Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer’s disease based on transcriptome analysis

Jin-Lin Mei , Shi-Feng Wang , Yang-Yang Zhao , Ting Xu , Yong Luo , Liu-Lin Xiong

Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 323 -344.

PDF
Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 323 -344. DOI: 10.1002/ibra.12179
ORIGINAL ARTICLE

Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer’s disease based on transcriptome analysis

Author information +
History +
PDF

Abstract

This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer’s disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Super-family Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.

Keywords

Alzheimer’s disease / immune infiltration / machine-learning model / molecular clusters / PANoptosis

Cite this article

Download citation ▾
Jin-Lin Mei,Shi-Feng Wang,Yang-Yang Zhao,Ting Xu,Yong Luo,Liu-Lin Xiong. Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer’s disease based on transcriptome analysis. Ibrain, 2024, 10(3): 323-344 DOI:10.1002/ibra.12179

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-1590.

[2]

Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179(2):312-339.

[3]

Hrelia P, Sita G, Ziche M, et al. Common protective strategies in neurodegenerative disease: focusing on risk factors to target the cellular redox system. Oxid Med Cell Longevity. 2020;2020:8363245.

[4]

Siddappaji KK, Gopal S. Molecular mechanisms in Alzheimer’s disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neurosci. 2021;8(3):357-389.

[5]

Rostagno A, Holton JL, Lashley T, Revesz T, Ghiso J. Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. Cell Mol Life Sci. 2010;67(4):581-600.

[6]

Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59-70.

[7]

Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98(2):813-880.

[8]

Söllvander S, Nikitidou E, Brolin R, et al. Accumulation of amyloid-βby astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener. 2016;11(1):38.

[9]

Tanaka H, Homma H, Fujita K, et al. YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nat Commun. 2020;11(1):507.

[10]

Mangalmurti A, Lukens JR. How neurons die in Alzheimer’s disease: implications for neuroinflammation. Curr Opin Neurobiol. 2022;75:102575.

[11]

Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406.

[12]

Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol. 2020;38:567-595.

[13]

Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:238.

[14]

Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacol Ther. 2022;232:108010.

[15]

Zhou R, Ying J, Qiu X, et al. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin Med J. 2022;135(12):1474-1485.

[16]

Ye D, Xu Y, Shi Y, et al. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res. 2022;73(4):e12828.

[17]

Pompl PN, Yemul S, Xiang Z, et al. Caspase gene expression in the brain as a function of the clinical progression of Alzheimer disease. Arch Neurol. 2003;60(3):369-376.

[18]

Butte A. The use and analysis of microarray data. Nat Rev Drug Discov. 2002;1(12):951-960.

[19]

Li S, Long Q, Nong L, Zheng Y, Meng X, Zhu Q. Identification of immune infiltration and cuproptosis-related molecular clusters in tuberculosis. Front Immunol. 2023;14:1205741.

[20]

Jiang Z, Luo Y, Zhang L, et al. A novel risk score model of lactate metabolism for predicting over survival and immune signature in lung adenocarcinoma. Cancers. 2022;14(15):3727.

[21]

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

[22]

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

[23]

Bahat G, Turkmen BO, Aliyev S, Catikkas NM, Bakir B, Karan MA. Cut-off values of skeletal muscle index and psoas muscle index at L3 vertebra level by computerized tomography to assess low muscle mass. Clin Nutr. 2021;40(6):4360-4365.

[24]

Ito N, Funasaka K, Miyahara R, et al. Relationship between psoas muscle index and long-term survival in older patients aged ≥80 years after endoscopic submucosal dissection for gastric cancer. Int J Clin Oncol. 2022;27(4):729-738.

[25]

Nakayama T, Furuya S, Kawaguchi Y, et al. Prognostic value of preoperative psoas muscle index as a measure of nutritional status in patients with esophageal cancer receiving neoadjuvant therapy. Nutrition. 2021;90:111232.

