória Blanka, Zsuzsanna Ladányi. Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin. International Journal of Disaster Risk Science, 2014, 5(2): 136-146 DOI:10.1007/s13753-014-0016-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AKI (Research Institute of Agricultural Economics). 2013. Agrárgazdasági Kutató Intézet. https://www.aki.gov.hu (in Hungarian). Accessed 28 Mar 2014.

[2]

Bakonyi, P. 2010. Flood and drought strategy of the Tisza River Basin. VITUKI, Budapest. http://www.icpdr.org/main/resources/flood-and-drought-mitigation-strategy-tisza-river-basin. Accessed 28 Mar 2014.

[3]

Bartholy J, Pongrácz R, Gelybó G, Szabó P. Analysis of expected climate change in the Carpathian Basin using the PRUDENCE results. Időjárás Quarterly Journal of the Hungarian Meteorological Service, 2008, 112(3–4): 249-264.

[4]

Bartholy J, Pongrácz R, Pieczka I, Torma CS. Blanco J, Kheradmand H. Dynamical downscaling of projected 21st century climate for the Carpathian Basin. Climate change—Research and technology for adaptation and mitigation, 2011, Rijeka: InTech 3-22.

[5]

Bihari, Z. (ed.). 2012. Drought Management Centre for South-East Europe. Budapest: OMSZ. http://www.met.hu/doc/DMCSEE/DMCSEE_final_publication.pdf. Accessed 28 Mar 2014.

[6]

Blanka V, Mezősi G, Meyer B. Projected changes in the drought hazard in Hungary due to climate change. Időjárás Quarterly Journal of the Hungarian Meteorological Service, 2013, 117(2): 219-237.

[7]

Bozán, C., J. Körösparti, L. Pásztor, L. Kuti, P. Kozák, and I. Pálfai. 2009. GIS-based mapping of excess water inundation hazard in Csongrád County (Hungary). In Proceedings of the international symposia on risk factors for environment and food safety & natural resources and sustainable development, 678–684. Faculty of Environmental Protection, Oradea, 6–7 November 2009.

[8]

Fratini G, Santini M, Ciccioli P, Valentini R. Evaluation of a wind erosion model in a desert area of northern Asia by eddy covariance. Earth Surface Processes and Landforms, 2009, 34(13): 1743-1757 10.1002/esp.1857

[9]

Fryrear, D.W., A. Saleh, J.D. Bilbro, H.M. Schomberg, J.E. Stout, and T.M. Zobeck. 1998. Revised wind erosion equation (RWEQ). Wind Erosion and Water Conservation Research Unit, Technical Bulletin 1. Southern Plains Area Cropping Systems Research Laboratory, USDA-ARS. http://www.csrl.ars.usda.gov/wewc/rweq/app.pdf. Accessed 28 Mar 2014.

[10]

Funk, R., C. Hoffmann, and M. Reiche. 2004. Methods for quantifying wind erosion in steppe regions. In Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia, ed. L. Mueller, A. Saparov, and G. Lischeid, 315–327. Switzerland: Springer International Publishing.

[11]

Gosic M, Trajkovic S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. Journal of Hydrology, 2013, 494: 32-42 10.1016/j.jhydrol.2013.04.044

[12]

Hagen LJ. Evaluation of the wind erosion prediction system (WEPS) erosion submodel on cropland fields. Environmental Modelling and Software, 2004, 19(2): 171-176 10.1016/S1364-8152(03)00119-1

[13]

Hazafi, L. 2003. Drought in 1.5 million hectares. World Economy (Világgazdaság). http://www.vg.hu/gazdasag/aszalykar-15-millio-hektaron-35006 (in Hungarian). Accessed 28 Mar 2014.

[14]

HCSO (Hungarian Central Statistical Office). 2011. Environmental report, 2011. Hungarian Central Statistical Office, Budapest. https://www.ksh.hu/docs/eng/xftp/idoszaki/ekornyhelyzetkep11.pdf. Accessed 28 Mar 2014.

[15]

HMS (Hungarian Meteorological Service). 2013. Országos Meteorológiai Szolgálat. http://www.met.hu/. Accessed 28 Mar 2014.

