Phased T2T genome assemblies facilitate the mining of disease-resistance genes in Vitis davidii Open Access

Yuanyuan Luo , Zhenya Liu , Zhongxin Jin , Peng Li , Xibei Tan , Shuo Cao , Xu Wang , Zhongqi Liu , Xiaoya Shi , Siyang Huang , Liyuan Gu , Xiucai Fan , Jianfu Jiang , Lei Sun , Yongfeng Zhou , Chonghuai Liu , Xiaodong Xu , Zhiyao Ma , Ying Zhang

Horticulture Research ›› 2025, Vol. 12 ›› Issue (2) : 306

PDF (2521KB)
Horticulture Research ›› 2025, Vol. 12 ›› Issue (2) : 306 DOI: 10.1093/hr/uhae306
Articles

Phased T2T genome assemblies facilitate the mining of disease-resistance genes in Vitis davidii Open Access

Author information +
History +
PDF (2521KB)

Abstract

Grape is an important fruit crop, and its production faces significant threat from diseases, resulting in substantial economic loss. Wild grape relatives are valuable resources for the restoration of disease-resistance loci. However, available resistance loci in wild grape genomes remain largely unexplored. In this study, we assembled two phased genomes, including a high-resistant Chinese wild grape, Vitis davidii Föex, and a susceptible cultivar, Vitis vinifera L. cv. ‘Manicure Finger’. We detected a total of 36 688 structural variations (SVs), with the genes associated with heterozygous SVs showing an enrichment in allele-specific expression (ASE). Furthermore, we identified eight subgroups of R genes and found that 74.2% of R genes overlap with transposable elements (TEs). Among R genes, NBS-type genes exhibit higher expression profiles in the wild grape genome compared with those in the grape cultivar. Additionally, five specific NBS-type R gene clusters were identified in the wild grape genome that are absent in the cultivar. Through genetic mapping, we identified four quantitative trait loci (QTLs) associated with grape white rot resistance based on the V. davidii genome, within which six NBS-type R genes exhibit differential expression between wild and cultivated grapes. Overall, our study revealed the landscape of resistance genes in grape genomes, providing valuable genetic resources for further breeding programs.

Cite this article

Download citation ▾
Yuanyuan Luo, Zhenya Liu, Zhongxin Jin, Peng Li, Xibei Tan, Shuo Cao, Xu Wang, Zhongqi Liu, Xiaoya Shi, Siyang Huang, Liyuan Gu, Xiucai Fan, Jianfu Jiang, Lei Sun, Yongfeng Zhou, Chonghuai Liu, Xiaodong Xu, Zhiyao Ma, Ying Zhang. Phased T2T genome assemblies facilitate the mining of disease-resistance genes in Vitis davidii Open Access. Horticulture Research, 2025, 12(2): 306 DOI:10.1093/hr/uhae306

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This study was funded by the National Key Research and Development Program of China (2021YFD1200200), the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2021-ZFRI), the National Natural Science Foundation of China (31872057), and the China Agriculture Research System (CARS-29).

Author contributions

Y.Z. conceived and designed the project. Y.L., S.C., X.W., Z.L., X.S., and S.H. performed the genome assembly and gene annotation. P.L. and X.T. performed transcriptome analysis. C.L., X.F., J.J., L.S., and G.L. assisted in grape culture and sample collection. Z.L., Z.M., X.X., Z.J., and Y.Z. assisted in bioinformatics analyses and data visualization. Y.L. and Y.Z. wrote and purified the manuscript.

Data availability

All the raw sequencing data generated for this project have been deposited in the National Genomics Data Center (NGDC) Genome Sequence Archive (GSA) (https://ngdc.cncb.ac.cn/gsa/) with the number of CRA017609. The assembly and annotation as well as the sequences of centromeres and heterozygous regions have been deposited in Zenodo (https://zenodo.org/records/12671741).

Conflict of interest statement

The authors declare no conflict of interests.

Supplementary Data

Supplementary data is available at Horticulture Research online.

