Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass

Yi-Ming Zhuang , Ji-Yang Xu , Kun Zheng , Hong Zhang

Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 290 -304.

PDF
Ibrain ›› 2024, Vol. 10 ›› Issue (3) : 290 -304. DOI: 10.1002/ibra.12123
REVIEW

Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass

Author information +
History +
PDF

Abstract

Cardiopulmonary bypass (CPB) is often used in cardiothoracic surgery because its nonphysiological state causes pathophysiological changes in the body, causing multiorgan and multitissue damage to varying degrees. Postoperative cognitive dysfunction (POCD) is a common central nervous system complication after cardiac surgery. The etiology and mechanism of POCD are not clear. Neuroinflammation, brain mitochondrial dysfunction, cerebral embolism, ischemia, hypoxia, and other factors are related to the pathogenesis of POCD. There is a close relationship between CPB and POCD, as CPB can cause inflammation, hypoxia and reperfusion injury, and microemboli formation, all of which can trigger POCD. POCD increases medical costs, seriously affects patients' quality of life, and increases mortality. Currently, there is a lack of effective treatment methods for POCD. Commonly used methods include preoperative health management, reducing inflammation response during surgery, preventing microemboli formation, and implementing individualized rehabilitation programs after surgery. Strengthening preventive measures can minimize the occurrence of POCD and its adverse effects.

Keywords

cardiac surgery / cardiopulmonary bypass / perioperative neurocognitive disorder / postoperative cognitive dysfunction

Cite this article

Download citation ▾
Yi-Ming Zhuang, Ji-Yang Xu, Kun Zheng, Hong Zhang. Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass. Ibrain, 2024, 10(3): 290-304 DOI:10.1002/ibra.12123

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arrowsmith JE, Grocott HP, Reves JG, Newman MF. Central nervous system complications of cardiac surgery. Br J Anaesth. 2000;84(3):378-393.

[2]

Passaroni AC, Silva MAM, Yoshida WB. Cardiopulmonary bypass: development of John Gibbon’s heart-lung machine. Revista Brasileira de Cirurgia Cardiovascular. 2015;30(2):235-245.

[3]

Kumpaitiene B, Svagzdiene M, Sirvinskas E, et al. Cerebrovascular autoregulation impairments during cardiac surgery with cardiopulmonary bypass are related to postoperative cognitive deterioration: prospective observational study. Minerva Anestesiol. 2019;85(6):594-603.

[4]

Suo Z, Yang J, Zhou B, et al. Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood-brain barrier related processes in the hippocampus of aged mice during perioperative period. CNS Neurosci Ther. 2022;28(10):1576-1595.

[5]

Jablonski SG, Urman RD. The growing challenge of the older surgical population. Anesthesiol Clin. 2019;37(3):401-409.

[6]

Boone MD, Sites B, von Recklinghausen FM, Mueller A, Taenzer AH, Shaefi S. Economic burden of postoperative neurocognitive disorders among US Medicare patients. JAMA Netw Open. 2020;3(7):e208931.

[7]

Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology. 2022;239(3):709-728.

[8]

Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344(6):395-402.

[9]

Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation;cardiac surgery and abdominal surgery are not the same. Brain Behav Immun. 2016;54:178-193.

[10]

Qin J, Ma Q, Ma D, et al. Low-dose sevoflurane attenuates cardiopulmonary bypass (CPB)-induced postoperative cognitive dysfunction (POCD) by regulating hippocampus apoptosis via PI3K/AKT pathway. Curr Neurovasc Res. 2020;17(3):232-240.

[11]

Bhushan S, Li Y, Huang X, Cheng H, Gao K, Xiao Z. Progress of research in postoperative cognitive dysfunction in cardiac surgery patients: a review article. Int J Surg. 2021;95:106163.

[12]

Yang YS, He SL, Chen WC, et al. Recent progress on the role of non-coding RNA in postoperative cognitive dysfunction. Front Cell Neurosci. 2022;16:1024475.

[13]

Chen L, Dong R, Lu Y, et al. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice. Brain Behav Immun. 2019;78:188-201.

[14]

Lv G, Li C, Wang W, Li N, Wang K. Retracted article: silencing SP1 alleviated sevoflurane-induced POCD development via cholinergic anti-inflammatory pathway. Neurochem Res. 2020;45(9):2082-2090.

[15]

Zhao W, Xu Z, Cao J, et al. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflamm. 2019;16(1):230.

