Nanotechnology in brain cancer treatment: The role of gold nanoparticles as therapeutic enhancers

Simona Tarantino , Annalisa Bianco , Valeria De Matteis , Edoardo Scarpa , Rosaria Rinaldi

Ibrain ›› 2025, Vol. 11 ›› Issue (2) : 119 -145.

PDF
Ibrain ›› 2025, Vol. 11 ›› Issue (2) : 119 -145. DOI: 10.1002/ibra.12198
REVIEW

Nanotechnology in brain cancer treatment: The role of gold nanoparticles as therapeutic enhancers

Author information +
History +
PDF

Abstract

Brain cancer, with glioblastoma (GBM) being one of the most aggressive and treatment-resistant cancers, represents a leading cause of mortality and morbidity worldwide. Its complex nature and the presence of the blood-brain barrier (BBB) significantly hinder the effectiveness of conventional therapies, posing major challenges for treatment development. In this context, nanotechnology—particularly nanomedicine—has emerged as a promising strategy to overcome these barriers and enhance standard treatments like chemotherapy and radiotherapy (RT). This review focuses on three of the most challenging brain neoplasms—GBM, brain metastases, and pediatric brain tumors—and explores the growing role of nanoparticle-based therapies, with special emphasis on gold nanoparticles (AuNPs). Owing to their unique physicochemical properties, such as surface functionalization, biocompatibility, and the ability to cross the BBB, AuNPs have shown great potential in selectively delivering drugs, enhancing RT as radiosensitizers, and reducing systemic toxicity. Despite their therapeutic advantages, concerns remain regarding the long-term safety of AuNPs. Their small size and ability to cross biological barriers may lead to unintended biodistribution, immune responses, and cytotoxic effects. Reported risks include inflammatory reactions, apoptosis, and developmental toxicity, highlighting the need for comprehensive safety assessments. AuNPs offer a promising avenue for improving therapeutic efficacy and patient survival in brain cancers. However, their clinical application requires further in-depth preclinical and clinical evaluation to ensure both effectiveness and safety

Keywords

brain / brain cancer / gold nanoparticles / nanotechnology / treatment

Cite this article

Download citation ▾
Simona Tarantino, Annalisa Bianco, Valeria De Matteis, Edoardo Scarpa, Rosaria Rinaldi. Nanotechnology in brain cancer treatment: The role of gold nanoparticles as therapeutic enhancers. Ibrain, 2025, 11(2): 119-145 DOI:10.1002/ibra.12198

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro-Oncology. 2016:now166.

[2]

Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359-E386.

[3]

Shah V, Kochar P. Brain cancer: implication to disease, therapeutic strategies and tumor targeted drug delivery approaches. Recent Patents Anticancer Drug Discov. 2018; 13(1): 70-85.

[4]

Weil MD. Stereotactic radiosurgery for brain tumors. Hematol Oncol Clin North Am. 2001; 15(6): 1017-1026.

[5]

Lassiter KRL, Alexander E, Davis CH, Kelly DL. Surgical treatment of brain stem gliomas. J Neurosurg. 1971; 34(6): 719-725.

[6]

Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology. 2015; 17(suppl 4): iv1-iv62.

[7]

McFaline-Figueroa JR, Lee EQ. Brain tumors. Am J Med. 2018; 131(8): 874-882.

[8]

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology. 2018; 20(suppl 4): iv1-iv86.

[9]

Larjavaara S, Mäntylä R, Salminen T, et al. Incidence of gliomas by anatomic location. Neuro-Oncology. 2007; 9(3): 319-325.

[10]

Pellerino A, Caccese M, Padovan M, Cerretti G, Lombardi G. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging. 2022; 10(5): 467-475.

[11]

Herholz K, Langen KJ, Schiepers C, Mountz JM. Brain tumors. Semin Nucl Med. 2012; 42(6): 356-370.

[12]

Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T. Tumor cell infiltration into the brain In glioblastoma: from mechanisms to clinical perspectives. Cancers. 2022; 14(2):443.

[13]

Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020; 20(1): 26-41.

[14]

Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Delivery. 2019; 26(1): 551-565.

[15]

Malik JR, Podany AT, Khan P, et al. Chemotherapy in pediatric brain tumor and the challenge of the blood–brain barrier. Cancer Med. 2023; 12(23): 21075-21096.

