Amyloid-β in Alzheimer’s disease: Structure, toxicity, distribution, treatment, and prospects

Yifan Yu , Shilong Yu , Giuseppe Battaglia , Xiaohe Tian

Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 266 -289.

PDF
Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 266 -289. DOI: 10.1002/ibra.12155
REVIEW

Amyloid-β in Alzheimer’s disease: Structure, toxicity, distribution, treatment, and prospects

Author information +
History +
PDF

Abstract

Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer’s disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration’s approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.

Keywords

/ Alzheimer’s disease / anti-Aβ drugs / multivalency / nanodrugs

Cite this article

Download citation ▾
Yifan Yu, Shilong Yu, Giuseppe Battaglia, Xiaohe Tian. Amyloid-β in Alzheimer’s disease: Structure, toxicity, distribution, treatment, and prospects. Ibrain, 2024, 10(3): 266-289 DOI:10.1002/ibra.12155

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595-608.

[2]

Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem. 2016;139(suppl 2):237-252.

[3]

Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12(10):383-388.

[4]

Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discovery. 2022;21(4):306-318.

[5]

Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15(2):73-88.

[6]

van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9-21.

[7]

Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157-172.

[8]

Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease—one peptide, two pathways. Nat Rev Neurol. 2020;16(1):30-42.

[9]

Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501-518.

[10]

Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-1024.

[11]

Huynh TPV, Davis AA, Ulrich JD, Holtzman DM. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-βand other amyloidogenic proteins. J Lipid Res. 2017;58(5):824-836.

[12]

Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J. 2017;31(7):2729-2743.

[13]

Lee SJC, Nam E, Lee HJ, Savelieff MG, Lim MH. Towards an understanding of amyloid-βoligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev. 2017;46(2):310-323.

[14]

Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease—insights from amyloid-βmetabolism beyond the brain. Nat Rev Neurol. 2017;13(10):612-623.

[15]

Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457-470.

[16]

Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6765-6813.

[17]

Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer’s disease: findings, hypotheses, and potential mechanisms. Annu Rev Pathol: Mech Dis. 2022;17:73-99.

[18]

Vassar R, Bennett BD, Babu-Khan S, et al. β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286(5440):735-741.

[19]

Sinha S, Anderson JP, Barbour R, et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature. 1999;402(6761):537-540.

[20]

Rice HC, de Malmazet D, Schreurs A, et al. Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission. Science. 2019;363(6423).

[21]

Szaruga M, Munteanu B, Lismont S, et al. Alzheimer’s-causing mutations shift Aβlength by destabilizing γ-secretase-Aβn interactions. Cell. 2017;170(3):443-456.

[22]

Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM. Atomic-resolution dynamics on the surface of amyloid-βprotofibrils probed by solution NMR. Nature. 2011;480(7376):268-272.

[23]

Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science. 2005;307(5707):262-265.

[24]

Gremer L, Schölzel D, Schenk C, et al. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science. 2017;358(6359):116-119.

[25]

Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature. 1999;398(6727):513-517.

[26]

Szaruga M, Munteanu B, Lismont S, et al. Alzheimer’s-causing mutations shift Aβlength by destabilizing γ-secretase-Aβn interactions. Cell. 2021;184(8):2257-2258.

[27]

Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid βprotein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535-539.

[28]

Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300(5618):486-489.

[29]

Uhlmann RE, Rother C, Rasmussen J, et al. Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. Nat Neurosci. 2020;23(12):1580-1588.

[30]

Jang H, Teran Arce F, Ramachandran S, Kagan BL, Lal R, Nussinov R. Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev. 2014;43(19):6750-6764.

[31]

Kotler SA, Walsh P, Brender JR, Ramamoorthy A. Differences between amyloid-βaggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6692-6700.

[32]

Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science. 2006;313(5794):1781-1784.

[33]

Eisele YS, Obermüller U, Heilbronner G, et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science. 2010;330(6006):980-982.

[34]

Ye L, Fritschi SK, Schelle J, et al. Persistence of Aβseeds in APP null mouse brain. Nat Neurosci. 2015;18(11):1559-1561.