References

[1]

Alston JM, Sambucci O. Grapes in the world economy. In: CantuD, WalkerMA, TheGrape Genome.eds. Springer, 2019, 1-24

[2]

Dong Y, Duan S, Xia Q. et al. Dual domestications and origin of traits in grapevine evolution. Science. 2023;379:892-901

[3]

Zhou Y, Massonnet M, Sanjak JS. et al. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci USA. 2017;114:11715-20

[4]

Xiao H, Liu Z, Wang N. et al. Adaptive and maladaptive intro-gression in grapevine domestication. Proc Natl Acad Sci USA. 2023;120:e2222041120

[5]

Myles S, Boyko AR, Owens CL. et al. Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA. 2011;108:3530-5

[6]

Allaby R. Clonal crops show structural variation role in domes-tication. Nat Plants. 2019;5:915-6

[7]

Zhang G, Yan X, Zhang S. et al. The jasmonate-ZIM domain gene VqJAZ4 from the Chinese wild grape Vitis quinquangu-laris improves resistance to powdery mildew in Arabidopsis thaliana. Plant Physiol Biochem. 2019;143:329-39

[8]

Cadle-Davidson L. Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis. 2008;92:1577-84

[9]

Cadle-Davidson L, Chicoine DR, Consolie NH. Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis. 2011;95:202-11

[10]

Alleweldt G, Possingham JV. Progress in grapevine breeding. Theor Appl Genet. 1988;75:669-73

[11]

Reynolds A. The grapevine, viticulture, and winemaking: a brief introduction. In: MengB, MartelliGP, GolinoDA, FuchsM, Grapevine Viruses: Diagnostics and Management. Springer,eds. Molecular Biology, 2017, 3-29

[12]

Hocking AD, Leong SL, Kazi BA. et al. Fungi and mycotoxins in vineyards and grape products. Int J Food Microbiol. 2007;119:84-8

[13]

Daldoul S, Boubakri H, Gargouri M. et al. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. MolBiolRep. 2020;47:3141-53

[14]

Foria S, Magris G, Jurman I. et al. Extent of wild-to-crop interspe-cific introgression in grapevine (Vitis vinifera) as a consequence of resistance breeding and implications for the crop species definition. Hortic Res. 2022;9:uhab010

[15]

Migicovsky Z, Sawler J, Money D. et al. Genomic ancestry esti-mation quantifies use of wild species in grape breeding. BMC Genomics. 2016;17:478

[16]

Zhang, Peng W, Xiao H. et al. Population genomics highlights structural variations in local adaptation to saline coastal envi-ronments in woolly grape. J Integr Plant Biol. 2024;66:1408-26

[17]

Zhang K, du M, Zhang H. et al. The haplotype-resolved T2T genome of teinturier cultivar Yan 73 reveals the genetic basis of anthocyanin biosynthesis in grapes. Hortic Res. 2023;10:uhad205

[18]

Wang X, Tu M, Wang Y. et al. Telomere-to-telomere and gap-free genome assembly of a susceptible grapevine species (Thomp-son seedless) to facilitate grape functional genomics. Hortic Res. 2023;11:uhad260

[19]

Vondras AM, Lerno L, Massonnet M. et al. Rootstock influences the effect of grapevine leafroll-associated viruses on berry development and metabolism via abscisic acid signalling. Mol Plant Pathol. 2021;22:984-1005

[20]

Chin CS, Peluso P, Sedlazeck FJ. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Meth-ods. 2016;13:1050-4

[21]

Minio A, Massonnet M, Figueroa-Balderas R. et al. Diploid genome assembly of the wine grape Carménère. G3 (Bethesda). 2019;9:1331-7

[22]

Minio A, Massonnet M, Figueroa-Balderas R. et al. Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3 (Bethesda). 2019;9:755-67

[23]

Zhou Y, Minio A, Massonnet M. et al. The population genetics of structural variants in grapevine domestication. Nature Plants. 2019;5:965-79

[24]

Massonnet M, Cochetel N, Minio A. et al. The genetic basis of sex determination in grapes. Nat Commun. 2020;11:2902

[25]

Maestri S, Gambino G, Lopatriello G. et al. ’Nebbiolo’ genome assembly allows surveying the occurrence and functional implications of genomic structural variations in grapevines ( Vitis vinifera L.). BMC Genomics. 2022;23:159