[16]

Jin Z, Hu J, Ma D, et al. Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth. 2020;125(4):492-504.

[17]

Liu YH, Wang DX, Li LH, et al. The effects of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive dysfunction after coronary artery bypass graft surgery. Anesth Analg. 2009;109(4):1013-1022.

[18]

Ye ZY, Xing HY, Wang B, Liu M, Lv PY. DL-3-n-butylphthalide protects the blood-brain barrier against ischemia/hypoxia injury via upregulation of tight junction proteins. Chin Med J. 2019;132(11):1344-1353.

[19]

Schenning KJ, Holden S, Davis BA, et al. Gene-specific DNA methylation linked to postoperative cognitive dysfunction in apolipoprotein E3 and E4 mice. J Alzheimer’s Dis. 2021;83(3):1251-1268.

[20]

Xiong L, Duan L, Xu W, Wang Z. Nerve growth factor metabolic dysfunction contributes to sevoflurane-induced cholinergic degeneration and cognitive impairments. Brain Res. 2019;1707:107-116.

[21]

Spies CD, Knaak C, Mertens M, et al. Physostigmine for prevention of postoperative delirium and long-term cognitive dysfunction in liver surgery: a double-blinded randomised controlled trial. Eur J Anaesthesiol. 2021;38(9):943-956.

[22]

Song SY, Meng XW, Xia Z, et al. Cognitive impairment and transcriptomic profile in hippocampus of young mice after multiple neonatal exposures to sevoflurane. Aging. 2019;11(19):8386-8417.

[23]

Gong M, Wang G, Li G, et al. Dysfunction of inflammation-resolving pathways is associated with postoperative cognitive decline in elderly mice. Behav Brain Res. 2020;386:112538.

[24]

Yang Y, Liu Y, Zhu J, et al. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radic Biol Med. 2022;178:134-146.

[25]

Gao Y, Han X, Wei L, et al. Study on the differential proteomics of rat hippocampal mitochondria during deep hypothermic circulatory arrest. Ann Transl Med. 2021;9(4):346.

[26]

Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the underlying mechanism of postoperative cognitive dysfunction and therapeutic strategies. Front Cell Neurosci. 2022;16:843069.

[27]

Xu F, Han L, Wang Y, et al. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med. 2023;21(1):7.

[28]

Danielson M, Wiklund A, Granath F, et al. Neuroinflammatory markers associate with cognitive decline after major surgery: findings of an explorative study. Ann Neurol. 2020;87(3):370-382.

[29]

Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation. 2018;15(1):109.

[30]

Shi J, Zou X, Jiang K, Wang F. SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway. World J Biol Psychiatry. 2020;21(10):757-765.

[31]

Wang J, Zhou Y, Li K, Li X, Guo M, Peng M. A noradrenergic lesion attenuates surgery-induced cognitive impairment in rats by suppressing neuroinflammation. Front Mol Neurosci. 2021;14:752838.

[32]

Liu X, Yu Y, Zhu S, et al. Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies. PLoS One. 2018;13(4):e0195659.

[33]

Zhao Z, Ma L, Li Y, et al. mir-124 protects against cognitive dysfunction induced by sevoflurane anesthesia in vivo and in vitro through targeting calpain small subunit 1 via NF-κB signaling pathway. Adv Clin Exp Med. 2021;30:701-709.

[34]

Xiang X, Yu Y, Tang X, Chen M, Zheng Y, Zhu S. Transcriptome profile in hippocampus during acute inflammatory response to surgery: toward early stage of PND. Front Immunol. 2019;10:149.

[35]

Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight. 2017;2(7):e91229.

[36]

Earls RH, Lee JK. The role of natural killer cells in Parkinson’s disease. Exp Mol Med. 2020;52(9):1517-1525.

[37]

Nemeth E, Vig K, Racz K, et al. Influence of the postoperative inflammatory response on cognitive decline in elderly patients undergoing on-pump cardiac surgery: a controlled, prospective observational study. BMC Anesthesiol. 2017;17(1):113.

[38]

Eertmans W, De Deyne C, Genbrugge C, et al. Association between postoperative delirium and postoperative cerebral oxygen desaturation in older patients after cardiac surgery. Br J Anaesth. 2020;124(2):146-153.