[26]

Beeri MS, Leugrans SE, Delbono O, Bennett DA, Buchman AS. Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J Am Geriatr Soc. 2021;69(7):1826-1835.

[27]

Dost FS, Erken N, Ontan MS, et al. Muscle strength seems to be related to the functional status and severity of dementia in older adults with Alzheimer’s disease. Curr Aging Sci. 2023;16(1):75-83.

[28]

Gu X, Wu H, Xie Y, Xu L, Liu X, Wang W. Caspase-1/IL-1βrepresses membrane transport of GluA1 by inhibiting the interaction between stargazin and GluA1 in Alzheimer’s disease. Mol Med. 2021;27(1):8.

[29]

Kajiwara Y, McKenzie A, Dorr N, et al. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Gen. 2016;25(19):4315-4327.

[30]

Kumar S, Budhathoki S, Oliveira CB, et al. Role of the caspase-8/RIPK3 axis in Alzheimer’s disease pathogenesis and Aβ-induced NLRP3 inflammasome activation. JCI Insight. 2023;8(3):e157433.

[31]

Soto-Rojas LO, Campa-Córdoba BB, Harrington CR, et al. Insoluble vascular amyloid deposits trigger disruption of the neurovascular unit in Alzheimer’s disease brains. Int J Mol Sci. 2021;22(7):3654.

[32]

Theofilas P, Piergies AMH, Oh I, et al. Caspase-6-cleaved tau is relevant in Alzheimer’s disease and marginal in four-repeat tauopathies: diagnostic and therapeutic implications. Neuropathol Appl Neurobiol. 2022;48(5):e12819.

[33]

Zhang X, Zhu C, Beecham G, et al. A rare missense variant of CASP7 is associated with familial late-onset Alzheimer’s disease. Alzheimers Dement. 2019;15(3):441-452.

[34]

Smith BR, Nelson KM, Kemper LJ, et al. A soluble tau fragment generated by caspase-2 is associated with dementia in Lewy body disease. Acta Neuropathol Commun. 2019;7(1):124.

[35]

Scott XO, Stephens ME, Desir MC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The inflammasome adaptor protein ASC in mild cognitive impairment and Alzheimer’s disease. Int J Mol Sci. 2020;21(13):4674.

[36]

Liu J, Zhu W, Qin H, Song J. NMR studies reveal a novel mode for hFADD to bind with the unstructured hRTN3 which initiates the ER-stress activated apoptosis. Biochem Biophys Res Commun. 2009;383(4):433-439.

[37]

Xu C, Wu J, Wu Y, et al. TNF-α-dependent neuronal necroptosis regulated in Alzheimer’s disease by coordination of RIPK1-p62 complex with autophagic UVRAG. Theranostics. 2021;11(19):9452-9469.

[38]

Tian D, Xing Y, Gao W, et al. Sevoflurane aggravates the progress of Alzheimer’s disease through NLRP3/Caspase-1/Gasdermin D pathway. Front Cell Dev Biol. 2021;9:801422.

[39]

Gupta S, Singh V, Ganesh S, Singhal NK, Sandhir R. siRNA mediated GSK3βknockdown targets insulin signaling pathway and rescues Alzheimer’s disease pathology: evidence from in vitro and in vivo studies. ACS Appl Mater Interfaces. 2022;14(1):69-93.

[40]

Milner MT, Maddugoda M, Götz J, Burgener SS, Schroder K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol. 2021;68:116-124.

[41]

Khermesh K, D’Erchia AM, Barak M, et al. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease. RNA. 2016;22(2):290-302.

[42]

Liu X, Zhang Z, Li D, et al. DNM1L-related mitochondrial fission defects presenting as encephalopathy: a case report and literature review. Front Pediatr. 2021;9:626657.

[43]

Ligons DL, Guler ML, Li HS, Rose NR. A locus on chromosome 1 promotes susceptibility of experimental autoimmune myocarditis and lymphocyte cell death. Clin Immunol. 2009;130(1):74-82.