[35]

Purro SA, Farrow MA, Linehan J, et al. Transmission of amyloid-βprotein pathology from cadaveric pituitary growth hormone. Nature. 2018;564(7736):415-419.

[36]

Banerjee G, Farmer SF, Hyare H, et al. Iatrogenic Alzheimer’s disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med. 2024;30(2):394-402.

[37]

Meyer-Luehmann M, Stalder M, Herzig MC, et al. Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci. 2003;6(4):370-377.

[38]

d’Errico P, Ziegler-Waldkirch S, Aires V, et al. Microglia contribute to the propagation of Aβinto unaffected brain tissue. Nat Neurosci. 2022;25(1):20-25.

[39]

Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links aβto mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304(5669):448-452.

[40]

Pensalfini A, Kim S, Subbanna S, et al. Endosomal dysfunction induced by directly overactivating Rab5 recapitulates prodromal and neurodegenerative features of Alzheimer’s disease. Cell Rep. 2020;33(8):108420.

[41]

Kwart D, Gregg A, Scheckel C, et al. A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP β-CTFs, not Aβ. Neuron. 2019;104(2):256-270.

[42]

Treusch S, Hamamichi S, Goodman JL, et al. Functional links between Aβtoxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science. 2011;334(6060):1241-1245.

[43]

Zott B, Simon MM, Hong W, et al. A vicious cycle of βamyloid-dependent neuronal hyperactivation. Science. 2019;365(6453):559-565.

[44]

Wu J, Petralia RS, Kurushima H, et al. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. Cell. 2011;147(3):615-628.

[45]

Cao Q, Shin WS, Chan H, et al. Inhibiting amyloid-βcytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nat Chem. 2018;10(12):1213-1221.

[46]

Baleriola J, Walker CA, Jean YY, et al. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell. 2014;158(5):1159-1172.

[47]

DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(suppl 2):136-153.

[48]

Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1-12.

[49]

Guan YH, Zhang LJ, Wang SY, et al. The role of microglia in Alzheimer’s disease and progress of treatment. Ibrain. 2022;8(1):37-47.

[50]

Zhou JJ, Zhang C, Yang XX, et al. Study on the effect of sevoflurane on the cognitive function of aged rats based on the activation of cortical microglia. Ibrain. 2021;7(4):288-297.

[51]

McGeer PL, Itagaki S, Tago H, McGeer EG. Occurrence of HLA-DR reactive microglia in Alzheimer’s disease. Ann NY Acad Sci. 1988;540:319-323.

[52]

Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540(7632):230-235.

[53]

Ulrich JD, Ulland TK, Mahan TE, et al. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med. 2018;215(4):1047-1058.

[54]

Verghese PB, Castellano JM, Garai K, et al. ApoE influences amyloid-β(Aβ) clearance despite minimal apoE/Aβassociation in physiological conditions. Proc Natl Acad Sci. 2013;110(19): E1807-E1816.

[55]

Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβclearance through NLRP3 inflammasome. EMBO J. 2019;38(17):e101064.

[56]

Zenaro E, Pietronigro E, Bianca VD, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med. 2015;21(8):880-886.

[57]

Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712-716.

[58]

Tan J, Town T, Paris D, et al. Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science. 1999;286(5448):2352-2355.

[59]

Kim K, Wang X, Ragonnaud E, et al. Therapeutic B-cell depletion reverses progression of Alzheimer’s disease. Nat Commun. 2021;12(1):2185.

[60]

Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71-76.

[61]

Rabin JS, Schultz AP, Hedden T, et al. Interactive associations of vascular risk and β-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the Harvard Aging Brain Study. JAMA Neurol. 2018;75(9):1124-1131.

[62]

Nortley R, Korte N, Izquierdo P, et al. Amyloid βoligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. 2019;365(6450).

[63]

Winkler EA, Nishida Y, Sagare AP, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521-530.

[64]

Cogswell PM, Lundt ES, Therneau TM, et al. Evidence against a temporal association between cerebrovascular disease and Alzheimer’s disease imaging biomarkers. Nat Commun. 2023;14(1):3097.