[16]

Evans AE, Jenkin RDT, Sposto R, et al. The treatment of medulloblastoma: results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg. 1990; 72(4): 572-582.

[17]

Packer RJ, Sutton LN, Elterman R, et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg. 1994; 81(5): 690-698.

[18]

Packer RJ, Siegel KR, Sutton LN, et al. Efficacy of adjuvant chemotherapy for patients with poor-risk medulloblastoma: A preliminary report. Ann Neurol. 1988; 24(4): 503-508.

[19]

Upton DH, Ung C, George SM, Tsoli M, Kavallaris M, Ziegler DS. Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy. Theranostics. 2022; 12(10): 4734-4752.

[20]

Jovčevska I. Genetic secrets of long-term glioblastoma survivors. Bosn J Basic Med Sci. 2018; 19(2): 116-124.

[21]

Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Sem Cancer Biol. 2022; 82: 162-175.

[22]

Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev. 2022; 182:114115.

[23]

Sousa F, Mandal S, Garrovo C, et al. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale. 2010; 2(12): 2826.

[24]

Zhang Q, Liu J, Ao N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep. 2020; 10(1): 1220.

[25]

Tarantino S, Caricato AP, Rinaldi R, Capomolla C, De Matteis V. Cancer treatment using different shapes of gold-based nanomaterials in combination with conventional physical techniques. Pharmaceutics. 2023; 15(2):500.

[26]

Cheng Y, Dai Q, Morshed RA, et al. Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 2014; 10(24): 5137-5150.

[27]

Beik J, Khateri M, Khosravi Z, et al. Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev. 2019; 387: 299-324.

[28]

Ale Y, Nainwal N. Progress and challenges in the diagnosis and treatment of brain cancer using nanotechnology. Mol Pharm. 2023; 20(10): 4893-4921.

[29]

Zare I, Yaraki MT, Speranza G, et al. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev. 2022; 51(7): 2601-2680.

[30]

Guglielmelli A, Pierini F, Tabiryan N, Umeton C, Bunning TJ, De Sio L. Thermoplasmonics with gold nanoparticles: a new weapon in modern optics and biomedicine. Adv Photonics Res. 2021; 2(8):2000198.

[31]

Liu XY, Wang JQ, Ashby CR, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today. 2021; 26(5): 1284-1292.

[32]

Yu Y, Wang A, Wang S, et al. Efficacy of temozolomide-conjugated gold nanoparticle photothermal therapy of drug-resistant glioblastoma and its mechanism study. Mol Pharm. 2022; 19(4): 1219-1229.

[33]

Joh DY, Sun L, Stangl M, et al. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One. 2013; 8(4):e62425.

[34]

Salamone TA, Rutigliano L, Pennacchi B, et al. Thiol functionalised gold nanoparticles loaded with methotrexate for cancer treatment: from synthesis to in vitro studies on neuroblastoma cell lines. J Colloid Interface Sci. 2023; 649: 264-278.

[35]

Kim HS, Seo M, Park TE, Lee DY. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. J Nanobiotechnol. 2022; 20(1): 14.

[36]

Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. The Lancet. 2018; 392(10145): 432-446.

[37]

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020; 70(4): 299-312.

[38]

Zhang W, Cai Y, Wang X, et al. Bone metastases of glioblastoma: a case report and review of the literature. Front Oncol. 2021; 11:705455.

[39]

Fordham AJ, Hacherl CC, Patel N, et al. Differentiating glioblastomas from solitary brain metastases: an update on the current literature of advanced imaging modalities. Cancers. 2021; 13(12):2960.

[40]

Kadota Y, Hirai T, Azuma M, et al. Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging. J Neuroradiol. 2020; 47(3): 197-202.

[41]

Maekawa K, Tokumitsu T, Noguchi H, et al. Glioblastoma mimicking metastatic small cell carcinoma: a case report with ultrastructural findings. Diagn Cytopathol. 2021; 49(8).

[42]

Hirata K, Muroi A, Tsurubuchi T, et al. Time to diagnosis and clinical characteristics in pediatric brain tumor patients. Childs Nerv Syst. 2020; 36(9): 2047-2054.

[43]

Kattner P, Strobel H, Khoshnevis N, et al. Compare and contrast: pediatric cancer versus adult malignancies. Cancer Metastasis Rev. 2019; 38(4): 673-682.

