Cordycepin mediates neuroprotection against apoptosis via ERK/CREB signaling activation in Aβ1-42-induced neuronal cell models
Wenshu Zhou , Cheng Wang , Yige Tan , Philip Lazarovici , Xiaoyan Wen , Shaoping Li , Wenhua Zheng
Ibrain ›› 2025, Vol. 11 ›› Issue (1) : 84 -97.
Cordycepin mediates neuroprotection against apoptosis via ERK/CREB signaling activation in Aβ1-42-induced neuronal cell models
The aggregation of β-amyloid (Aβ) peptides has been associated with the onset of Alzheimer's disease (AD) by causing neurotoxicity due to oxidative stress and apoptosis. Cordycepin is a natural derivative of the nucleoside adenosine that displays potent antioxidant, antitumor, anti-inflammatory, and neuroprotective properties. However, the mechanism of the neuroprotective effect of cordycepin toward Aβ-induced neurotoxicity, as well as underlying mechanisms, is still unclear. In this study, we found that cordycepin conferred neuroprotection to catecholaminergic PC12 neuronal cell cultures exposed to Aβ1–42-insult by reducing the production of reactive oxygen species, restoring the mitochondrial membrane potential, and inhibiting apoptosis. Cordycepin stimulated the phosphorylation of extracellular signal-regulated kinase (ERK) and cyclic AMP-responsive element-binding protein (CREB) in a time- and concentration-dependent manner. Inhibition of the ERK pathway reduced the neuroprotective effect of cordycepin. Similar results were obtained with hippocampal HT22 neuronal cell cultures. Cumulatively, these findings suggest that cordycepin-induced neuroprotection toward Aβ1–42 neurotoxic insult may involve activation of the ERK/CREB pathway. This study expands our knowledge of the neuroprotective function of cordycepin and suggests that it holds promise as a natural lead compound for drug development in AD.
Aβ1–42-induced apoptosis / cordycepin / ERK/CREB pathway / neuronal cell lines / neuroprotection
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
2025 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.
/
| 〈 |
|
〉 |