[39]

Lopez MG, Hughes CG, DeMatteo A, et al. Intraoperative oxidative damage and delirium after cardiac surgery. Anesthesiology. 2020;132(3):551-561.

[40]

Zheng J, Min S, Hu B, Liu Q, Wan Y. Nrdp1 is involved in hippocampus apoptosis in cardiopulmonary bypass-induced cognitive dysfunction via the regulation of ErbB3 protein levels. Int J Mol Med. 2019;43(4):1747-1757.

[41]

Zhou J, Zhang C, Fang X, Zhang N, Zhang X, Zhu Z. Activation of autophagy inhibits the activation of NLRP3 inflammasome and alleviates sevoflurane-induced cognitive dysfunction in elderly rats. BMC Neurosci. 2023;24(1):9.

[42]

Liu T, Deng R, Wang X, et al. Mechanisms of hypoxia in the hippocampal CA3 region in postoperative cognitive dysfunction after cardiopulmonary bypass. J Cardiothorac Surg. 2022;17(1):106.

[43]

Tian LJ, Yuan S, Zhou CH, Yan FX. The effect of intraoperative cerebral oximetry monitoring on postoperative cognitive dysfunction and ICU stay in adult patients undergoing cardiac surgery: an updated systematic review and meta-analysis. Front Cardiovasc Med. 2022;8:814313.

[44]

Xiao QX, Cheng CX, Deng R, et al. LncRNA-MYL2-2 and miR-124-3p are associated with perioperative neurocognitive disorders in patients after cardiac surgery. J Invest Surg. 2021;34(12):1297-1303.

[45]

Czyż-Szypenbejl K, Mędrzycka-Dąbrowska W, Kwiecień-Jaguś K, Lewandowska K. The occurrence of postoperative cognitive dysfunction (POCD)—systematic review. Psychiatr Pol. 2019;53(1):145-160.

[46]

Xie N, Yan S, Sun X, Liu H. Establish a nomogram of cardiac postoperative cognitive dysfunction. Heart Surg Forum. 2021;24(2): E320-E326.

[47]

Gregory SH, King CR, Ben Abdallah A, Kronzer A, Wildes TS. Abnormal preoperative cognitive screening in aged surgical patients: a retrospective cohort analysis. Br J Anaesth. 2021;126(1):230-237.

[48]

Decker J, Kaloostian CL, Gurvich T, et al. Beyond cognitive screening: establishing an interprofessional perioperative brain health initiative. J Am Geriatr Soc. 2020;68(10):2359-2364.

[49]

Bowden T, Hurt CS, Sanders J, Aitken LM. Predictors of cognitive dysfunction after cardiac surgery: a systematic review. Eur J Cardiovascu Nurs. 2022;21(3):192-204.

[50]

Moller J, Cluitmans P, Rasmussen L, et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet. 1998;351(9106):857-861.

[51]

Orobtsova M, Gorelik S, Belousova O, Avdeeva I, Krupenkina L. Prevention of cognitive frailty in patients of older age groups after open-heart surgery under cardiopulmonary bypass. Archives of Razi Institute. 2022;77(3):1113-1123. doi:10.22092/ARI.2022.357395.2035

[52]

Greaves D, Psaltis PJ, Davis DHJ, et al. Risk factors for delirium and cognitive decline following coronary artery bypass grafting surgery: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9(22):e017275.

[53]

Relander K, Hietanen M, Rantanen K, et al. Postoperative cognitive change after cardiac surgery predicts long-term cognitive outcome. Brain Behav. 2020;10(9):e01750.

[54]

Amado LA, Perrie H, Scribante J, Ben-Israel KA. Preoperative cognitive dysfunction in older elective noncardiac surgical patients in South Africa. Br J Anaesth. 2020;125(3):275-281.

[55]

Chen X, Gao F, Lin C, et al. mTOR-mediated autophagy in the hippocampus is involved in perioperative neurocognitive disorders in diabetic rats. CNS Neurosci Ther. 2022;28(4):540-553.

[56]

Wu J, Gao S, Zhang S, et al. Perioperative risk factors for recovery room delirium after elective non-cardiovascular surgery under general anaesthesia. Perioper Med. 2021;10(1):3.

[57]

Ozalp Horsanali B, Ozkalkanli MY, Tekgul ZT, Yilmaz F. Effect of preoperative hospitalisation period on postoperative cognitive dysfunction in patients undergoing hip surgery under regional anaesthesia. Int J Clin Pract. 2021;75(5):e14032.