[44]

Njonkou R, Jackson CM, Woodworth GF, Hersh DS. Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother. 2022; 71(8): 1813-1822.

[45]

Thakkar JP, Dolecek TA, Horbinski C, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2014; 23(10): 1985-1996.

[46]

Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. JNO. 2020; 147(2): 297-307.

[47]

Perry JR, Laperriere N, O'Callaghan CJ, et al. Short-Course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017; 376(11): 1027-1037.

[48]

Chaichana KL, Halthore AN, Parker SL, et al. Factors involved in maintaining prolonged functional independence following supratentorial glioblastoma resection: clinical article. J Neurosurg. 2011; 114(3): 604-612.

[49]

Chen J, Han P, Dahiya S. Glioblastoma: changing concepts in the WHO CNS5 classification. Indian J Pathol Microbiol. 2022; 65(supplement): 24.

[50]

Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021; 23(8): 1231-1251.

[51]

Bijalwan G, Shrivastav AK, Mallik S, Dubey MK. Glioblastoma multiforme - a rare type of cancer: a narrative review. Cancer Res, Stat Treat. 2024; 7(3): 340-351.

[52]

Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The vascular microenvironment in glioblastoma: a comprehensive review. Biomedicines. 2022; 10(6):1285.

[53]

Sipos TC, Kövecsi A, Kocsis L, Nagy-Bota M, Pap Z. Evaluation of microvascular density in glioblastomas in relation to p53 and Ki67 immunoexpression. Int J Mol Sci. 2024; 25(12):6810.

[54]

Davis M. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016; 20(5): S2-S8.

[55]

Rodríguez-Camacho A, Flores-Vázquez JG, Moscardini-Martelli J, et al. Glioblastoma treatment: state-of-the-art and future perspectives. Int J Mol Sci. 2022; 23(13):7207.

[56]

Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360(8): 765-773.

[57]

De Botton S, Mondesir J, Willekens C, Touat M. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J Blood Med. 2016; 7: 171-180.

[58]

Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009; 462(7274): 739-744.

[59]

Tian W, Zhang W, Wang Y, et al. Recent advances of IDH1 mutant inhibitor in cancer therapy. Front Pharmacol. 2022; 13:982424.

[60]

Kaminska B, Czapski B, Guzik R, Król SK, Gielniewski B. Consequences of IDH1/2 mutations in gliomas and an assessment of inhibitors targeting mutated IDH proteins. Molecules. 2019; 24(5):968.

[61]

Yalamarty SSK, Filipczak N, Li X, et al. Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM). Cancers. 2023; 15(7):2116.

[62]

Cantidio FS, Gil GOB, Queiroz IN, Regalin M. Glioblastoma — treatment and obstacles. Rep Pract Oncol Radiother. 2022; 19: 744-753.

[63]

Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the radiological evaluation of and theranostics for glioblastoma. Cancers. 2023; 15(16):4162.

[64]

Abd-Elghany AA, Naji AA, Alonazi B, et al. Radiological characteristics of glioblastoma multiforme using CT and MRI examination. J Radiat Res Appl Sci. 2019; 12(1): 289-293.

[65]

Mayerhoefer ME, Prosch H, Beer L, et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging. 2020; 47(1): 51-60.

[66]

Overcast WB, Davis KM, Ho CY, et al. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep. 2021; 23(3): 34.

[67]

Ronvaux L, Riva M, Coosemans A, et al. Liquid biopsy in glioblastoma. Cancers. 2022; 14(14):3394.

[68]

Jackson RJ, Fuller GN, Abi-Said D, et al. Limitations of stereotactic biopsy in the initial management ofgliomas. Neuro-Oncology. 2001; 3(3): 193-200.

[69]

Kanderi T, Munakomi S, Gupta V. Glioblastoma multiforme. In: StatPearls. StatPearls Publishing; 2024.

[70]

Czarnywojtek A, Borowska M, Dyrka K, et al. Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology. 2023; 108(5): 423-431.

[71]

Palmieri G, Cofano F, Salvati LF, et al. Fluorescence-Guided surgery for high-grade gliomas: state of the art and new perspectives. Technol Cancer Res Treat. 2021; 20:15330338211021605.

[72]

Wee CW. Radiotherapy for newly diagnosed glioblastoma in the elderly: what is the standard? Brain Tumor Res Treat. 2022; 10(1): 12.