[65]

Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ tau, immunity and lipid processing. Nat Genet. 2019;51(3):414-430.

[66]

Roberson ED, Scearce-Levie K, Palop JJ, et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science. 2007;316(5825):750-754.

[67]

Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-βtoxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387-397.

[68]

Nussbaum JM, Schilling S, Cynis H, et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature. 2012;485(7400):651-655.

[69]

He Z, Guo JL, McBride JD, et al. Amyloid-βplaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med. 2018;24(1):29-38.

[70]

Soldan A, Pettigrew C, Cai Q, et al. Hypothetical preclinical Alzheimer disease groups and longitudinal cognitive change. JAMA Neurol. 2016;73(6):698-705.

[71]

Busche MA, Wegmann S, Dujardin S, et al. Tau impairs neural circuits, dominating amyloid-βeffects, in Alzheimer models in vivo. Nat Neurosci. 2019;22(1):57-64.

[72]

Vossel KA, Zhang K, Brodbeck J, et al. Tau reduction prevents Aβ-induced defects in axonal transport. Science. 2010;330(6001):198.

[73]

Ittner A, Chua SW, Bertz J, et al. Site-specific phosphorylation of tau inhibits amyloid-βtoxicity in Alzheimer’s mice. Science. 2016;354(6314):904-908.

[74]

Pastorino L, Sun A, Lu PJ, et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-βproduction. Nature. 2006;440(7083):528-534.

[75]

Di Fede G, Catania M, Morbin M, et al. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science. 2009;323(5920):1473-1477.

[76]

Ceglia I, Reitz C, Gresack J, et al. APP intracellular domain-WAVE1 pathway reduces amyloid-βproduction. Nat Med. 2015;21(9):1054-1059.

[77]

Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Aβelevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99-103.

[78]

Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325(6106):733-736.

[79]

Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harbor Perspect Med. 2012;2(3):a006312.

[80]

Huang YWA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβsecretion. Cell. 2017;168(3):427-441.

[81]

Sperling RA, Donohue MC, Raman R, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol. 2020;77(6):735-745.

[82]

Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921-923.

[83]

Insel PS, Hansson O, Mattsson-Carlgren N. Association between apolipoprotein E ϵ2 vs ϵ4, age, and β-amyloid in adults without cognitive impairment. JAMA Neurol. 2021;78(2):229-235.

[84]

Liu CC, Murray ME, Li X, et al. APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Sci Transl Med. 2021;13(613):eabc9375.

[85]

Phiel CJ, Wilson CA, Lee VMY, Klein PS. GSK-3αregulates production of Alzheimer’s disease amyloid-βpeptides. Nature. 2003;423(6938):435-439.

[86]

Sannerud R, Esselens C, Ejsmont P, et al. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβpool. Cell. 2016;166(1):193-208.

[87]

Lee JH, Yang DS, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβin neurons, yielding senile plaques. Nat Neurosci. 2022;25(6):688-701.

[88]

Wang Y, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160(6):1061-1071.

[89]

Wang S, Sudan R, Peng V, et al. TREM2 drives microglia response to amyloid-βvia SYK-dependent and -independent pathways. Cell. 2022;185(22):4153-4169.

[90]

Schafer DP, Stillman JM. Microglia are SYK of Aβand cell debris. Cell. 2022;185(22):4043-4045.

[91]

Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276-1290.

[92]

Ennerfelt H, Frost EL, Shapiro DA, et al. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell. 2022;185(22):4135-4152.

[93]

Morenas-Rodríguez E, Li Y, Nuscher B, et al. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study. Lancet Neurol. 2022;21(4):329-341.

[94]

Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774.

[95]

Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583-2599.

[96]

Da Mesquita S, Papadopoulos Z, Dykstra T, et al. Meningeal lymphatics affect microglia responses and anti-Aβimmunotherapy. Nature. 2021;593(7858):255-260.

[97]

Kang JE, Lim MM, Bateman RJ, et al. Amyloid-βdynamics are regulated by Orexin and the Sleep-Wake Cycle. Science. 2009;326(5955):1005-1007.

