Modulation of the central nervous system immune response and neuroinflammation via Wnt signaling in health and neurodegenerative diseases

Kevin Fang

Ibrain ›› 2024, Vol. 10 ›› Issue (4) : 462 -476.

PDF
Ibrain ›› 2024, Vol. 10 ›› Issue (4) : 462 -476. DOI: 10.1002/ibra.12185
REVIEW

Modulation of the central nervous system immune response and neuroinflammation via Wnt signaling in health and neurodegenerative diseases

Author information +
History +
PDF

Abstract

The immune response in the central nervous system (CNS) is a highly specialized and tightly regulated process essential for maintaining neural health and protecting against pathogens and injuries. The primary immune cells within the CNS include microglia, astrocytes, T cells, and B cells. They work together, continuously monitor the CNS environment for signs of infection, injury, or disease, and respond by phagocytosing debris, releasing cytokines, and recruiting other immune cells. In addition to providing neuroprotection, these immune responses must be carefully balanced to prevent excessive inflammation that can lead to neuronal damage and contribute to neurodegenerative diseases. Dysregulated immune responses in the CNS are implicated in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Wnt signaling is a crucial pathway in the CNS that regulates various cellular processes critical for brain development, function, and maintenance. Despite enhancing immune responses in the health CNS, dysregulated Wnt signaling exacerbates neuroinflammation in the neurodegenerative brains. This review summarized the role of Wnt signaling in regulating immune response under different conditions. We then examined the role of immune response in healthy brains and during the development of neurodegenerative diseases. We also discussed therapeutic intervention in various neurodegenerative diseases through the modulation of the Wnt signaling pathway and neuroinflammation and highlighted challenges and limitations in current clinical trials.

Keywords

astrocytes / microglia / neurodegenerative diseases / neuroinflammation / Wnt signaling

Cite this article

Download citation ▾
Kevin Fang. Modulation of the central nervous system immune response and neuroinflammation via Wnt signaling in health and neurodegenerative diseases. Ibrain, 2024, 10(4): 462-476 DOI:10.1002/ibra.12185

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Archer MC, Hall PH, Morgan JC. [P2–430]: accuracy of clinical diagnosis of Alzheimer’s disease in Alzheimer’s disease centers (ADCS). Alzheimer’s Dement. 2017;13(7S_Part_16):P800-P801.

[2]

Erkkinen MG, Kim M-O. Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspect Biol. 2018;10(4):a033118.

[3]

Min YG, Choi S-J. Hong Y-H, Kim S-M. Shin J-Y, Sung J-J. Dissociated leg muscle atrophy in amyotrophic lateral sclerosis/motor neuron disease: the ‘split-leg’sign. Sci Rep. 2020;10(1):15661.

[4]

Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954-963.

[5]

Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33.

[6]

Li R, Lu Y, Zhang Q, et al. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy. 2022;18(3):559-575.

[7]

Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron. 2023;111(9):1355-1380.

[8]

Thompson K, Tsirka S. The diverse roles of microglia in the neurodegenerative aspects of central nervous system (CNS) autoimmunity. Int J Mol Sci. 2017;18(3):504.

[9]

Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol. 2023;19(7):395-409.

[10]

Lill CM, Rengmark A, Pihlstrøm L, et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. 2015;11(12):1407-1416.

[11]

Marchetti B, Tirolo C, L’Episcopo F, et al. Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell. 2020;19(3):e13101.

[12]

Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841-845.

[13]

Ransohoff RM, Cardona AE. The myeloid cells of the central nervous system parenchyma. Nature. 2010;468(7321):253-262.

[14]

Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation. 2022;19(1):135.

[15]

Lee J-W, Nam H, Kim LE, et al. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy. 2019;15(5):753-770.

[16]

Choi B-R, Johnson KR, Maric D, McGavern DB. Monocyte-derived IL-6 programs microglia to rebuild damaged brain vasculature. Nat Immunol. 2023;24(7):1110-1123.

[17]

Xu X, Piao HN, Aosai F, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol. 2020;177(22):5224-5245.

[18]

Shulman A, Wang W, Luo H, Bao S, Searchfield G, Zhang J. Neuroinflammation and tinnitus. Behav Neurosci Tinnitus. 2021;51:161-174.

[19]

Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1-16.