[73]

Jezierzański M, Nafalska N, Stopyra M, et al. Temozolomide (TMZ) in the treatment of glioblastoma Multiforme—a literature review and clinical outcomes. Curr Oncol. 2024; 31(7): 3994-4002.

[74]

Stupp R, Brada M, Van Den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014; 25: iii93-iii101.

[75]

Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352(10): 997-1003.

[76]

Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000; 343(19): 1350-1354.

[77]

Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist. 2020; 4: 17-43.

[78]

Cruz JVR, Batista C, Afonso BH, et al. Obstacles to glioblastoma treatment two decades after temozolomide. Cancers. 2022; 14(13):3203.

[79]

Lin S, Li K, Qi L. Cancer stem cells in brain tumors: from origin to clinical implications. MedComm. 2023; 4(4):e341.

[80]

Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-based approaches in the diagnosis and treatment of brain tumors. J Clin Med. 2024; 13(23):7449.

[81]

Mu Y, Zhang Z, Zhou H, et al. A biomimetic targeted nanosystem delivering synergistic inhibitors for glioblastoma immune microenvironment reprogramming and treatment. Materials Today Bio. 2024; 28:101222.

[82]

Lamba N, Wen PY, Aizer AA. Epidemiology of brain metastases and leptomeningeal disease. Neuro-Oncology. 2021; 23(9): 1447-1456.

[83]

Lun M, Lok E, Gautam S, Wu E, Wong ET. The natural history of extracranial metastasis from glioblastoma multiforme. JNO. 2011; 105(2): 261-273.

[84]

Cunha MLV, Maldaun MVC. Metastasis from glioblastoma multiforme: a meta-analysis. Rev Assoc Med Bras. 2019; 65(3): 424-433.

[85]

Hunter KW, Amin R, Deasy S, Ha NH, Wakefield L. Genetic insights into the morass of metastatic heterogeneity. Nat Rev Cancer. 2018; 18(4): 211-223.

[86]

Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016; 16(4): 201-218.

[87]

Boire A, Brastianos PK, Garzia L, Valiente M. Brain metastasis. Nat Rev Cancer. 2020; 20(1): 4-11.

[88]

Sacks P, Rahman M. Epidemiology of brain metastases. Neurosurg Clin N Am. 2020; 31(4): 481-488.

[89]

Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett. 2016; 11(3): 1615-1620.

[90]

Lah TT, Novak M, Breznik B. Brain malignancies: glioblastoma and brain metastases. Sem Cancer Biol. 2020; 60: 262-273.

[91]

Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol: Mech Dis. 2018; 13(1): 395-412.

[92]

Jeevan DS, Cooper JB, Braun A, Murali R, Jhanwar-Uniyal M. Molecular pathways mediating metastases to the brain via epithelial-to-mesenchymal transition: genes, proteins, and functional analysis. Anticancer Res. 2016; 36(2): 523-532.

[93]

Katano A, Yamashita H. Brain metastasis: recent treatment modalities and future‑perspectives (Review). Oncol Lett. 2022; 23(6): 191.

[94]

Matzenauer M, Vrana D, Melichar B. Treatment of brain metastases. Biomedical Papers. 2016; 160(4): 484-490.

[95]

Franchino F, Rudà R, Soffietti R. Mechanisms and therapy for cancer metastasis to the brain. Front Oncol. 2018; 8:161.

[96]

Moravan MJ, Fecci PE, Anders CK, et al. Current multidisciplinary management of brain metastases. Cancer. 2020; 126(7): 1390-1406.

[97]

Baldwin RT, Preston-Martin S. Epidemiology of brain tumors in childhood—a review. Toxicol Appl Pharmacol. 2004; 199(2): 118-131.

[98]

Johnson KJ, Cullen J, Barnholtz-Sloan JS, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev. 2014; 23(12): 2716-2736.

[99]

Pollack IF, Jakacki RI. Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol. 2011; 7(9): 495-506.

[100]

Adel Fahmideh M, Scheurer ME. Pediatric brain tumors: descriptive epidemiology, risk factors, and future directions. Cancer Epidemiol Biomarkers Prev. 2021; 30(5): 813-821.

[101]

Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review. JAMA. 2023; 329(7): 574.

