Neuroscience of cancer: Research progress and emerging of the field

Issam AbuQeis , Yu Zou , Ying-Chun Ba , Abeer A. Teeti

Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 305 -322.

PDF
Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 305 -322. DOI: 10.1002/ibra.12172
REVIEW

Neuroscience of cancer: Research progress and emerging of the field

Author information +
History +
PDF

Abstract

Cancer cells immediately expand and penetrate adjoining tissues, as opposed to metastasis, that is the spread of cancer cells through the circulatory or lymphatic systems to more distant places via the invasion process. We found that a lack of studies discussed tumor development with the nervous system, by the aspects of cancer-tissue invasion (biological) and chemical modulation of growth that cascades by releasing neural-related factors from the nerve endings via chemical substances known as neurotransmitters. In this review, we aimed to carefully demonstrate and describe the cancer invasion and interaction with the nervous system, as well as reveal the research progress and the emerging neuroscience of cancer. An initial set of 160 references underwent systematic review and summarization. Through a meticulous screening process, these data were refined, ultimately leading to the inclusion of 98 studies that adhered to predetermined criteria. The outcomes show that one formidable challenge in the realm of cancer lies in its intrinsic heterogeneity and remarkable capacity for rapid adaptation. Despite advancements in genomics and precision medicine, there is still a need to identify new molecular targets. Considering cancer within its molecular and cellular environment, including neural components, is crucial for addressing this challenge. In conclusion, this review provides good referential data for direct, indirect, biological, and chemical interaction for nerve tissue–tumor interaction, suggesting the establishment of new therapy techniques and mechanisms by controlling and modifying neuron networks that supply signals to tumors.

Keywords

cancer invasion / neuroscience / paracrine mode / perineural invasion / tumor microenvironment

Cite this article

Download citation ▾
Issam AbuQeis, Yu Zou, Ying-Chun Ba, Abeer A. Teeti. Neuroscience of cancer: Research progress and emerging of the field. Ibrain, 2024, 10(3): 305-322 DOI:10.1002/ibra.12172

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Winkler F, Venkatesh HS, Amit M, et al. Cancer neuroscience: state of the field, emerging directions. Cell. 2023;186(8):1689-1707.

[2]

Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve dependence: from regeneration to cancer. Cancer Cell. 2017;31(3):342-354.

[3]

Adriaenssens E, Vanhecke E, Saule P, et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008;68(2):346-351.

[4]

Amit M, Na’ara S, Gil Z. Mechanisms of cancer dissemination along nerves. Nat Rev Cancer. 2016;16(6):399-408.

[5]

Armaiz-Pena GN, Allen JK, Cruz A, et al. Src activation by β-adrenoreceptors is a key switch for tumour metastasis. Nat Commun. 2013;4:1403.

[6]

Ayala GE, Dai H, Powell M, et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res. 2008;14(23):7593-7603.

[7]

Galasso G, De Rosa R, Ciccarelli M, et al. β2-Adrenergic receptor stimulation improves endothelial progenitor cell-mediated ischemic neoangiogenesis. Circ Res. 2013;112(7):1026-1034.

[8]

Waldum HL, Sandvik AK, Brenna E, Fossmark R, Qvigstad G, Soga J. Classification of tumours. J Exp Clin Cancer Res. 2008;27(1):70.

[9]

Carbone A. Cancer classification at the crossroads. Cancers. 2020;12(4):980.

[10]

He L, Long LR, Antani S, Thoma GR. Histology image analysis for carcinoma detection and grading. Comput Methods Programs Biomed. 2012;107(3):538-556.

[11]

Husain N, Verma N. Curent concepts in pathology of soft tissue sarcoma. Indian J Surg Oncol. 2011;2(4):302-308.

[12]

Fujino M. The histopathology of myeloma in the bone marrow. J Clin Exp Hematopathol. 2018;58(2):61-67.

[13]

Ciesielska M, Orzechowska B, Gamian A, Kazanowska B. Epidemiology of childhood acute leukemias. Post Hig Med Doświad. 2024;78:22-36.