[20]

Errede M, Annese T, Petrosino V, et al. Microglia-derived CCL2 has a prime role in neocortex neuroinflammation. Fluids Barriers CNS. 2022;19(1):68.

[21]

Gómez Morillas A, Besson VC, Lerouet D. Microglia and neuroinflammation: what place for P2RY12? Int J Mol Sci. 2021;22(4):1636.

[22]

Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47(3):566-581.e9.

[23]

Gemma C, Bachstetter AD. The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci. 2013;7:229.

[24]

Coull JAM, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017-1021.

[25]

Suh H-S, Zhao M-L. Derico L, Choi N, Lee SC. Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflammation. 2013;10:805.

[26]

Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81(2):229-248.

[27]

Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11(11):775-787.

[28]

Lee H-G, Lee J-H. Flausino LE, Quintana FJ. Neuroinflammation: an astrocyte perspective. Sci Transl Med. 2023;15(721):eadi7828.

[29]

Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. 2020;108(4):608-622.

[30]

Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6(8):626-640.

[31]

Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J Neuroinflammation. 2022;19(1):206.

[32]

Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235-249.

[33]

Kim H, Leng K, Park J, et al. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun. 2022;13(1):6581.

[34]

Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957-967.

[35]

Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623-635.

[36]

Jorfi M, Park J, Hall CK, et al. Infiltrating CD8+T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model. Nat Neurosci. 2023;26(9):1489-1504.

[37]

Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944-950.

[38]

Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-737.

[39]

DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation. 2022;19(1):251.

[40]

Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature. 2024;628(8006):154-161.

[41]

Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107-116.

[42]

van Lengerich B, Zhan L, Xia D, et al. A TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat Neurosci. 2023;26(3):416-429.

[43]

Domingues C, da Cruz e Silva OAB, Henriques AG. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res. 2017;14(8):870-882.

[44]

Huang X, Huang S, Fu F, Song J, Zhang Y, Yue F. Characterization of preclinical Alzheimer’s disease model: spontaneous type 2 diabetic cynomolgus monkeys with systemic pro-inflammation, positive biomarkers and developing AD-like pathology. Alzheimers Res Ther. 2024;16(1):52.

[45]

Dursun E, Gezen-Ak D, Hanağası H, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol. 2015;283:50-57.

[46]

Li X, Zhang D-F. Bi R, et al. Convergent transcriptomic and genomic evidence supporting a dysregulation of CXCL16 and CCL5 in Alzheimer’s disease. Alzheimers Res Ther. 2023;15(1):17.

[47]

Wang J, Shangguan P, Chen X, et al. A one-two punch targeting reactive oxygen species and fibril for rescuing Alzheimer’s disease. Nat Commun. 2024;15(1):705.

[48]

Li Q, Zhao Y, Guo H, et al. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy. 2023;19(10):2639-2656.

[49]

Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics. Inflammation. 2023;46(1):1-17.

[50]

Sun E, Motolani A, Campos L, Lu T. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease. Int J Mol Sci. 2022;23(16):8972.

[51]

Brandl S, Reindl M. Blood-brain barrier breakdown in neuroinflammation: current in vitro models. Int J Mol Sci. 2023;24(16):12699.

[52]

Wang T, Shi C, Luo H, et al. Neuroinflammation in Parkinson’s disease: triggers, mechanisms, and immunotherapies. Neuroscientist. 2022;28(4):364-381.

[53]

Tolosa L, Caraballo-Miralles V, Olmos G, Lladó J. TNF-αpotentiates glutamate-induced spinal cord motoneuron death via NF-κB. Mol Cell Neurosci. 2011;46(1):176-186.

[54]

Yu H, Chang Q, Sun T, et al. Metabolic reprogramming and polarization of microglia in Parkinson’s disease: role of inflammasome and iron. Ageing Res Rev. 2023;90:102032.

[55]

Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol. 2017;155:57-75.

[56]

Rostami J, Fotaki G, Sirois J, et al. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J Neuroinflammation. 2020;17(1):119.

[57]

Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci. 2022;45(3):224-236.

[58]

Wissemann WT, Hill-Burns EM, Zabetian CP, et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am J Hum Genet. 2013;93(5):984-993.

[59]

Ahmed I, Tamouza R, Delord M, et al. Association between Parkinson’s disease and the HLA-DRB1 locus. Mov Disorders. 2012;27(9):1104-1110.