[102]

Kieran MW, Walker D, Frappaz D, Prados M. Brain tumors: from childhood through adolescence into adulthood. J Clin Oncol. 2010; 28(32): 4783-4789.

[103]

Diwanji TP, Engelman A, Snider JW, Mohindra P. Epidemiology, diagnosis, and optimal management of glioma in adolescents and young adults. Adolesc Health Med Ther. 2017; 8: 99-113.

[104]

Kumari K, Jha DAM. Brain tumors in pediatric patients. Int J Trends OncoScience. 2024.

[105]

Pollack IF. Pediatric brain tumors. Semin Surg Oncol. 1999; 16: 73-90.

[106]

Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016; 131(6): 803-820.

[107]

Bansal I, Merchant TE. Radiotherapy for pediatric low-grade glioma. Childs Nerv Syst. 2024; 40(10): 3277-3290.

[108]

DeNunzio NJ, Yock TI. Modern radiotherapy for pediatric brain tumors. Cancers. 2020; 12(6):1533.

[109]

Bishr MK, Zaghloul MS, Elmaraghi C, et al. The radiotherapy utilization rate in pediatric tumors: an analysis of 13,305 patients. Radiother Oncol. 2021; 154: 220-226.

[110]

Major N, Patel NA, Bennett J, et al. The current state of radiotherapy for pediatric brain tumors: an overview of post-radiotherapy neurocognitive decline and outcomes. J Pers Med. 2022; 12(7):1050.

[111]

Segal D, Karajannis MA. Pediatric brain tumors: an update. Curr Probl Pediatr Adolesc Health Care. 2016; 46(7): 242-250.

[112]

Alessi I, Caroleo AM, De Palma L, et al. Short and long-term toxicity In pediatric cancer treatment: central nervous system damage. Cancers. 2022; 14(6):1540.

[113]

Weaver L, Samkari A. Neurological complications of childhood cancer. Semin Pediatr Neurol. 2017; 24(1): 60-69.

[114]

Trotta F, Mele A. Nanomaterials: classification and properties. In: Trotta F, Mele A, eds. Nanosponges. 1st ed. Wiley; 2019: 1-26.

[115]

Asha AB, Narain R. Nanomaterials properties. In: Polymer Science and Nanotechnology. Elsevier; 2020: 343-359.

[116]

Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: basics and applications. J Phys D: Appl Phys. 2014; 47(1):013001.

[117]

Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022; 20(1): 262.

[118]

Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012; 483(7390): 421-427.

[119]

Wang L, Hasanzadeh Kafshgari M, Meunier M. Optical properties and applications of plasmonic-metal nanoparticles. Adv Funct Mater. 2020; 30(51):2005400.

[120]

Gao Z, Shao S, Gao W, et al. Morphology-Invariant metallic nanoparticles with tunable plasmonic properties. ACS Nano. 2021; 15(2): 2428-2438.

[121]

Ramalingam V. Multifunctionality of gold nanoparticles: plausible and convincing properties. Adv Colloid Interface Sci. 2019; 271:101989.

[122]

Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem. 2020; 8:376.

[123]

Tarantino S, Capomolla C, Carlà A, et al. Shape-driven response of gold nanoparticles to X-rays. Nanomaterials. 2023; 13(19):2719.

[124]

Azarkin M, Kirakosyan M, Ryabov V. Microdosimetric simulation of gold-nanoparticle-enhanced radiotherapy. Int J Mol Sci. 2024; 25(17):9525.

[125]

Li WB, Belchior A, Beuve M, et al. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med. 2020; 69: 147-163.

[126]

Bai X, Wang Y, Song Z, et al. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci. 2020; 21(7):2480.

[127]

Hammami I, Alabdallah NM, Jomaa AA, Kamoun M. Gold nanoparticles: synthesis properties and applications. J King Saud Univ - Sci. 2021; 33(7):101560.

[128]

Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020; 16(23):2000553.

[129]

Gu X, Xu Z, Gu L, et al. Preparation and antibacterial properties of gold nanoparticles: a review. Environ Chem Lett. 2021; 19(1): 167-187.

[130]

De Matteis V, Rojas M, Cascione M, Mazzotta S, Di Sansebastiano GP, Rinaldi R. Physico-chemical properties of inorganic NPs influence the absorption rate of aquatic mosses reducing cytotoxicity on intestinal epithelial barrier model. Molecules. 2021; 26(10):2885.

