Research progress on the use of the optical coherence tomography system for the diagnosis and treatment of central nervous system tumors

Jiuhong Li , Ziba Ayi , Gonggong Lu , Haibo Rao , Feilong Yang , Jing Li , Jiachen Sun , Junlin Lu , Xulin Hu , Si Zhang , Xuhui Hui

Ibrain ›› 2025, Vol. 11 ›› Issue (1) : 3 -18.

PDF
Ibrain ›› 2025, Vol. 11 ›› Issue (1) : 3 -18. DOI: 10.1002/ibra.12184
REVIEW

Research progress on the use of the optical coherence tomography system for the diagnosis and treatment of central nervous system tumors

Author information +
History +
PDF

Abstract

In central nervous system (CNS) surgery, the accurate identification of tumor boundaries, achieving complete resection of the tumor, and safeguarding healthy brain tissue remain paramount challenges. Despite the expertise of neurosurgeons, the infiltrative nature of the tumors into the surrounding brain tissue often hampers intraoperative differentiation between tumorous and non-tumorous tissue, thus hindering total tumor removal. Optical coherence tomography (OCT), with its unique advantages of high-resolution imaging, efficient image acquisition, real-time intraoperative detection, and radiation-free and noninvasive properties, offers accurate diagnostic capabilities and invaluable intraoperative guidance for minimally invasive CNS tumor diagnosis and treatment. Various OCT systems have been employed in neurological tumor research, including polarization-sensitive OCT systems, orthogonal polarization OCT systems, Doppler OCT systems, and OCT angiography systems. In addition, OCT-based diagnostic and therapeutic techniques have been explored for the surgical resection of CNS tumors. This review aims to compile and evaluate the research progress surrounding the principles of OCT systems and their applications in CNS tumors, providing insights into potential future research avenues and clinical applications.

Keywords

animal models / intraoperative real-time detection / optical coherence tomography system / tumor boundary detection

Cite this article

Download citation ▾
Jiuhong Li, Ziba Ayi, Gonggong Lu, Haibo Rao, Feilong Yang, Jing Li, Jiachen Sun, Junlin Lu, Xulin Hu, Si Zhang, Xuhui Hui. Research progress on the use of the optical coherence tomography system for the diagnosis and treatment of central nervous system tumors. Ibrain, 2025, 11(1): 3-18 DOI:10.1002/ibra.12184

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stummer W, Reulen HJ, Meinel T, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008; 62(3): 564-576.

[2]

McGirt MJ, Chaichana KL, Gathinji M, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009; 110(1): 156-162.

[3]

Colditz MJ, Jeffree RL. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: clinical, radiological and pathological studies. J Clin Neurosci. 2012; 19(11): 1471-1474.

[4]

Almeida JP, Chaichana KL, Rincon-Torroella J, Quinones-Hinojosa A. The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep. 2015; 15(2): 517.

[5]

Achkasova KA, Moiseev AA, Yashin KS, et al. Nondestructive label-free detection of peritumoral white matter damage using cross-polarization optical coherence tomography. Front Oncol. 2023; 13:1133074.

[6]

Leitgeb R, Placzek F, Rank E, et al. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. J Biomed Opt. 2021; 26(10):100601.

[7]

Böhringer HJ, Lankenau E, Stellmacher F, Reusche E, Hüttmann G, Giese A. Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochir. 2009; 151(5): 507-517.

[8]

Almasian M, Wilk LS, Bloemen PR, van Leeuwen TG, Ter Laan M, Aalders MCG. Pilot feasibility study of in vivo intraoperative quantitative optical coherence tomography of human brain tissue during glioma resection. J Biophotonics. 2019; 12(10):e201900037.

[9]

Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology. Physiol Rev. 2019; 99(3): 1381-1431.

[10]

Liu J, Li Y, Yu Y, et al. Cerebral edema detection in vivo after middle cerebral artery occlusion using swept-source optical coherence tomography. Neurophotonics. 2019; 6(4):045007.

[11]

Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000; 2(1-2): 9-25.

[12]

Baumann B, Choi W, Potsaid B, Huang D, Duker JS, Fujimoto JG. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Opt Express. 2012; 20(9): 10229-10241.

[13]

Wojtkowski M. High-speed optical coherence tomography: basics and applications. Appl Opt. 2010; 49(16): D30-D61.

[14]

Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr^4+:forsterite laser. Opt Lett. 1997; 22(22): 1704-1706.

[15]

de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography—a review [Invited]. Biomed Opt Express. 2017; 8(3): 1838-1873.

[16]

Liu CJ, Shamsan GA, Akkin T, Odde DJ. Glioma cell migration dynamics in brain tissue assessed by multimodal optical imaging. Biophys J. 2019; 117(7): 1179-1188.

[17]

Gubarkova EV, Dudenkova VV, Feldchtein FI, et al. Multi-modal optical imaging characterization of atherosclerotic plaques. J Biophotonics. 2016; 9(10): 1009-1020.