[60]

Piccoli T, Castro F, La Bella V, et al. Role of the immune system in amyotrophic lateral sclerosis. analysis of the natural killer cells and other circulating lymphocytes in a cohort of ALS patients. BMC Neurol. 2023;23(1):222.

[61]

McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2019;137(5):715-730.

[62]

McCombe PA, Lee JD, Woodruff TM, Henderson RD. The peripheral immune system and amyotrophic lateral sclerosis. Front Neurol. 2020;11:279.

[63]

Nusse R, Brown A, Papkoff J, et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64:231-232.

[64]

Song P, Gao Z, Bao Y, et al. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024;17(1):46.

[65]

Zou G, Park J-I. Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol. 2023;29(1):33-50.

[66]

Hu L, Chen W, Qian A, Li Y-P. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024;12(1):39.

[67]

Shi D-L. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics. 2023;50(2):63-76.

[68]

Qin K, Yu M, Fan J, et al. Canonical and noncanonical Wnt signaling: multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes &Diseases. 2024;11(1):103-134.

[69]

Hayat R, Manzoor M, Hussain A. Wnt signaling pathway: a comprehensive review. Cell Biol Int. 2022;46(6):863-877.

[70]

Matias D, Predes D, Niemeyer Filho P, et al. Microglia-glioblastoma interactions: new role for Wnt signaling. Biochim Biophys Acta Rev Cancer. 2017;1868(1):333-340.

[71]

Lai SW, Chen JH, Lin HY, et al. Regulatory effects of neuroinflammatory responses through brain-derived neurotrophic factor signaling in microglial cells. Mol Neurobiol. 2018;55(9):7487-7499.

[72]

Boakye PA, Tang SJ, Smith PA. Mediators of neuropathic pain;focus on spinal microglia, CSF-1, BDNF, CCL21, TNF-α wnt ligands, and interleukin 1β. Front Pain Res (Lausanne). 2021;2:698157.

[73]

Szalay G, Martinecz B, Lénárt N, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499.

[74]

Kostes WW, Brafman DA. The multifaceted role of WNT signaling in Alzheimer’s disease onset and age-related progression. Cells. 2023;12(8):1204.

[75]

Song S, Huang H, Guan X, et al. Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol. 2021;199:101963.

[76]

Liu X, Bae C, Liu B, et al. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling. Mol Psychiatry. 2023;28(2):767-779.

[77]

Arredondo SB, Guerrero FG, Herrera-Soto A, et al. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells. 2020;38(3):422-436.

[78]

Buffolo F, Petrosino V, Albini M, et al. Neuroinflammation induces synaptic scaling through IL-1β-mediated activation of the transcriptional repressor REST/NRSF. Cell Death Dis. 2021;12(2):180.

[79]

Niu J, Tsai HH, Hoi KK, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci. 2019;22(5):709-718.

[80]

Lengfeld JE, Lutz SE, Smith JR, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A. 2017;114(7):e1168-e1177.

[81]

Chae W-J, Bothwell ALM. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 2018;39(10):830-847.

[82]

Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 2019;12(1):104.

[83]

Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT signaling is a key player in Alzheimer’s disease. Hand Exp Pharmacol. 2021;258:357-382.

[84]

Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease. Mol Neurodegener. 2008;3:9.

[85]

Jones ME, Büchler J, Dufor T, et al. A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer’s disease. Sci Adv. 2023;9(2):eabo7421.

[86]

Yoo SS, Lee DW, Ham HJ, et al. Presenilin-2 Knock-in mice show severe depressive behavior via DVL3 downregulation. CNS Neurosci Ther. 2024;30(2):e14370.

[87]

Zhou Q, Li S, Li M, et al. Human tau accumulation promotes glycogen synthase kinase-3βacetylation and thus upregulates the kinase: a vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970.

[88]

Menet R, Bourassa P, Calon F, ElAli A. Dickkopf-related protein-1 inhibition attenuates amyloid-beta pathology associated to Alzheimer’s disease. Neurochem Int. 2020;141:104881.

[89]

Martin Flores N, Podpolny M, McLeod F, et al. Downregulation of Dickkopf-3, a Wnt antagonist elevated in Alzheimer’s disease, restores synapse integrity and memory in a disease mouse model. eLife. 2024;12:RP89453.