[131]

Nosrati H, Seidi F, Hosseinmirzaei A, et al. Prodrug polymeric nanoconjugates encapsulating gold nanoparticles for enhanced X-ray radiation therapy in breast cancer. Adv Healthcare Mater. 2022; 11(3):2102321.

[132]

Koley S, Risla Sherin PK, Nayak M, Barooah N, Bhasikuttan AC, Mohanty J. p -Sulfonatocalix[6]arene-functionalized gold nanoparticles: applications in drug delivery and bioimaging. ACS Phys Chem Au. 2024; 4(5): 522-530.

[133]

Dutt A, Saini N, Kalia A, Madan P, Srikanth T, Talukdar S Biocompatible nanomaterials for sustainable biomedical applications. Nwulu N, Natarajan K, Shanmugasundaram R, Balachandran PK, Krishnamoorthy M, Mounica P, eds. E3S Web of Conf. 2024; 547:03020.

[134]

Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. Int J Mol Sci. 2021; 22(20):10952.

[135]

Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnol. 2022; 20(1): 222.

[136]

Kang MS, Lee SY, Kim KS, Han DW. State of the art biocompatible gold nanoparticles for cancer theragnosis. Pharmaceutics. 2020; 12(8):701.

[137]

Kadhim RJ, Karsh EH, Taqi ZJ, Jabir MS. Biocompatibility of gold nanoparticles: in-vitro and in-vivo study. Materials Today: Proceedings. 2021; 42: 3041-3045.

[138]

Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep. 2020; 10(1): 9362.

[139]

Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D. Nanotechnologies for the study of the central nervous system. Prog Neurobiol. 2014; 123: 18-36.

[140]

El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug delivery systems in the development of novel strategies for glioblastoma treatment. Pharmaceutics. 2022; 14(6):1189.

[141]

Roque D, Cruz N, Ferreira HA, et al. Nanoparticle-based treatment in glioblastoma. J Pers Med. 2023; 13(9):1328.

[142]

Müller Fiedler A, Medeiros M, Fiedler HD. Targeted glioblastoma treatment via synthesis and functionalization of gold nanoparticles with de novo–engineered transferrin-like peptides: protocol for a novel method. JMIR Res Protoc. 2023; 12:e49417.

[143]

Yu S, Chen L, Xu H, et al. Application of nanomaterials in diagnosis and treatment of glioblastoma. Front Chem. 2022; 10:1063152.

[144]

Allen NC, Chauhan R, Bates PJ, O'Toole MG. Optimization of tumor targeting gold nanoparticles for glioblastoma applications. Nanomaterials. 2022; 12(21):3869.

[145]

Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018; 16(1): 71.

[146]

Ferdows BE, Patel DN, Chen W, Huang X, Kong N, Tao W. RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale. 2022; 14(12): 4448-4455.

[147]

Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005; 25(1): 5-23.

[148]

Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020; 17(1): 69.

[149]

Narsinh KH, Perez E, Haddad AF, et al. Strategies to improve drug delivery across the blood–brain barrier for glioblastoma. Curr Neurol Neurosci Rep. 2024; 24(5): 123-139.

[150]

Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res. 2009; 15(22): 7092-7098.

[151]

Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic nanomaterials versus polymer-based nanoparticles for overcoming neurodegeneration. Nanomaterials. 2022; 12(14):2337.

[152]

Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019; 12:1019.

[153]

Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for targeted brain drug delivery: what do we know? Int J Mol Sci. 2021; 22(21):11654.

[154]

Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med. 2021; 18(2): 372-387.

[155]

Hersh AM, Alomari S, Tyler BM. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci. 2022; 23(8):4153.

[156]

Mailänder V, Landfester K. Interaction of nanoparticles with cells. Biomacromolecules. 2009; 10(9): 2379-2400.

[157]

Etame AB, Smith CA, Chan WCW, Rutka JT. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomed: Nanotechnol, Biol Med. 2011; 7(6): 992-1000.

[158]

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016; 99: 28-51.

[159]

Cho HJ. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J Pharm Invest. 2020; 50(2): 115-129.

[160]

Enea M, Peixoto De Almeida M, Eaton P, et al. A multiparametric study of gold nanoparticles cytotoxicity, internalization and permeability using an in vitro model of blood–brain barrier. Influence of size, shape and capping agent. Nanotoxicology. 2019; 13(7): 990-1004.