[58]

Mahanna-Gabrielli E, Zhang K, Sieber FE, et al. Frailty is associated with postoperative delirium but not with postoperative cognitive decline in older noncardiac surgery patients. Anesth Analg. 2020;130(6):1516-1523.

[59]

Bhushan S, Huang X, Li Y, et al. Paravalvular leak after transcatheter aortic valve implantation its incidence, diagnosis, clinical implications, prevention, management, and future perspectives: a review article. Curr Probl Cardiol. 2022;47:100957.

[60]

Tschernatsch M, El Shazly J, Butz M, et al. Visual hallucinations following coronary artery bypass grafting: a prospective study. Medicina. 2022;58(10):1466.

[61]

Mitchell SJ, Merry AF. Perspective on cerebral microemboli in cardiac surgery: significant problem or much ado about nothing? J ExtraCorp Technol. 2015;47(1):10-15.

[62]

Jungwirth B, Zieglgansberger W, Kochs E, Rammes G. Anesthesia and postoperative cognitive dysfunction (POCD. Mini Rev Med Chem. 2009;9(14):1568-1579.

[63]

Lv G, Wang W, Sun M, Wang F, Ma Y, Li C. Inhibiting specificity protein 1 attenuated sevoflurane-induced mitochondrial stress and promoted autophagy in hippocampal neurons through PI3K/Akt/mTOR and α7-nAChR signaling. Neurosci Lett. 2023;794:136995.

[64]

He B, Wang J. METTL3 regulates hippocampal gene transcription via N6-methyladenosine methylation in sevoflurane-induced postoperative cognitive dysfunction mouse. Aging. 2021;13(19):23108-23118.

[65]

Wang YL, Zhang Y, Cai DS. Dexmedetomidine ameliorates postoperative cognitive dysfunction via the microRNA-381-mediated EGR1/p53 axis. Mol Neurobiol. 2021;58(10):5052-5066.

[66]

Dong W, Li X, Wang X, et al. Influence of dexmedetomidine on cognitive function and inflammatory factors in rats and analysis of its molecular mechanism after cardiac surgery under cardiopulmonary bypass. Cell Mol Biol. 2022;68(2):119-125.

[67]

Gao Z, Li Z, Deng R, et al. Dexmedetomidine improves postoperative neurocognitive disorder after cardiopulmonary bypass in rats. Neurol Res. 2021;43(2):164-172.

[68]

Kowalczyk M, Panasiuk-Kowalczyk A, Stadnik A, et al. Dexmedetomidine increases MMP-12 and MBP concentrations after coronary artery bypass graft surgery with extracorporeal circulation anaesthesia without impacting cognitive function: a randomised control trial. Int J Environ Res Public Health. 2022;19(24):16512.

[69]

Topcu AC, Bolukcu A, Ozeren K, Kavasoglu T, Kayacioglu I. Normoxic management of cardiopulmonary bypass reduces myocardial oxidative stress in adult patients undergoing coronary artery bypass graft surgery. Perfusion. 2021;36(3):261-268.

[70]

Peng YW, Major T, Mohammed A, Deatrick KB, Charpie JR. Normoxic reoxygenation ameliorates end-organ injury after cardiopulmonary bypass. J Cardiothorac Surg. 2020;15(1):134.

[71]

Habibi V, Habibi MR, Habibi A, Soleimani A. The protective effect of hypothermia on postoperative cognitive deficit may be attenuated by prolonged coronary artery bypass time: meta-analysis and meta-regression. Adv Clin Exp Med. 2020;29(10):1211-1219.

[72]

Gong M, Li L, Liu Y, et al. Moderate hypothermic circulatory arrest is preferable during cardiopulmonary bypass. Ther Hypothermia Temp Manag. 2020;10(2):114-121.

[73]

Zhang TJ, Hang J, Wen DX, Hang YN, Sieber FE. Hippocampus bcl-2 and bax expression and neuronal apoptosis after moderate hypothermic cardiopulmonary bypass in rats. Anesth Analg. 2006;102(4):1018-1025.

[74]

Li Y, Zhang B. Effects of anesthesia depth on postoperative cognitive function and inflammation: a systematic review and meta-analysis. Minerva Anestesiol. 2020;86(9):965-973.