[26]

Shirasawa K, Hirakawa H, Azuma A. et al. De novo whole-genome assembly in an interspecific hybrid table grape, ’Shine Muscat’. DNA Res. 2022;29:dsac040

[27]

Girollet N, Rubio B, Lopez-Roques C. et al. De novo phased assembly of the Vitis riparia grape genome. Scientific Data. 2019; 6:127

[28]

Cochetel N, Minio A, Guarracino A. et al. A super-pangenome of the North American wild grape species. Genome Biol. 2023; 24:290

[29]

Wang Y, Xin H, Fan P. et al. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. Plant J. 2021;105:1495-506

[30]

Cheng G, Wu D, Guo R. et al. Chromosome-scale genomics, metabolomics, and transcriptomics provide insight into the synthesis and regulation of phenols in Vitis adenoclada grapes. Front Plant Sci. 2023;14:1124046

[31]

Qin B, Liu Y, Huang ZY. et al. The complete chloroplast genome of Vitis heyneana Roem. et Schult., an economic plant to China. Mitochondrial DNA Part B. 2020;5:562-3

[32]

Ijaz S, Haq IU, Babar M. et al. Disease resistance genes’ iden-tification, cloning, and characterization in plants. In: Abd-ElsalamKA, MohamedHI, Cereal Diseases: Springer,eds. Nanobiotechno-logical Approaches for Diagnosis and Management. 2022, 249-69

[33]

Porter BW, Paidi M, Ming R. et al. Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Gen Genomics. 2009;281:609-26

[34]

Wan H, Yuan W, Bo K. et al. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics. 2013;14:109

[35]

Guo S, Zhang J, Sun H. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51-8

[36]

Luo S, Zhang Y, Hu Q. et al. Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol. 2012;159:197-210

[37]

Shao Z-Q, Zhang YM, Hang YY. et al. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understand-ing gained from and beyond the legume family. Plant Physiol. 2014;166:217-34

[38]

Zhang YM, Shao ZQ, Wang Q. et al. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae. J Integr Plant Biol. 2016;58:165-77

[39]

QianL-H, ZhouGC, SunXQ. et al. Distinct patterns of gene gain and loss: diverse evolutionary modes of NBS-encoding genes in three Solanaceae crop species. G3 Bethesda. 2017;7:1577-85

[40]

Tirnaz S, Bayer PE, Inturrisi F. et al. Resistance gene analogs in the Brassicaceae: identification, characterization, distribution, and evolution. Plant Physiol. 2020;184:909-22

[41]

Liu Y, Zeng Z, Zhang YM. et al. An angiosperm NLR atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion. Mol Plant. 2021;14:2015-31

[42]

Gu L, Si W, Zhao L. et al. Dynamic evolution of NBS-LRR genes in bread wheat and its progenitors. Mol Gen Genomics. 2015;290:727-38

[43]

Li K, Jiang W, Hui Y. et al. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Mol Plant. 2021;14:1745-56

[44]

Bao Y, Zeng Z, Yao W. et al. A gap-free and haplotype-resolved lemon genome provides insights into flavor synthesis and huanglongbing (HLB) tolerance. Hortic Res. 2023;10:uhad020

[45]

Zhang Y, Feng L, Fan X. et al. Genome-wide assessment of pop-ulation structure, linkage disequilibrium and resistant QTLs in Chinese wild grapevine. Sci Hortic. 2017;215:59-64

[46]

Chen H, Liu X, Li S. et al. The class B heat shock factor HSFB 1 reg-ulates heat tolerance in grapevine. Hortic Res. 2023;10:uhad001

[47]

LiuX, ChenH, LiS. et al. Natural variations of HSFA 2 enhance thermotolerance in grapevine. Hortic Res. 2023;10:uhac250

[48]

Li P, Tan X, Liu R. et al. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (Vitis vinifera L. × Vitis davidii Foex.) crossing. Hortic Res. 2023; 10:uhad063

[49]

Li B, Gschwend AR. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. Front Plant Sci. 2023;14:1234130

[50]