[14]

Nguyen J, Wellard C, Chung E, et al. Clinical characteristics of Australian treatment-naïve patients with classical hodgkin lymphoma from the lymphoma and related diseases registry. Eur J Haematol. 2022;110.

[15]

Ingle SB, Hinge (Ingle) CR. Primary splenic lymphoma: current diagnostic trends. World J Clin Cases. 2016;4(12):385-389.

[16]

Rajabato W, Chandika V, Harahap AS. Unilateral tonsillar swelling as a manifestation of diffuse large B cell lymphoma (DLBCL): case report. Maedica. 2021;16(4):750-752.

[17]

Xu J, Wu X, Reddy V. T Cell/Histiocyte-Rich large B cell lymphoma of the thymus: a diagnostic pitfall. Case Rep Hematol. 2016;2016:2942594.

[18]

Fu JM, McCalmont T, Yu SS. Adenosquamous carcinoma of the skin: a case series. Arch Dermatol. 2009;145(10):1152-1158.

[19]

Del Papa M, D’Amata G, Manzi F, et al. Extragenital malignant mixed mesodermal tumor: a case report. Int J Surg Case Rep. 2017;41:323-326.

[20]

Tung HJ, Chiang CY, Chang WY, et al. Management and prognosis of patients with recurrent or persistent/progressive uterine carcinosarcoma. Curr Oncol. 2022;29(10):7607-7623.

[21]

Malavalli G, Karra S, Muniyappa B. Teratocarcinoma in a non seminomatous, mixed germ cell tumour of the testis-a rare entity. J Clin Diagn Res. 2013;7(7):1439-1440.

[22]

Jiang H, Cui Y, Wang J, Lin S. Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget. 2017;8(12):20354-20361.

[23]

Xu C, Xiao M, Li X, et al. Origin, activation, and targeted therapy of glioma-associated macrophages. Front Immunol. 2022;13:974996.

[24]

Zeng Z, Chen Y, Geng X, et al. NcRNAs: multi-angle participation in the regulation of glioma chemotherapy resistance (Review). Int J Oncol. 2022;60(6):76.

[25]

Lawrie TA, Gillespie D, Dowswell T, et al. Long-term neurocognitive and other side effects of radiotherapy, with or without chemotherapy, for glioma. Cochrane Database Syst Rev. 2019;8(8):013047.

[26]

Yin X, Wu Q, Hao Z, Chen L. Identification of novel prognostic targets in glioblastoma using bioinformatics analysis. Biomed Eng Online. 2022;21(1):26.

[27]

Rallis KS, George AM, Wozniak AM, et al. Molecular genetics and targeted therapies for paediatric high-grade glioma. Cancer Genom -Proteom. 2022;19(4):390-414.

[28]

Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-820.

[29]

Borniger JC, Walker Ii WH, Surbhi WH, et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab. 2018;28(1):118-129.e5.

[30]

Gibson EM, Purger D, Mount CW, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344(6183):1252304.

[31]

Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161(4):803-816.

[32]

Venkataramani V, Tanev DI, Strahle C, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532-538.

[33]

Yu K, Lin CCJ, Hatcher A, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578(7793):166-171.

[34]

Hayakawa Y, Sakitani K, Konishi M, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31(1):21-34.

[35]

Mauffrey P, Tchitchek N, Barroca V, et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019;569(7758):672-678.

[36]

Decressac M, Barker RA. Neuropeptide Y and its role in CNS disease and repair. Exp Neurol. 2012;238(2):265-272.

[37]

Robinson SL, Thiele TE. Chapter seven -the role of neuropeptide Y (NPY) in alcohol and drug abuse disorders. In: TE Thiele, ed. International review of neurobiology. 136. Academic Press; 2017:177-197.

[38]

Kasprzak A, Adamek A. The neuropeptide system and colorectal cancer liver metastases: mechanisms and management. Int J Mol Sci. 2020;21(10):3494.

[39]

Sigorski D, Wesołowski W, Gruszecka A, et al. Neuropeptide Y and its receptors in prostate cancer: associations with cancer invasiveness and perineural spread. J Cancer Res Clin Oncol. 2023;149(9):5803-5822.