[98]

Lucey BP, Hicks TJ, McLeland JS, et al. Effect of sleep on overnight cerebrospinal fluid amyloid βkinetics. Ann Neurol. 2018;83(1):197-204.

[99]

Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004-1008.

[100]

Carvalho DZ, St Louis EK, Knopman DS, et al. Association of excessive daytime sleepiness with longitudinal β-amyloid accumulation in elderly persons without dementia. JAMA Neurol. 2018;75(6):672-680.

[101]

Lucey BP, Mawuenyega KG, Patterson BW, et al. Associations between β-amyloid kinetics and the β-amyloid diurnal pattern in the central nervous system. JAMA Neurol. 2017;74(2):207-215.

[102]

Winer JR, Deters KD, Kennedy G, et al. Association of short and long sleep duration with amyloid-βburden and cognition in aging. JAMA Neurol. 2021;78(10):1187-1196.

[103]

Ashton NJ, Moseby-Knappe M, Benedet AL, et al. Alzheimer disease blood biomarkers in patients with out-of-hospital cardiac arrest. JAMA Neurol. 2023;80(4):388-396.

[104]

Coughlan GT, Betthauser TJ, Boyle R, et al. Association of age at menopause and hormone therapy use with tau and β-amyloid positron emission tomography. JAMA Neurol. 2023;80(5):462-473.

[105]

Bellaver B, Povala G, Ferreira PCL, et al. Astrocyte reactivity influences amyloid-βeffects on tau pathology in preclinical Alzheimer’s disease. Nat Med. 2023;29:1775-1781.

[106]

Benedet AL, Milà-Alomà M, Vrillon A, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease Continuum. JAMA Neurol. 2021;78(12):1471-1483.

[107]

Tsubuki S, Takai Y, Saido TC. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβto physiologically relevant proteolytic degradation. Lancet. 2003;361(9373):1957-1958.

[108]

Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018;320(11):1151-1162.

[109]

Knopman DS, Lundt ES, Therneau TM, et al. Association of initial β-amyloid levels with subsequent flortaucipir positron emission tomography changes in persons without cognitive impairment. JAMA Neurol. 2021;78(2):217-228.

[110]

Mattsson-Carlgren N, Salvadó G, Ashton NJ, et al. Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers. JAMA Neurol. 2023;80(4):360-369.

[111]

Nakamura A, Kaneko N, Villemagne VL, et al. High-performance plasma amyloid-βbiomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249-254.

[112]

Palmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 2019;76(9):1060-1069.

[113]

Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76(7):791-799.

[114]

Näslund J. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA. 2000;283(12):1571-1577.

[115]

Sepulcre J, Grothe MJ, Sabuncu M, et al. Hierarchical organization of tau and amyloid deposits in the cerebral cortex. JAMA Neurol. 2017;74(7):813-820.

[116]

Mattsson N, Palmqvist S, Stomrud E, Vogel J, Hansson O. Staging β-amyloid pathology with amyloid positron emission tomography. JAMA Neurol. 2019;76(11):1319-1329.

[117]

Monsell SE, Kukull WA, Roher AE, et al. Characterizing apolipoprotein E ϵ4 carriers and noncarriers with the clinical diagnosis of mild to moderate Alzheimer dementia and minimal β-amyloid peptide plaques. JAMA Neurol. 2015;72(10):1124-1131.

[118]

Xu S, Jiang JL, Zhang C, Zhu ZQ. ApoE transiently regulates hippocampus amyloid-beta deposition to stable learning and memory ability in adult rats exposed in sevoflurane. Ibrain. 2021;7(2):80-89.

[119]

Quiroz YT, Schultz AP, Chen K, et al. Brain imaging and blood biomarker abnormalities in children with autosomal dominant Alzheimer disease: a cross-sectional study. JAMA Neurol. 2015;72(8):912-919.

[120]

Lambert JC, Mann D, Goumidi L, et al. Effect of the APOE promoter polymorphisms on cerebral amyloid peptide deposition in Alzheimer’s disease. Lancet. 2001;357(9256):608-609.