[16]

IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change. The physical science basis. Working Group I. Contribution to the fourth assessment report of the IPCC, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. New York: Cambridge University Press.

[17]

Julian JP, Davies-Colley RJ, Gallegos CL, Tran TV. Optical water quality of inland waters: A landscape perspective. Annals of the Association of American Geographers, 2013, 103(2): 309-318 10.1080/00045608.2013.754658

[18]

Klik, A. 2004. Wind erosion assessment in austria using wind erosion equation and GIS. In Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis, ed. R. Francaviglia, 145–154. Rome: Proceedings from an OECD expert meeting.

[19]

Lei YD, Wang JA, Luo LL. Drought risk assessment of China’s mid-season paddy. International Journal of Disaster Risk Science, 2011, 2(2): 32-40 10.1007/s13753-011-0009-4

[20]

Li FR, Kang LF, Zhang H, Zhao LY, Shirato Y, Taniyama I. Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China. Journal of Arid Environments, 2005, 62(4): 567-585 10.1016/j.jaridenv.2005.01.014

[21]

Likens GE. Encyclopedia of inland waters, 2009, Oxford: Elsevier/Academic Press

[22]

Lin YZ, Deng XZ, Jin Q. Economic effects of drought on agriculture in North China. International Journal of Disaster Risk Science, 2013, 4(2): 59-67 10.1007/s13753-013-0007-9

[23]

Lóczy D, Kertész Á, Lóki J, Kiss T, Rózsa P, Sipos G, Sütő L, Szabó J, Veress M. Lóczy D, Stankoviansky M, Kotarba A. Recent landform evolution in Hungary. Recent landform evolution, 2012, New York: Springer 205-247 10.1007/978-94-007-2448-8_9

[24]

Lóki J. Research of the land forming activity of wind and protection against wind erosion in Hungary. Riscuri Si Catastrofe, 2011, 9(1): 83-97.

[25]

Maracchi, G. 2000. Agricultural drought—A practical approach to definition, assessment and mitigation strategies. In Drought and drought mitigation in Europe. Advances in natural and technological hazards research 14, ed. J.V. Vogt, and F. Somma, 63–78. Dordrecht: Kluwer Academic Publisher.

[26]

Meyer BC, Rannow S, Greiving S, Gruehn D. Regionalisation of climate change impacts in Germany for the usage in spatial planning. GeoScape, 2009, 1: 34-43.

[27]

Mezősi G. Environmental capabilities, hazards and conflicts in Hungary, 2011, Szeged: UNIV Kiadó

[28]

Mezősi G, Blanka V, Bata T, Kovács F, Meyer B. Estimation of regional differences in wind erosion sensitivity in Hungary. Natural Hazards and Earth System Sciences Discussion, 2013, 1: 4713-4750 10.5194/nhessd-1-4713-2013

[29]

Mezősi G, Meyer BC, Loibl W, Aubrecht C, Csorba P, Bata T. Assessment of regional climate change impacts on Hungarian landscapes. Regional Environmental Change, 2013, 13(4): 797-811 10.1007/s10113-012-0326-1

[30]

Munson SM, Belnap J, Okin GS. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 3854-3859 10.1073/pnas.1014947108

[31]

Nakicenovic, N., and R. Swart (ed.). 2000. Emissions scenarios. A special report of IPCC Working Group III. Cambridge: Cambridge University Press.

[32]

Nováky, B. 2011. Climate change and its consequences (Az éghajlatváltozás és hatásai). In Water management in Hungary: Current situation and strategic issues (Magyarország vízgazdálkodása: Helyzetkép és stratégiai feladatok), ed. L. Somlyódy, 85–102. Budapest: MTA (in Hungarian).

[33]

Pálfai I. Probability of drought occurrence in Hungary. Időjárás Quarterly Journal of the Hungarian Meteorological Service, 2002, 106(3–4): 265-275.

[34]

Pálfai, I. 2004. Inland excess water and drought in Hungary (Belvízek és Aszályok Magyarországon). Budapest: VITUKI (in Hungarian).

[35]

Pálfai I, Herceg Á. Droughtness of Hungary and Balkan Peninsula. Riscuri si Catastrofe, 2011, 9(2): 145-154.