[44]

Orlando ICJ, Tanaka S, Balarin MAS, da Silva SR, Pissetti CW. CASPASE-8 gene polymorphisms (rs13416436 and rs2037815) are not associated with preeclampsia development in Brazilian women. J Matern Fetal Neonatal Med. 2018;31(3):289-293.

[45]

Maredia A, Guzzardi D, Aleinati M, et al. Aorta-specific DNA methylation patterns in cell-free DNA from patients with bicuspid aortic valve-associated aortopathy. Clin Epigenetics. 2021;13(1):147.

[46]

Takami K, Terai K, Matsuo A, Walker DG, McGeer PL. Expression of presenilin-1 and -2 mRNAs in rat and Alzheimer’s disease brains. Brain Res. 1997;748(1-2):122-130.

[47]

Kwon KH, Kim JY, Kim SY, et al. Chromosome 11-centric human proteome analysis of human brain hippocampus tissue. J Proteome Res. 2013;12(1):97-105.

[48]

Agrawal S, Baulch JE, Madan S, et al. Impact of IL-21-associated peripheral and brain crosstalk on the Alzheimer’s disease neuropathology. Cell Mol Life Sci. 2022;79(6):331.

[49]

Xu H, Jia J. Single-cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimer’s disease. Front Immunol. 2021;12:645666.

[50]

Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S. Microglial TYROBP/DAP12 in Alzheimer’s disease: transduction of physiological and pathological signals across TREM2. Mol Neurodegener. 2022;17(1):55.

[51]

Feng Y, Li L, Sun XH. Monocytes and Alzheimer’s disease. Neurosci Bull. 2011;27(2):115-122.

[52]

Lin C, Xu C, Zhou Y, Chen A, Jin B. Identification of biomarkers related to M2 macrophage infiltration in Alzheimer’s disease. Cells. 2022;11(15):2365.

[53]

Smyth LCD, Murray HC, Hill M, et al. Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer’s disease. Acta Neuropathol Commun. 2022;10(1):38.

[54]

Binet F, Chiasson S, Girard D. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils. Biochem Biophys Res Commun. 2010;391(1):18-23.

[55]

Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps. Mediators Inflamm. 2020;2020:8829674.

[56]

Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090.

[57]

Wu Y, Liang S, Zhu H, Zhu Y. Analysis of immune-related key genes in Alzheimer’s disease. Bioengineered. 2021;12(2):9610-9624.

[58]

Liang H, Li W, Yang H, et al. FAM96B inhibits the senescence of dental pulp stem cells. Cell Biol Int. 2020;44(5):1193-1203.

[59]

Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6(1):402.

[60]

Rusek M, Smith J, El-Khatib K, Aikins K, Czuczwar SJ, Pluta R. The role of the JAK/STAT signaling pathway in the pathogenesis of Alzheimer’s disease: new potential treatment target. Int J Mol Sci. 2023;24(1):864.

[61]

Haque Bhuiyan MM, Mohibbullah M, Hannan MA, et al. The neuritogenic and synaptogenic effects of the ethanolic extract of radix Puerariae in cultured rat hippocampal neurons. J Ethnopharmacol. 2015;173:172-182.

[62]

Del Villar K, Miller CA. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc Natl Acad Sci USA. 2004;101(12):4210-4215.

[63]

Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med. 2019;11(2):e9665.

[64]

Kim J, Lee H, Park SK, et al. Donepezil regulates LPS and Aβ-stimulated neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 signaling. Int J Mol Sci. 2021;22(19):10637.

[65]

Lee H, Hoe HS. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol Res. 2023;190:106725.

[66]

Zheng QW, Ni QZ, Zhu B, et al. PPDPF promotes lung adenocarcinoma progression via inhibiting apoptosis and NK cell-mediated cytotoxicity through STAT3. Oncogene. 2022;41(36):4244-4256.