[121]

Lippa C, Nee L, Mori H, George-Hyslop P. Aβ—42 deposition precedes other changes in PS-1 Alzheimer’s disease. Lancet. 1998;352(9134):1117-1118.

[122]

Yau WYW, Tudorascu DL, McDade EM, et al. Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2015;14(8):804-813.

[123]

Gordon BA, Blazey T, Su Y, et al. Longitudinal β-amyloid deposition and hippocampal volume in preclinical alzheimer disease and suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 2016;73(10):1192-1200.

[124]

Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 2018;17(3):241-250.

[125]

Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795-804.

[126]

Fortea J, Carmona-Iragui M, Benejam B, et al. Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet Neurol. 2018;17(10):860-869.

[127]

Fortea J, Vilaplana E, Carmona-Iragui M, et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet. 2020;395(10242):1988-1997.

[128]

Chhatwal JP, Schultz SA, McDade E, et al. Variant-dependent heterogeneity in amyloid βburden in autosomal dominant Alzheimer’s disease: cross-sectional and longitudinal analyses of an observational study. Lancet Neurol. 2022;21(2):140-152.

[129]

Janelidze S, Teunissen CE, Zetterberg H, et al. Head-to-head comparison of 8 plasma Amyloid-β42/40 assays in Alzheimer disease. JAMA Neurol. 2021;78(11):1375-1382.

[130]

Janelidze S, Pannee J, Mikulskis A, et al. Concordance between different amyloid immunoassays and visual amyloid positron emission tomographic assessment. JAMA Neurol. 2017;74(12):1492-1501.

[131]

Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-βattenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173-177.

[132]

Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216-223.

[133]

Pasquier F, Sadowsky C, Holstein A, et al. Two phase 2 multiple ascending-dose studies of vanutide cridificar (ACC-001) and QS-21 adjuvant in mild-to-moderate Alzheimer’s disease. J Alzheimer’s Dis. 2016;51(4):1131-1143.

[134]

Wiessner C, Wiederhold KH, Tissot AC, et al. The second-generation active Aβimmunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci. 2011;31(25):9323-9331.

[135]

Vandenberghe R, Riviere ME, Caputo A, et al. Active Aβimmunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimer’s Dement. 2017;3(1):10-22.

[136]

Farlow MR, Andreasen N, Riviere ME, et al. Long-term treatment with active Aβimmunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimer’s Res Ther. 2015;7(1):23.

[137]

Winblad B, Andreasen N, Minthon L, et al. Safety, tolerability, and antibody response of active Aβimmunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 2012;11(7):597-604.

[138]

Salloway S, Chalkias S, Barkhof F, et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022;79(1):13-21.

[139]

Sevigny J, Chiao P, Bussière T, et al. Addendum: the antibody aducanumab reduces Aβplaques in Alzheimer’s disease. Nature. 2017;546(7659):564.

[140]

Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβplaques in Alzheimer’s disease. Nature. 2016;537(7618):50-56.

[141]

Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691-1704.

[142]

Salloway S, Farlow M, McDade E, et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat Med. 2021;27(7):1187-1196.

[143]

Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med. 2018;378(4):321-330.

[144]

Ostrowitzki S, Bittner T, Sink KM, et al. Evaluating the safety and efficacy of crenezumab vs placebo in adults with early Alzheimer disease: two phase 3 randomized placebo-controlled trials. JAMA Neurol. 2022;79(11):1113-1121.

[145]

Demattos RB, Lu J, Tang Y, et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76(5):908-920.

[146]

Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322-333.

[147]

Luo Y, Bolon B, Kahn S, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci. 2001;4(3):231-232.

[148]

Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. BACE1-/-mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol Neurodegener. 2010;5:31.

[149]

Laird FM, Cai H, Savonenko AV, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-βamyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005;25(50):11693-11709.

[150]

Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci. 2008;105(14):5585-5590.

[151]

Ohno M, Sametsky EA, Younkin LH, et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron. 2004;41(1):27-33.

[152]

Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med. 2019;380(15):1408-1420.

[153]

Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2018;378(18):1691-1703.