[75]

Feng X, Hu J, Hua F, Zhang J, Zhang L, Xu G. The correlation of intraoperative hypotension and postoperative cognitive impairment: a meta-analysis of randomized controlled trials. BMC Anesthesiol. 2020;20:193.

[76]

den Os MM, van den Brom CE, van Leeuwen ALI, Dekker N. Microcirculatory perfusion disturbances following cardiopulmonary bypass: a systematic review. Crit Care. 2020;24(1):218.

[77]

Samanidis G, Kanakis M, Khoury M, et al. Antegrade and retrograde cerebral perfusion during acute type a aortic dissection repairin 290 patients. Heart Lung Circ. 2021;30(7):1075-1083.

[78]

Yang X, Huang X, Li M, Jiang Y, Zhang H. Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther Adv Neurol Disord. 2022;15:175628642211143.

[79]

van Zuylen ML, Kampman JM, Turgman O, et al. Prospective comparison of three methods for detecting peri-operative neurocognitive disorders in older adults undergoing cardiac and non-cardiac surgery. Anaesthesia. 2023;78:577-586.

[80]

Simone SM, Price CC, Floyd TF, et al. Preoperative cognition predicts clinical stroke/TIA and mortality after surgical aortic valve replacement in older adults. J Clin Exp Neuropsychol. 2022;44(8):550-561.

[81]

Hasan TF, Kelley RE, Cornett EM, Urman RD, Kaye AD. Cognitive impairment assessment and interventions to optimize surgical patient outcomes. Best Pract Res Clin Anaesthesiol. 2020;34(2):225-253.

[82]

Houghton JSM, Nickinson ATO, Bridgwood B, et al. Prevalence of cognitive impairment in individuals with vascular surgical pathology: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2021;61(4):664-674.

[83]

Juliana N, Abu Yazit NA, Kadiman S, et al. Intraoperative cerebral oximetry in open heart surgeries reduced postoperative complications: a retrospective study. PLoS One. 2021;16(5):e0251157.

[84]

Kamenskaya O, Klinkova A, Loginova I, Lomivorotov VV, Shmyrev V, Chernyavskiy A. Brain oxygen supply in older adults during coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2020;34(12):3275-3281.

[85]

Qin XW, Chen XL, Yao L. The value of intraoperative monitoring of cerebral oxygen saturation on postoperative cognitive function in elderly patients undergoing cardiac surgery. Zhonghua Yi Xue Za Zhi. 2021;101(5):345-349. doi:10.3760/cma.j.cn112137-20200527-01681

[86]

Oyoshi T, Maekawa K, Mitsuta Y, Hirata N. Predictors of early postoperative cognitive dysfunction in middle-aged patients undergoing cardiac surgery: retrospective observational study. J Anesth. 2023;37:357-363.

[87]

Yazit NAA, Juliana N, Das S, et al. Association of micro RNA and postoperative cognitive dysfunction: a review. Mini Rev Med Chem. 2020;20(17):1781-1790.

[88]

Yazit NAA, Juliana N, Kadiman S, et al. Microarray profiling of differentially expressed genes in coronary artery bypass grafts of high-risk patients with postoperative cognitive dysfunctions. Int J Environ Res Public Health. 2023;20(2):1457.

[89]

Wang Y, Huang A, Gan L, et al. Screening of potential genes and transcription factors of postoperative cognitive dysfunction via bioinformatics methods. Med Sci Monit. 2018;24:503-510.

[90]

Chen Y, Sun J, Chen Wk, et al. mir-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct Target Ther. 2019;4:27.

[91]

Tülay Aydın P, Göz M, Kankılıç N, Aydın MS, Koyuncu İ. Micro-RNA gene expressions during cardiopulmonary bypass. J Card Surg. 2021;36(3):921-927.

[92]

Han J, Pu CX, Xiao QX, et al. miRNA-124-3p targeting of LPIN1 attenuates inflammation and apoptosis in aged male rats cardiopulmonary bypass model of perioperative neurocognitive disorders. Exp Geront. 2021;155:111578.

[93]

Zhao J, Zhang W, Wang S, Li Z, Huang Y, Li L. Sevoflurane-induced POCD-associated exosomes delivered mir-584-5p regulates the growth of human microglia HMC3 cells through targeting BDNF. Aging. 2022;14(24):9890-9907.

[94]

Wang J, Zhang Y, Guo Z, et al. Effects of perinatal fluoride exposure on the expressions of miR-124 and miR-132 in hippocampus of mouse pups. Chemosphere. 2018;197:117-122.