Shi X, Cao S, Wang X. et al. The complete reference genome for grapevine ( Vitis vinifera L.) genetics and breeding. Hortic Res. 2023;10:uhad061

[51]

He Q, Tang S, Zhi H. et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet. 2023;55:1232-42

[52]

Spielmann M, Lupiáñez DG, Mundlos S. Structural variation in the 3D genome. Nat Rev Genet. 2018;19:453-67

[53]

Joshi RK, Nayak S. Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. Physiol Mol Biol Plants. 2013;19:1-9

[54]

Chu C, Borges-Monroy R, Viswanadham VV. et al. Comprehen-sive identification of transposable element insertions using multiple sequencing technologies. Nat Commun. 2021;12:3836

[55]

Niu S, Hao F, Mo H. et al. Examination of molecular mechanism for the color mutation in Chinese wild grapevine (Vitis davidii). Acta Physiol Plant. 2017;39:171

[56]

Venkatesh J, Kang B-C. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. Curr Opin Plant Biol. 2019;50:9-17

[57]

Freitas L, Nery MF. Expansions and contractions in gene fam-ilies of independently-evolved blood-feeding insects. BMC Evol Biol. 2020;20:87

[58]

Wu J-Y, Xue J-Y, Van de Peer Y. Evolution of NLR resistance genes in Magnoliids: dramatic expansions of CNLs and mul-tiple losses of TNLs. Front Plant Sci. 2021;12:777157

[59]

Märkle H, Saur IML, Stam R. Evolution of resistance (R) gene specificity. Essays Biochem. 2022;66:551-60

[60]

Xu Z, Li Q, Marchionni L. et al. PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants. Nat Commun. 2023;14:7805

[61]

Kim S, Park J, Yeom SI. et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol. 2017;18:210

[62]

Su Y, Yang X, Wang Y. et al. Phased telomere-to-telomere ref-erence genome and pangenome reveal an expansion of resis-tance genes during apple domestication. Plant Physiol. 2024;195:2799-814

[63]

Long Q, Cao S, Huang G. et al. Population comparative genomics discovers gene gain and loss during grapevine domestication. Plant Physiol. 2024;195:1401-13

[64]

Tang D, Jia Y, Zhang J. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022;606:535-41

[65]

Guan J, Xu Y, Yu Y. et al. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biol. 2021;22:13

[66]

Rispe C, Legeai F, Nabity PD. et al. The genome sequence of the grape phylloxera provides insights into the evolution, adap-tation, and invasion routes of an iconic pest. BMC Biol. 2020; 18:90

[67]

Hessenauer P, Fijarczyk A, Martin H. et al. Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. Nat Ecol Evol. 2020;4:626-38

[68]

Mizuno H, Katagiri S, Kanamori H. et al. Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Sci Rep. 2020;10:872

[69]

Minamikawa MF, Kunihisa M, Noshita K. et al. Tracing founder haplotypes of Japanese apple varieties: application in genomic prediction and genome-wide association study. Hortic Res. 2021;8:49

[70]

Van de Weg E, Laurens F, Aranzana MJ. et al. The New EU Project FruitBreedomics:an integrated approach for increasing breeding effi-ciency in fruit tree crops. In: International Plant and Animal Genome Conference XX 2012. 2012,

[71]

Cheng H, Concepcion GT, Feng X. et al. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170-5

[72]

Vurture GW, Sedlazeck FJ, Nattestad M. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinfor-matics. 2017;33:2202-4

[73]

Alonge M, Lebeigle L, Kirsche M. et al. Automated assem-bly scaffolding using RagTag elevates a new tomato sys-tem for high-throughput genome editing. Genome Biol. 2022; 23:258

[74]

Durand NC, Shamim MS, Machol I. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95-8

[75]

Dudchenko O, Batra SS, Omer AD. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92-5

[76]

Robinson J, Turner D, Durand NC. et al. Juicebox. Js provides a cloud-based visualization system for Hi-C data. Cell Systems. 2018;6:256-258.e1

[77]

Rao SSP, Huang SC, et al.Glenn St Hilaire B. Cohesin loss eliminates all loop domains. Cell. 2017;171:305-320.e24