[154]

Sperling R, Henley D, Aisen PS, et al. Findings of efficacy, safety, and biomarker outcomes of atabecestat in preclinical Alzheimer disease: a truncated randomized phase 2b/3 clinical trial. JAMA Neurol. 2021;78(3):293-301.

[155]

Neumann U, Ufer M, Jacobson LH, et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol Med. 2018;10(11):e9316.

[156]

Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369(4):341-350.

[157]

Green RC. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA. 2009;302(23):2557-2564.

[158]

DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-βefflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science. 2002;295(5563):2264-2267.

[159]

Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Aβimmunotherapy. Science. 2002;298(5597):1379.

[160]

Busche MA, Grienberger C, Keskin AD, et al. Decreased amyloid-βand increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat Neurosci. 2015;18(12):1725-1727.

[161]

Baruch K, Deczkowska A, Rosenzweig N, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med. 2016;22(2):135-137.

[162]

Zhao P, Xu Y, Jiang L, et al. A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer’s disease. Sci Transl Med. 2022;14(661):eabq0095.

[163]

Weggen S, Eriksen JL, Das P, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature. 2001;414(6860):212-216.

[164]

Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-βand tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401-412.

[165]

McAlpine CS, Park J, Griciuc A, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature. 2021;595(7869):701-706.

[166]

Jung H, Lee SY, Lim S, et al. Anti-inflammatory clearance of amyloid-βby a chimeric Gas6 fusion protein. Nat Med. 2022;28(9):1802-1812.

[167]

Cramer PE, Cirrito JR, Wesson DW, et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503-1506.

[168]

Ghosal K, Haag M, Verghese PB, et al. A randomized controlled study to evaluate the effect of bexarotene on amyloid-βand apolipoprotein E metabolism in healthy subjects. Alzheimer’s Dement. 2016;2(2):110-120.

[169]

Hu J, Liu CC, Chen XF, Zhang Y, Xu H, Bu G. Opposing effects of viral-mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβmetabolism in apoE4-targeted replacement mice. Mol Neurodegener. 2015;10:6.

[170]

Hudry E, Dashkoff J, Roe AD, et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci Transl Med. 2013;5(212):212ra161.

[171]

Zhao L, Gottesdiener AJ, Parmar M, et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol Aging. 2016;44:159-172.

[172]

Yin C, Ackermann S, Ma Z, et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nat Med. 2019;25(3):496-506.

[173]

Liu Q, Zhang J, Tran H, et al. LRP1 shedding in human brain: roles of ADAM10 and ADAM17. Mol Neurodegener. 2009;4:17.

[174]

Kurz C, Walker L, Rauchmann BS, Perneczky R. Dysfunction of the blood-brain barrier in Alzheimer’s disease: Evidence from human studies. Neuropathol Appl Neurobiol. 2022;48(3):e12782.

[175]

Pflanzner T, Janko MC, André-Dohmen B, et al. LRP1 mediates bidirectional transcytosis of amyloid-βacross the blood-brain barrier. Neurobiol Aging. 2011;32(12):2323.e1-2323.e11.

[176]

Tian X, Leite DM, Scarpa E, et al. On the shuttling across the blood-brain barrier via tubule formation: mechanism and cargo avidity bias. Sci Adv. 2020;6(48):eabc4397.

[177]

Tian X, Angioletti-Uberti S, Battaglia G. On the design of precision nanomedicines. Sci Adv. 2020;6(4):eaat0919.

[178]

Busche MA, Kekuš M, Adelsberger H, et al. Rescue of long-range circuit dysfunction in Alzheimer’s disease models. Nature Neurosci. 2015;18(11):1623-1630.

[179]

Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing activities protect against age-onset proteotoxicity. Science. 2006;313(5793):1604-1610.

[180]

Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22(5):719-728.

[181]

Gong B, Cao Z, Zheng P, et al. Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell. 2006;126(4):775-788.

[182]

Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell. 2009;139(6):1157-1169.

[183]

Karanth S, Nelson PT, Katsumata Y, et al. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults. JAMA Neurol. 2020;77(10):1299-1307.