[95]

Fan D, Chen X, Zhou H, et al. Plasma microRNA-221-3p as a biomarker for POCD after non-cardiac surgery. PLoS One. 2022;17(10):e0275917.

[96]

Wang W, Huo P, Zhang L, Lv G, Xia Z. Decoding competitive endogenous RNA regulatory network in postoperative cognitive dysfunction. Front Neurosci. 2022;16:972918.

[97]

Ma G, Sun P, Chen Y, et al. NLRP3 inflammasome activation contributes to the cognitive decline after cardiac surgery. Front Surg. 2022;9:992769.

[98]

Han Y, Sun W, Ren D, et al. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol. 2020;34:101538.

[99]

Wang J, Tang Y, Zhang J, et al. Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2. Redox Biol. 2022;52:102310.

[100]

Yan J, Luo A, Gao J, et al. The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res. 2019;11(3):1555-1568.

[101]

Sun Y, Wang Y, Ye F, et al. SIRT1 activation attenuates microglia-mediated synaptic engulfment in postoperative cognitive dysfunction. Front Aging Neurosci. 2022;14:943842.

[102]

Yan J, Luo A, Sun R, et al. Resveratrol mitigates hippocampal tau acetylation and cognitive deficit by activation SIRT1 in aged rats following anesthesia and surgery. Oxid Med Cell Longevity. 2020;2020:1-14.

[103]

Zhang J, Liu Y, Li H, et al. Stellate ganglion block improves postoperative cognitive dysfunction in aged rats by SIRT1-mediated white matter lesion repair. Neurochem Res. 2022;47(12):3838-3853.

[104]

Ma Y, Ji Y, Xu L, Li Z, Ge S. Obesity aggravated hippocampal-dependent cognitive impairment after sleeve gastrectomy in C57/BL6J mice via SIRT1/CREB/BDNF pathway. Exp Brain Res. 2022;240(11):2897-2906.

[105]

Ma LH, Wan J, Yan J, et al. Hippocampal SIRT1-mediated synaptic plasticity and glutamatergic neuronal excitability are involved in prolonged cognitive dysfunction of neonatal rats exposed to propofol. Mol Neurobiol. 2022;59(3):1938-1953.

[106]

Hong-Qiang H, Mang-Qiao S, Fen X, et al. SIRT1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol Behav. 2018;195:1-8.

[107]

Yan WJ, Wang DB, Ren D, et al. AMPKα1 overexpression improves postoperative cognitive dysfunction in aged rats through AMPK-SIRT1 and autophagy signaling. JCB. 2019;120(7):11633-11641.

[108]

Nurcahyo WI, Hadisaputro S, Muttaqin Z, et al. Difference in GFAP levels in POCD and Non-POCD patients after on pump CABG. Vasc Health Risk Manag. 2022;18:915-925.

[109]

Wang K, Cao X, Li Z, et al. Anesthesia and surgery-induced elevation of CSF sTREM2 is associated with early cognitive dysfunction after thoracoabdominal aortic dissection surgery. BMC Anesthesiol. 2022;22(1):413.

[110]

Xie X, Shen Z, Hu C, et al. Dexmedetomidine ameliorates postoperative cognitive dysfunction in aged mice. Neurochem Res. 2021;46(9):2415-2426.

[111]

Zhao WX, Zhang JH, Cao JB, et al. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity. J Neuroinflammation. 2017;14(1):17.

[112]

Luo A, Li S, Wang X, Xie Z, Li S, Hua D. Cefazolin improves anesthesia and surgery-induced cognitive impairments by modulating blood-brain barrier function, gut bacteria and short chain fatty acids. Front Aging Neurosci. 2021;13:748637.

[113]

Li Y, Wu ZY, Zheng WC, et al. Esketamine alleviates postoperative cognitive decline via stimulator of interferon genes/TANK-binding kinase 1 signaling pathway in aged rats. Brain Res Bull. 2022;187:169-180.

[114]

Li J, Zhu X, Yang S, et al. Lidocaine attenuates cognitive impairment after isoflurane anesthesia by reducing mitochondrial damage. Neurochem Res. 2019;44(7):1703-1714.

RIGHTS & PERMISSIONS

2023 The Authors. Ibrain published by Affiliated Hospital of Zunyi Medical University (AHZMU) and Wiley-VCH GmbH.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/