[78]

Simao FA, Waterhouse RM, Ioannidis P. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210-2

[79]

Deng Y, Liu S, Zhang Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant. 2022;15:1268-84

[80]

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573-80

[81]

Robinson JT, Thorvaldsdottir H, Turner D. et al. Igv. Js: an embed-dable JavaScript implementation of the integrative genomics viewer (IGV). Bioinformatics. 2023;39:btac830

[82]

Kim D, Paggi JM, Park C. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotech-nol. 2019;37:907-15

[83]

Pertea M, Pertea GM, Antonescu CM. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290-5

[84]

The UniProt Consortium. UniProt: the universal protein knowl-edgebase in 2023. Nucleic Acids Res. 2022;51:D523-31

[85]

Campbell MS, Law MY, Holt C. et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 2013;164:513-24

[86]

Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59

[87]

Haas BJ, Zeng Q, Pearson MD. et al. Approaches to fungal genome annotation. Mycology. 2011;2:118-41

[88]

Stanke M, Diekhans M, Baertsch R. et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637-44

[89]

Mistry J, Chuguransky S, Williams L. et al.Pfam:the protein families database in 2021. Nucleic Acids Res.2021;49:D412-d419

[90]

Ou S, Su W, Liao Y. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehen-sive pipeline. Genome Biol. 2019;20:275

[91]

Saha S, Bridges S, Magbanua ZV. et al. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 2008;36:2284-94

[92]

Li P, Quan X, Jia G. et al. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics. 2016;17:852

[93]

Kourelis J, Sakai T, Adachi H. et al. RefPlantNLR is a comprehen-sive collection of experimentally validated plant disease resis-tance proteins from the NLR family. PLoS Biol. 2021;19:e3001124

[94]

Chen Z, Liu X, Zhao P. et al. iFeatureOmega: an integrative platform for engineering, visualization and analysis of features from molecular sequences, structural and ligand data sets. Nucleic Acids Res. 2022;50:W434-47

[95]

Moon KR, van Dijk D, Wang Z. et al. Visualizing structure and transitions in high-dimensional biological data. Nat Biotechnol. 2019;37:1482-92

[96]

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094-100

[97]

Li H, Handsaker B, Wysoker A. et al. The sequence alignmen-t/map format and SAMtools. Bioinformatics. 2009;25:2078-9

[98]

Goel M, Sun H, Jiao WB. et al. SyRI: finding genomic rearrange-ments and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:277

[99]

Goel M, Schneeberger K. Plotsr: visualizing structural similar-ities and rearrangements between multiple genomes. Bioinfor-matics. 2022;38:2922-6

[100]

Marçais G, Delcher AL, Phillippy AM. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018; 14:e1005944

[101]

Heller D, Vingron M. SVIM-asm: structural variant detection from haploid and diploid genome assemblies. Bioinformatics. 2020;36:5519-21

[102]

Jeffares DC, Jolly C, Hoti M. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017;8:14061

[103]

Tamura K, Stecher G, Kumar S. MEGA11:molecular evolu-tionary genetics analysis version 11. MolBiolEvo.l 2021;38:3022-7

[104]

Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. MolBiolEvol. 2016;33:1635-8

[105]

Wingett SW, Andrews S. FastQ screen: a tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338

[106]

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30

[107]

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40

[108]

Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589-95

[109]

Brouard JS, Bissonnette N. Variant calling from RNA-seq data using the GATK joint genotyping workflow. Methods Mol Biol. 2022;2493:205-33

[110]

Jiang Y, Wu C, Zhang Y. et al. GTX. Digest. VCF: an online NGS data interpretation system based on intelligent gene ranking and large-scale text mining. BMC Med Genet. 2019;12:193

[111]

Purcell S, Neale B, Todd-Brown K. et al. PLINK: a tool set for whole-genome association and population-based linkage anal-yses. Am J Hum Genet. 2007;81:559-75

[112]

Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics. 2017; 33:3726-32

[113]

Broman KW, Gatti DM, Simecek P. et al. R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations. Genetics. 2019;211:495-502

AI Summary AI Mindmap
PDF (2521KB)

280

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/