[40]

Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol. 2011;29(19):2635-2644.

[41]

Deborde S, Omelchenko T, Lyubchik A, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 2016;126(4):1538-1554.

[42]

Demir IE, Kujundzic K, Pfitzinger PL, et al. Early pancreatic cancer lesions suppress pain through CXCL12-mediated chemoattraction of Schwann cells. Proc Natl Acad Sci USA. 2017;114(1):85.

[43]

Roger E, Martel S, Bertrand-Chapel A, et al. Schwann cells support oncogenic potential of pancreatic cancer cells through TGFβsignaling. Cell Death Dis. 2019;10(12):886.

[44]

Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533(7604):493-498.

[45]

Wang H, Zheng Q, Lu Z, et al. Role of the nervous system in cancers: a review. Cell Death Discov. 2021;7(1):76.

[46]

Chen F, Zhuang X, Lin L, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13(1):45.

[47]

Chatterjee D, Katz MH, Rashid A, et al. Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Am J Surg Pathol. 2012;36(3):409-417.

[48]

Tan X, Sivakumar S, Bednarsch J, et al. Nerve fibers in the tumor microenvironment in neurotropic cancer—pancreatic cancer and cholangiocarcinoma. Oncogene. 2021;40(5):899-908.

[49]

Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80(3):691-703.

[50]

De Oliveira T, Abiatari I, Raulefs S, et al. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer. 2012;11(1):19.

[51]

Marchesi F, Piemonti L, Fedele G, et al. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res. 2008;68(21):9060-9069.

[52]

Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer. Cancer. 2009;115(15):3379-3391.

[53]

Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149(6):565-574.

[54]

Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol. 2010;223(1):102-111.

[55]

Li CG, Zhou ZP, Tan XL, Zhao ZM. Perineural invasion of hilar cholangiocarcinoma in Chinese population: one center’s experience. World J Gastrointest Oncol. 2020;12(4):457-466.

[56]

Liu Q, Ma Z, Cao Q, et al. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother. 2022;155:113691.

[57]

Li J, Kang R, Tang D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun. 2021;41(8):642-660.

[58]

Bahmad HF, Gogola S, Rejzer M, et al. Unraveling the mysteries of perineural invasion in benign and malignant conditions. Curr Oncol. 2023;30(10):8948-8972.

[59]

Misztal CI, Green C, Mei C, et al. Molecular and cellular mechanisms of perineural invasion in oral squamous cell carcinoma: potential targets for therapeutic intervention. Cancers. 2021;13(23):6011.

[60]

Chen JW, Xie JD, Ling YH, et al. The prognostic effect of perineural invasion in esophageal squamous cell carcinoma. BMC Cancer. 2014;14:313.

[61]

Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2015;55:465-487.

[62]

Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol. 2013;24(3):179-189.

[63]

Jiang SH, Hu LP, Wang X, Li J, Zhang ZG. Neurotransmitters: emerging targets in cancer. Oncogene. 2020;39(3):503-515.

[64]

Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539-545.

[65]

Goethe EA, Deneen B, Noebels J, Rao G. The role of hyperexcitability in gliomagenesis. Int J Mol Sci. 2023;24(1):749.

[66]

Lan Y-L, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm. 2023;4(6):e431.

[67]

Pikor NB, Cupovic J, Onder L, Gommerman JL, Ludewig B. Stromal cell niches in the inflamed central nervous system. J Immunol. 2017;198(5):1775-1781.

[68]

Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S. Catecholamines regulate tumor angiogenesis. Cancer Res. 2009;69(9):3727-3730.

[69]

Li S, Xu H-X, Wu C-T, et al. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis. 2019;22:15-36.

[70]

Zahalka AH, Arnal-Estapé A, Maryanovich M, et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science. 2017;358(6361):321-326.

[71]

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77(9):1745-1770.

[72]

Amit M, Takahashi H, Dragomir MP, et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature. 2020;578(7795):449-454.

[73]

Restaino AC, Vermeer PD. Neural regulations of the tumor microenvironment. FASEB BioAdvances. 2022;4(1):29-42.