[161]

Revia RA, Stephen ZR, Zhang M. Theranostic nanoparticles for RNA-based cancer treatment. Acc Chem Res. 2019; 52(6): 1496-1506.

[162]

Sahli F, Courcelle M, Palama T, Djaker N, Savarin P, Spadavecchia J. Temozolomide, gemcitabine, and decitabine hybrid nanoconjugates: from design to proof-of-concept (PoC) of synergies toward the understanding of drug impact on human glioblastoma cells. J Med Chem. 2020; 63(13): 7410-7421.

[163]

Ruan S, Yuan M, Zhang L, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials. 2015; 37: 425-435.

[164]

Ruan S, He Q, Gao H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale. 2015; 7(21): 9487-9496.

[165]

Meyers JD, Cheng Y, Broome AM, et al. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact. 2015; 32(4): 448-457.

[166]

Kong L, Wu Y, Alves CS, Shi X. Efficient delivery of therapeutic siRNA into glioblastoma cells using multifunctional dendrimer-entrapped gold nanoparticles. Nanomedicine. 2016; 11(23): 3103-3115.

[167]

Jensen SA, Day ES, Ko CH, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med. 2013; 5(209):209ra152.

[168]

Kumthekar P, Ko CH, Paunesku T, et al. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021; 13(584):eabb3945.

[169]

Guerra DB, Oliveira EMN, Sonntag AR, et al. Intercomparison of radiosensitization induced by gold and iron oxide nanoparticles in human glioblastoma cells irradiated by 6 MV photons. Sci Rep. 2022; 12(1): 9602.

[170]

Wang Y, Feng Y. The efficacy and safety of radiotherapy with adjuvant temozolomide for glioblastoma: a meta-analysis of randomized controlled studies. Clin Neurol Neurosurg. 2020; 196:105890.

[171]

Norouzi M. Gold nanoparticles In glioma theranostics. Pharmacol Res. 2020; 156:104753.

[172]

Ahamed J, Jaswanth Gowda BH, Almalki WH, Gupta N, Sahebkar A, Kesharwani P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: opportunities and challenges. Eur Polym J. 2023; 193:112111.

[173]

Bahadur S, Prakash A. A comprehensive review on nanomedicine: promising approach fortreatment of brain tumor through intranasal administration. Curr Drug Targets. 2023; 24(1): 71-88.

[174]

Mukhtar M, Bilal M, Rahdar A, et al. Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors. 2020; 8(4):117.

[175]

Huang Y, Guo X, Wu Y, et al. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther. 2024; 9(1): 34.

[176]

D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology. 2021; 32(19):192001.

[177]

Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020; 8:990.

[178]

Xu M, Han X, Xiong H, et al. Cancer nanomedicine: emerging strategies and therapeutic potentials. Molecules. 2023; 28(13):5145.

[179]

Morshed RA, Muroski ME, Dai Q, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharmaceutics. 2016; 13(6): 1843-1854.

[180]

Stavropoulou AP, Theodosiou M, Sakellis E, et al. Bimetallic gold-platinum nanoparticles as a drug delivery system coated with a new drug to target glioblastoma. Colloids Surf B. 2022; 214:112463.

[181]

Kruse B, Dash BS, Kostka K, et al. Doxorubicin-loaded ultrasmall gold nanoparticles (1.5 nm) for brain tumor therapy and assessment of their biodistribution. ACS Applied Bio Mater. 2024; 7(10): 6890-6907.

[182]

Wang L, Tang S, Yu Y, et al. Intranasal delivery of Temozolomide-conjugated gold nanoparticles functionalized with anti-EphA3 for glioblastoma targeting. Mol Pharmaceutics. 2021; 18(3): 915-927.

[183]

Gal O, Betzer O, Rousso-Noori L, et al. Antibody delivery into the brain by radiosensitizer nanoparticles for targeted glioblastoma therapy. J Nanotheranostics. 2022; 3(4): 177-188.

[184]

Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SHM, Eid NI. Neuroprotective effect of gold nanoparticles and alpha-lipoic acid mixture against radiation-induced brain damage in rats. Int J Mol Sci. 2022; 23(17):9640.

[185]

Dong CY, Hong S, Zheng DW, et al. Multifunctionalized gold sub-nanometer particles for sensitizing radiotherapy against glioblastoma. Small. 2021; 17(5):2006582.