[90]

Yang Y, Zhang Z. Microglia and Wnt pathways: prospects for inflammation in Alzheimer’s disease. Front Aging Neurosci. 2020;12:110.

[91]

L’Episcopo F, Serapide MF, Tirolo C, et al. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener. 2011;6:49.

[92]

Marchetti B. Wnt/β-catenin signaling pathway governs a full program for dopaminergic neuron survival, neurorescue and regeneration in the MPTP mouse model of Parkinson’s disease. Int J Mol Sci. 2018;19(12):3743.

[93]

L’Episcopo F, Tirolo C, Caniglia S, et al. Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson’s disease. J Mol Cell Biol. 2014;6(1):13-26.

[94]

Berwick DC, Javaheri B, Wetzel A, et al. Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of β-catenin signaling. Mol Neurodegener. 2017;12:9.

[95]

Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78-88.

[96]

Purro SA, Galli S, Salinas PC. Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases. J Mol Cell Biol. 2014;6(1):75-80.

[97]

Jiang X, Guan Y, Zhao Z, et al. Potential roles of the WNT signaling pathway in amyotrophic lateral sclerosis. Cells. 2021;10(4):839.

[98]

González-Fernández C, Gonzalez P, Andres-Benito P, Ferrer I, Rodríguez FJ. Wnt signaling alterations in the human spinal cord of amyotrophic lateral sclerosis cases: spotlight on Fz2 and Wnt5a. Mol Neurobiol. 2019;56:6777-6791.

[99]

Soumya BS, Shreenidhi VP, Agarwal A, Gandhirajan RK, Dharmarajan A, Warrier S. Unwinding the role of Wnt signaling cascade and molecular triggers of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Cell Signal. 2023;110:110807.

[100]

Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener. 2020;15(1):45.

[101]

Calafatti M, Cocozza G, Limatola C, Garofalo S. Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front Immunol. 2023;14:1223096.

[102]

Anand AA, Khan M, V, M, Kar D. The molecular basis of Wnt/β-catenin signaling pathways in neurodegenerative diseases. Int J Cell Biol. 2023;2023(1):1-13.

[103]

Li X-t, Liang Z, Wang T-t. et al. Brain-derived neurotrophic factor promotes growth of neurons and neural stem cells possibly by triggering the phosphoinositide 3-kinase/AKT/glycogen synthase kinase-3β/β-catenin pathway. CNS Neurol Disord Drug Targets. 2017;16(7):828-836.

[104]

Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020;10(1):54.

[105]

Liu X, Wang K, Wei X, et al. Interaction of NF-κB and Wnt/β-catenin signaling pathways in Alzheimer’s disease and potential active drug treatments. Neurochem Res. 2021;46:711-731.

[106]

Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: recent evidence from human genetics. Front Mol Neurosci. 2022;15:954541.

[107]

Zhang R, Engler A, Taylor V. Notch: an interactive player in neurogenesis and disease. Cell Tissue Res. 2018;371:73-89.

[108]

Kapoor A, Nation DA. Role of Notch signaling in neurovascular aging and Alzheimer’s disease. Semin Cell Dev Biol. 2021 Aug;116:90-97.

[109]

Karampetsou M, Vekrellis K, Melachroinou K. The promise of the TGF-βsuperfamily as a therapeutic target for Parkinson’s disease. Neurobiol Dis. 2022;171:105805.

[110]

Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: a specialized Tau perspective. J Neuroinflammation. 2023;20(1):72.

[111]

Matias D, Dubois LG, Pontes B, et al. GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signaling. Mol Neurobiol. 2019;56:1517-1530.

[112]

Huang S, Wang H, Turlova E, et al. GSK-3βinhibitor TDZD-8 reduces neonatal hypoxic-ischemic brain injury in mice. CNS Neurosci Ther. 2017;23(5):405-415.

[113]

Jiang W, Zhu F, Xu H, et al. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. Sci Adv. 2023;9(39):eadg8148.

[114]

Kaduševičius E. Novel applications of NSAIDs: insight and future perspectives in cardiovascular, neurodegenerative, diabetes and cancer disease therapy. Int J Mol Sci. 2021;22(12):6637.

[115]

Wang C, Acosta D, McNutt M, et al. A single-cell and spatial RNA-seq database for Alzheimer’s disease (ssREAD). Nat Commun. 2024;15(1):4710.

RIGHTS & PERMISSIONS

2024 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

269

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/