[67]

Xu Y, Feng S, Niu B. Silencing Stat3 inhibits viability and induces apoptosis in BGC-823 human gastric cancer cell line. Biotech Histochem. 2021;96(1):76-81.

[68]

Teocchi MA, D’Souza-Li L. Apoptosis through death receptors in temporal lobe epilepsy-associated hippocampal sclerosis. Mediators Inflamm. 2016;2016:8290562.

[69]

Pillai JA, Bebek G, Khrestian M, et al. TNFRSF1B gene variants and related soluble TNFR2 levels impact resilience in Alzheimer’s disease. Front Aging Neurosci. 2021;13:638922.

[70]

Borghi A, Verstrepen L, Beyaert R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 2016;116:1-10.

[71]

Papazian I, Tsoukala E, Boutou A, et al. Fundamentally different roles of neuronal TNF receptors in CNS pathology: TNFR1 and IKKβpromote microglial responses and tissue injury in demyelination while TNFR2 protects against excitotoxicity in mice. J Neuroinflammation. 2021;18(1):222.

[72]

Rakic S, Hung YMA, Smith M, et al. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s disease. Acta Neuropathol Commun. 2018;6(1):88.

[73]

Craig-Schapiro R, Perrin RJ, Roe CM, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010;68(10):903-912.

[74]

Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701-738.

[75]

Haider P, Kral-Pointner JB, Salzmann M, et al. Interleukin-4 receptor alpha signaling regulates monocyte homeostasis. FASEB J. 2022;36(10):e22532.

[76]

Chen X, Deng S, Wang W, et al. Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression. Mol Psychiatry. 2022;27(11):4790-4799.

[77]

Novarino G. Involvement of the intracellular ion channel CLIC1 in microglia-mediated -amyloid-induced neurotoxicity. J Neurosci. 2004;24(23):5322-5330.

[78]

Domingo-Fernández R, Coll RC, Kearney J, Breit S, O’Neill LAJ. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1βtranscription and activate the NLRP3 inflammasome. J Biol Chem. 2017;292(29):12077-12087.

[79]

Ma PF. Function of chloride intracellular channel 1 in gastric cancer cells. World J Gastroenterol. 2012;18(24):3070-3080.

[80]

Zhao X, Liu X, Su L. Parthenolide induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung cancer cells. J Exp Clin Cancer Res. 2014;33(1):3.

[81]

Stefanowicz-Hajduk J, Hering A, Gucwa M, Czerwińska M, Ochocka JR. Yamogenin-induced cell cycle arrest, oxidative stress, and apoptosis in human ovarian cancer cell line. Molecules. 2022;27(23):8181.

[82]

Zou D, Li R, Huang X, et al. Identification of molecular correlations of RBM8A with autophagy in Alzheimer’s disease. Aging. 2019;11(23):11673-11685.

[83]

Dai M, Yan L, Yu H, Chen C, Xie Y. TNFRSF10B is involved in motor dysfunction in Parkinson’s disease by regulating exosomal α-synuclein secretion from microglia. J Chem Neuroanat. 2023;129:102249.

[84]

Anand AC. Nutrition and muscle in cirrhosis. J Clin Exp Hepatol. 2017;7(4):340-357.

[85]

Nishimura T, Naito H, Fujisaki N, Ishihara S, Nakao A, Nakayama S. The psoas muscle index as a predictor of mortality and morbidity of geriatric trauma patients: experience of a major trauma center in Kobe. Surg Today. 2020;50(9):1016-1023.

[86]

Xue Q, Wu J, Ren Y, Hu J, Yang K, Cao J. Sarcopenia predicts adverse outcomes in an elderly population with coronary artery disease: a systematic review and meta-analysis. BMC Geriatr. 2021;21(1):493.

[87]

Kobori F, Azuma K, Mishima S, Oda J. Validation of psoas muscle index as a predictor of successful extubation in elderly intensive care patients: a retrospective cohort study. Acute Med Surg. 2020;7(1):e598.

RIGHTS & PERMISSIONS

2024 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/