[186]

Wang M. A new strategy based on polyethylene glycol coated gold nanoparticles to enhance the sensitivity of radiotherapy for glioma. Mater Express. 2021; 11(12): 1935-1941.

[187]

Jing Z, Li M, Wang H, et al. Gallic acid-gold nanoparticles enhance radiation-induced cell death of human glioma U251 cells. IUBMB Life. 2021; 73(2): 398-407.

[188]

Sun Y, Liu Y, Ma X, Hu H. The influence of cell cycle regulation on chemotherapy. Int J Mol Sci. 2021; 22(13):6923.

[189]

Tam DY, Ho JWT, Chan MS, et al. Penetrating the blood–brain barrier by self-assembled 3D DNA nanocages as drug delivery vehicles for brain cancer therapy. ACS Appl Mater Interfaces. 2020; 12:acsami.0c02957.

[190]

Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood–brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnol. 2022; 20(1): 412.

[191]

Liu D, Dai X, Tao Z, et al. Advances in blood–brain barrier-crossing nanomedicine for anti-glioma. Cancer Nanotechnol. 2023; 14(1): 58.

[192]

Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci African. 2021; 11:e00685.

[193]

Thalluri C, Swain K, Pattnaik S. Rise of gold nanoparticles as carriers of therapeutic agents. Acta Chim Slov. 2023; 70(4): 467-478.

[194]

Sela H, Cohen H, Elia P, Zach R, Karpas Z, Zeiri Y. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnol. 2015; 13(1): 71.

[195]

Lombardo SM, Schneider M, Türeli AE, Günday Türeli N. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J Nanotechnol. 2020; 11: 866-883.

[196]

Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized nanomaterials capable of crossing the blood–brain barrier. ACS Nano. 2024; 18(3): 1820-1845.

[197]

Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012; 3(4): 457-478.

[198]

Gupta R, Rai B. Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep. 2017; 7(1):45292.

[199]

Lee VHF, Lee AWM. Principle of Cancer Radiotherapy. In: Seong J, ed. Radiotherapy of Liver Cancer. Springer; 2021: 3-13

[200]

Barazzuol L, Coppes RP, Van Luijk P. Prevention and treatment of radiotherapy-induced side effects. Mol Oncol. 2020; 14(7): 1538-1554.

[201]

Laprie A, Hu Y, Alapetite C, et al. Paediatric brain tumours: A review of radiotherapy, state of the art and challenges for the future regarding protontherapy and carbontherapy. Cancer/Radiothérapie. 2015; 19(8): 775-789.

[202]

Choi J, Kim G, Cho SB, Im HJ. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology. 2020; 18(1): 122.

[203]

Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev. 2024; 518:216101.

[204]

Sancey L, Lux F, Kotb S, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014; 87(1041):20140134.

[205]

Kotb S, Detappe A, Lux F, et al. Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics. 2016; 6(3): 418-427.

[206]

Beckers C, Pruschy M, Vetrugno I. Tumor hypoxia and radiotherapy: a major driver of resistance even for novel radiotherapy modalities. Sem Cancer Biol. 2024; 98: 19-30.

[207]

Kim MS, Lee EJ, Kim JW, et al. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat Oncol J. 2016; 34(3): 230-238.

[208]

Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018; 19(7):1979.

[209]

Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008; 463(1-3): 145-149.

[210]

Su CH, Sheu HS, Lin CY, et al. Nanoshell magnetic resonance imaging contrast agents. J Am Chem Soc. 2007; 129(7): 2139-2146.

[211]

Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019; 16(1): 1-23.

[212]

Zhang XD, Wu XD, Shen , et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed. 2011; 2011: 2071.

[213]

Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007; 3(11): 1941-1949.

[214]

Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: a review. Nano Select. 2022; 3(4): 792-828.

[215]

Niżnik Ł, Noga M, Kobylarz D, et al. Gold nanoparticles (AuNPs)—toxicity, safety and Green synthesis: a critical review. Int J Mol Sci. 2024; 25(7):4057.

[216]

Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011; 40(3): 1647-1671.

[217]

Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res. 2010; 12(7): 2313-2333.

[218]

Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005; 1(3): 325-327.

[219]

Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009; 5(6): 701-708.

RIGHTS & PERMISSIONS

2025 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/