[36]

Péczely, G. 1998. Climatology (Éghajlattan). Budapest: Nemzeti Tankönykiadó (in Hungarian).

[37]

Rakonczai, J., A. Farsang, G. Mezősi, and N. Gál. 2011. The conceptual background of the formation of inland excess water. Földrajzi Közlemények 135(4): 339–349 (in Hungarian).

[38]

Shao, Y.P., E. Jung, and L.M. Leslie. 2002. Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. Journal of Geophysical Research: Atmospheres 107(D24): AAC 21-1–23.

[39]

Shi K, Li YM, Li L, Lu H. Absorption characteristics of optically complex inland waters: Implications for water optical classification. Journal of Geophysical Research G: Biogeosciences, 2013, 118(2): 860-874.

[40]

Sterk G. Causes, consequences and control of wind erosion in Sahelian Africa: A review. Land Degradation and Development, 2003, 14(1): 95-108 10.1002/ldr.526

[41]

Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R The drought monitor. Bulletin of the American Meteorological Society, 2002, 83: 1181-1190

[42]

Szabó L, Karácsony J, Székely ZS. Wind erosion problems in Hungary. Agrochemistry and Soil Science, 1994, 43(1–2): 109-112.

[43]

Szabó J, Lóki J, Tóth C, Szabó G. Kertész Á, Kovács Z. Natural hazards in Hungary. Dimensions and trends in Hungarian geography, 2008, Budapest: MTA 55-68.

[44]

Szabó, P., A. Horányi, I. Krüzselyi, and G. Szépszó. 2011. The climate modelling at Hungarian Meteorological Survey: ALADIN and REMO. Budapest: OMSZ (in Hungarian).

[45]

Széll, E., and K. Dévényi. 2008. Average yield in 2007—Reasons and lessons in maize cultivation. Agro Napló 12(1): 1–7 (in Hungarian).

[46]

Thornthwaite CW. An approach toward a rational classification of climate. Geographical Review, 1948, 38(1): 55-94 10.2307/210739

[47]

Toure AA, Rajot JL, Garba Z, Marticorena B, Petit C, Sebag D. Impact of very low crop residues cover on wind erosion in the Sahel. CATENA, 2011, 85(3): 205-214 10.1016/j.catena.2011.01.002

[48]

van Leeuwen, B. 2012. Artificial neural networks and geographic information systems for inland excess water classification. Ph.D. dissertation, University of Szeged, Hungary.

[49]

Warrick, R.A., P.B. Trainer, E.J. Baker, and W. Brinkman. 1975. Drought hazard in the United States: A research assessment. NSF program on technology, environment and man monograph. Institute of Behavioral Science, University of Colorado.

[50]

Webb NP, McGowan HA, Phinn SR, McTainsh GH. AUSLEM (Australian Land Erodibility Model): A tool for identifying wind erosion hazard in Australia. Geomorphology, 2006, 78(3–4): 179-200 10.1016/j.geomorph.2006.01.012

[51]

WMO (World Meteorological Organization), UNCCD (United Nations Convention to Combat Desertification), FAO (Food and Agriculture Organization of the United Nations), and UNW-DPC (UN-Water Decade Programme on Capacity Development). 2013. Country report: Drought conditions and management strategies in Serbia. Initiative of “Capacity development to support national drought management policy”. http://www.ais.unwater.org/ais/pluginfile.php/548/mod_page/content/65/Serbia_CountryReport.pdf. Accessed 28 Mar 2014.

[52]

Woodruff NP, Siddoway FH. A wind erosion equation. Soil Science Society of America Journal, 1965, 29(5): 602-608 10.2136/sssaj1965.03615995002900050035x

[53]

Ye T, Shi PJ, Wang JA, Liu L, Fan Y, Hu J. China’s drought disaster risk management: Perspective of severe droughts in 2009–2010. International Journal of Disaster Risk Science, 2012, 3(2): 84-97 10.1007/s13753-012-0009-z

[54]

Zeng N. Drought in the Sahel. Science, 2003, 302(5647): 999-1000 10.1126/science.1090849

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/