[74]

Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98-101.

[75]

Shelukhina I, Siniavin A, Kasheverov I, Ojomoko L, Tsetlin V, Utkin Y. α7-and α9-Containing nicotinic acetylcholine receptors in the functioning of immune system and in pain. Int J Mol Sci. 2023;24(7):6524.

[76]

Friedman JR, Richbart SD, Merritt JC, et al. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther. 2019;194:222-254.

[77]

Cox MA, Duncan GS, Lin GHY, et al. Choline acetyltransferase–expressing T cells are required to control chronic viral infection. Science. 2019;363(6427):639-644.

[78]

Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat Rev Cancer. 2019;19(4):215-227.

[79]

Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1-11.

[80]

Kamiya A, Hayama Y, Kato S, et al. Retracted article: genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nature Neurosci. 2019;22(8):1289-1305.

[81]

Akram R, Anwar H, Javed MS, et al. Axonal regeneration: underlying molecular mechanisms and potential therapeutic targets. Biomedicines. 2022;10(12):3186.

[82]

Nittoli V, Sepe RM, Coppola U, et al. A comprehensive analysis of neurotrophins and neurotrophin tyrosine kinase receptors expression during development of zebrafish. J Comp Neurol. 2018;526(6):1057-1072.

[83]

Peng T, Guo Y, Gan Z, et al. Nerve growth factor (NGF) encourages the neuroinvasive potential of pancreatic cancer cells by activating the warburg effect and promoting tumor derived exosomal miRNA-21 expression. Oxid Med Cell Longevity. 2022;2022:8445093.

[84]

Kondo Y, Hirabayashi K, Carreras J, et al. The significance of tyrosine kinase receptor B and brain-derived neurotrophic factor expression in salivary duct carcinoma. Ann Diagn Pathol. 2021;50:151673.

[85]

Li X, Ma Q, Xu Q, Duan W, Lei J, Wu E. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Des. 2012;18(17):2404-2415.

[86]

Ketterer K, Rao S, Friess H, Weiss J, Büchler MW, Korc M. Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin Cancer Res. 2003;9(14):5127-5136.

[87]

Goswami PR, Singh G. Perineural invasion (PNI) definition, histopathological parameters of PNI in oral squamous cell carcinoma with molecular insight and prognostic significance. Cureus. 2023;15(6):e40165.

[88]

Franchitto A, Onori P, Renzi A, et al. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Ann Transl Med. 2013;1(3):27. doi:10.3978/j.issn.2305-5839.2012.10.03

[89]

Sha M, Cao J, Sun H, Tong Y, Xia Q. Neuroendocrine regulation of cholangiocarcinoma: a status quo review. Biochim Biophys Acta (BBA) -Rev Cancer. 2019;1872(1):66-73.

[90]

Bednarsch J, Tan X, Czigany Z, et al. Limitations of nerve fiber density as a prognostic marker in predicting oncological outcomes in hepatocellular carcinoma. Cancers. 2022;14(9):2237.

[91]

Tan X, Sivakumar S, Bednarsch J, et al. Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene. 2021;40(5):899-908.

[92]

Barbieri A, Bimonte S, Palma G, et al. The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int J Oncol. 2015;47(2):527-534.

[93]

Renz BW, Takahashi R, Tanaka T, et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33(1):75-90.e7.

[94]

Zhang L, Xiu D, Zhan J, et al. High expression of muscarinic acetylcholine receptor 3 predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Onco Targets Ther. 2016;9(null):6719-6726.

[95]

Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res: CR. 2016;35(1):116.

[96]

Schecterson LC, Bothwell M. Neurotrophin receptors: old friends with new partners. Dev Neurobiol. 2010;70(5):332-338.

[97]

Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: a twisted affair. J Biol Chem. 2022;298(3):101568.

[98]

Yang XQ. Clinical significance of nerve growth factor and tropomyosin-receptor-kinase signaling pathway in intrahepatic cholangiocarcinoma. World J Gastroenterol 2014;20(14):4076-4084.

RIGHTS & PERMISSIONS

2024 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/