[184]

Gestwicki JE, Crabtree GR, Graef IA. Harnessing chaperones to generate small-molecule inhibitors of amyloid ßaggregation. Science. 2004;306(5697):865-869.

[185]

Kim T, Vidal GS, Djurisic M, et al. Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science. 2013;341(6152):1399-1404.

[186]

Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22(4):524-528.

[187]

Ni R, Chen Z, Deán-Ben XL, et al. Multiscale optical and optoacoustic imaging of amyloid-βdeposits in mice. Nat Biomed Eng. 2022;6(9):1031-1044.

[188]

Mormino EC, Papp KV, Rentz DM, et al. Heterogeneity in suspected non-Alzheimer disease pathophysiology among clinically normal older individuals. JAMA Neurol. 2016;73(10):1185-1191.

[189]

Burnham SC, Bourgeat P, Doré V, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 2016;15(10):1044-1053.

[190]

Lu L, Zheng X, Wang S, et al. Anti-Aβagents for mild to moderate Alzheimer’s disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2020;91(12):1316-1324.

[191]

Arboleda-Velasquez JF, Lopera F, O’Hare M, et al. Resistance to autosomal dominant Alzheimer’s disease in an APOE3 Christchurch homozygote: a case report. Nat Med. 2019;25(11):1680-1683.

[192]

Pang M, Zhu L, Gabelle A, et al. Effect of reduction in brain amyloid levels on change in cognitive and functional decline in randomized clinical trials: an instrumental variable meta-analysis. Alzheimer’s Dementia. 2023;19(4):1292-1299.

[193]

Scarpa E, Cascione M, Griego A, Pellegrino P, Moschetti G, De Matteis V. Gold and silver nanoparticles in Alzheimer’s and Parkinson’s diagnostics and treatments. Ibrain. 2023;9(3):298-315.

[194]

Dong L, Li J, Zhang C, Liu DX. Gut microbiota: a new player in the pathogenesis of perioperative neurocognitive disorder? Ibrain. 2021;7(1):37-43.

[195]

Li XY, Qin HY, Li TT. Advances in the study of the relationship between Alzheimer’s disease and the gastrointestinal microbiome. Ibrain. 2022;8(4):465-475.

[196]

Deane R, Wu Z, Zlokovic BV. RAGE (Yin) versus LRP (Yang) balance regulates alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke. 2004;35(11 suppl 1):2628-2631.

[197]

Kafa H, Wang JTW, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Controlled Release. 2016;225:217-229.

[198]

Grimmer T, Goldhardt O, Guo LH, et al. LRP-1 polymorphism is associated with global and regional amyloid load in Alzheimer’s disease in humans in-vivo. NeuroImage Clin. 2014;4:411-416.

[199]

Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-βclearance in Alzheimer’s disease. Front Aging Neurosci. 2014;6:93.

[200]

Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front Aging Neurosci. 2015;7:136.

[201]

Ismail N, Ismail M, Azmi NH, et al. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed Pharmacother. 2017;95:780-788.

[202]

Wang J, Kong L, Guo RB, et al. Multifunctional icariin and tanshinone IIA co-delivery liposomes with potential application for Alzheimer’s disease. Drug Delivery. 2022;29(1):1648-1662.

[203]

Zhang Y, Hoppe AD, Swanson JA. Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. Proc Natl Acad Sci. 2010;107(45):19332-19337.

[204]

Murdock MH, Yang CY, Sun N, et al. Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature. 2024;627:149-156.

[205]

Rabin JS, Klein H, Kirn DR, et al. Associations of physical activity and β-amyloid with longitudinal cognition and neurodegeneration in clinically normal older adults. JAMA Neurol. 2019;76(10):1203-1210.

[206]

Lazarov O, Robinson J, Tang YP, et al. Environmental enrichment reduces Aβlevels and amyloid deposition in transgenic mice. Cell. 2005;120(5):701-713.

[207]

Pang JC, Aquino KM, Oldehinkel M, et al. Geometric constraints on human brain function. Nature. 2023;618(7965):566-574.

RIGHTS & PERMISSIONS

2024 The Author(s). Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

278

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/