[18]

Gladkova N, Kiseleva E, Robakidze N, et al. Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. J Biophotonics. 2013; 6(4): 321-329.

[19]

Yashin KS, Kiseleva EB, Moiseev AA, et al. Quantitative nontumorous and tumorous human brain tissue assessment using microstructural co- and cross-polarized optical coherence tomography. Sci Rep. 2019; 9(1): 2024.

[20]

Zhao Y, Chen Z, Saxer C, Xiang S, de Boer JF, Nelson JS. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett. 2000; 25(2): 114-116.

[21]

Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt Express. 2006; 14(17): 7821-7840.

[22]

Le PH, Kaur K, Patel BC. Optical Coherence Tomography Angiography. StatPearls Publishing LLC; 2024.

[23]

Geng X, Liang X, Liu Y, et al. Natural fat nanoemulsions for enhanced optical coherence tomography neuroimaging and tumor imaging in the second near-infrared window. ACS Nano. 2024; 18(12): 9187-9198.

[24]

Wang H, Black AJ, Zhu J, et al. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. Neuroimage. 2011; 58(4): 984-992.

[25]

Fujimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nature Med. 1995; 1(9): 970-972.

[26]

Bizheva K, Unterhuber A, Hermann B, et al. Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J Biomed Opt. 2005; 10(1):011006.

[27]

Kut C, Chaichana KL, Xi J, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med. 2015; 7(292): 292.

[28]

Juarez-Chambi RM, Kut C, Rico-Jimenez JJ, et al. AI-assisted in situ detection of human glioma infiltration using a novel computational method for optical coherence tomography. Clin Cancer Res. 2019; 25(21): 6329-6338.

[29]

You J, Pan C, Park K, Li A, Du C. In vivo detection of tumor boundary using ultrahigh-resolution optical coherence angiography and fluorescence imaging. J Biophotonics. 2020; 13(3):e201960091.

[30]

Vuong B, Skowron P, Kiehl TR, et al. Measuring the optical characteristics of medulloblastoma with optical coherence tomography. Biomed Opt Express. 2015; 6(4): 1487-1501.

[31]

Chong SP, Merkle CW, Cooke DF, et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Opt Lett. 2015; 40(21): 4911-4914.

[32]

Katta N, Estrada AD, McElroy AB, et al. Laser brain cancer surgery in a xenograft model guided by optical coherence tomography. Theranostics. 2019; 9(12): 3555-3564.

[33]

Yecies D, Liba O, SoRelle ED, et al. Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging. Sci Rep. 2019; 9(1):10388.

[34]

Yu X, Hu C, Zhang W, et al. Feasibility evaluation of micro-optical coherence tomography (μOCT) for rapid brain tumor type and grade discriminations: μOCT images versus pathology. BMC Med Imaging. 2019; 19(1): 102.

[35]

Zhu M, Chang W, Jing L, et al. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery. Theranostics. 2019; 9(10): 2827-2842.

[36]

Li Y, Fan Y, Hu C, Mao F, Zhang X, Liao H. Intelligent optical diagnosis and treatment system for automated image-guided laser ablation of tumors. Int J Comput Assist Radiol Surg. 2021; 16(12): 2147-2157.

[37]

Yuan W, Chen D, Sarabia-Estrada R, et al. Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo. Sci Adv. 2020; 6(15):eaaz9664.

[38]

Möller J, Bartsch A, Lenz M, et al. Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. Int J Comput Assist Radiol Surg. 2021; 16(9): 1517-1526.

[39]

Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG. High-resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res. 1999; 82(2): 275-284.

[40]

Fan Y, Xia Y, Zhang X, et al. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. BioSci Trends. 2018; 12(1): 12-23.

[41]

Leontaridou M, Gabbert S, Landsiedel R. The impact of precision uncertainty on predictive accuracy metrics of non-animal testing methods. ALTEX. 2019; 36(3): 435-446.

[42]

Faber DJ, van der Meer FJ, Aalders MCG, van Leeuwen TG. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt Express. 2004; 12(19): 4353-4365.

[43]

Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express. 2010; 18(14): 14685-14704.

[44]

Kolb JP, Draxinger W, Klee J, et al. Correction: live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS One. 2019; 14(7):e0220829.

[45]

Li X, Huang Y, Hao Q. Automated robot-assisted wide-field optical coherence tomography using structured light camera. Biomed Opt Express. 2023; 14(8): 4310-4325.

[46]

Bouma BE, de Boer JF, Huang D, et al. Optical coherence tomography. Nat Rev Methods Primers. 2022; 2: 79.

[47]

Münter M, Vom Endt M, Pieper M, et al. Dynamic contrast in scanning microscopic OCT. Opt Lett. 2020; 45(17): 4766-4769.

RIGHTS & PERMISSIONS

2024 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/