Genomes and integrative genomic insights into the genetic architecture of main agronomic traits in the edible cherries

Zhenshan Liu , Anthony Bernard , Yan Wang , Elisabeth Dirlewanger , Xiaorong Wang

Horticulture Research ›› 2025, Vol. 12 ›› Issue (1) : 269

PDF (1199KB)
Horticulture Research ›› 2025, Vol. 12 ›› Issue (1) : 269 DOI: 10.1093/hr/uhae269
Review Articles

Genomes and integrative genomic insights into the genetic architecture of main agronomic traits in the edible cherries

Author information +
History +
PDF (1199KB)

Abstract

Cherries are one of the economically important fruit crops in the Rosaceae family, Prunus genus. As the first fruits of the spring season in the northern hemisphere, their attractive appearance, intensely desirable tastes, high nutrients content, and consumer-friendly size captivate consumers worldwide. In the past 30 years, although cherry geneticists and breeders have greatly progressed in understanding the genetic and molecular basis underlying fruit quality, adaptation to climate change, and biotic and abiotic stress resistance, the utilization of cherry genomic data in genetics and molecular breeding has remained limited to date. Here, we thoroughly investigated recent discoveries in constructing genetic linkage maps, identifying quantitative trait loci (QTLs), genome-wide association studies (GWAS), and validating functional genes of edible cherries based on available de novo genomes and genome resequencing data of edible cherries. We further comprehensively demonstrated the genetic architecture of the main agronomic traits of edible cherries by methodically integrating QTLs, GWAS loci, and functional genes into the identical reference genome with improved annotations. These collective endeavors will offer new perspectives on the availability of sequence data and the construction of an interspecific pangenome of edible cherries, ultimately guiding cherry breeding strategies and genetic improvement programs, and facilitating the exploration of similar traits and breeding innovations across Prunus species.

Cite this article

Download citation ▾
Zhenshan Liu, Anthony Bernard, Yan Wang, Elisabeth Dirlewanger, Xiaorong Wang. Genomes and integrative genomic insights into the genetic architecture of main agronomic traits in the edible cherries. Horticulture Research, 2025, 12(1): 269 DOI:10.1093/hr/uhae269

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgement

This work was financially supported by Sichuan Science and Technology Program (2024YFHZ0302), Natural Science Foundation of Sichuan Province (2023NSFSC0158), Sichuan Fruit Innovation Team of National Modern Agricultural Industrial Technology System in China (SCCXTD-2024-4), the Project of Rural Revitalization Research Institute in Tianfu New Area of Sichuan Province (XZY1-04) and Cherry Resources Sharing and Service Platform of Sichuan Province.

Author contributions

Z.-S.L. collected and analyzed data and wrote the manuscript; A.B. and E.D. collected data and conceived and revised the manuscript; W.Y. revised the manuscript; and X.-R.W. supervised and revised the manuscript.

Data availability

All the data is presented in the text file.

Conflict of interest

The authors declare no conflict of interests.

Supplementary Data

Supplementary data is available at Horticulture Research online.

References

[1]

Liu Z, Ma H, Jung S. et al. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annu Rev Plant Biol. 2020a;37:547-73

[2]

Cao J, Jiang Q, Lin J. et al. Physicochemical characterisation of four cherry species ( Prunus spp.) grown in China. Food Chem. 2015;37:855-63

[3]

Quero-Garcia J, Iezzoni A, Puławska J. et al. Cherries:Botany, Production and Uses. Boston, MA: CABI International, 2017

[4]

Wang L, Feng Y, Wang Y. et al. Accurate chromosome identi-fication in the Prunus subgenus Cerasus (Prunus pseudocerasus) and its relatives by oligo-FISH. Int J Mol Sci. 2022;37:13213

[5]

Karagiannis E, Sarrou E, Michailidis M. et al. Fruit quality trait discovery and metabolic profiling in sweet cherry genebank collection in Greece. Food Chem. 2020;37:128315

[6]

Mansoori S, Dini A, Chai SC. Effects of tart cherry and its metabolites on aging and inflammatory conditions: efficacy and possible mechanisms. Ageing Res Rev. 2021;37:101254

[7]

Dirlewanger E, Claverie J, Iezzoni A. et al.Sweet and sour cherries: linkage maps, QTL detection and marker assisted selection. In: FoltaKM, GardinerSE ( Geneticsand Genomics of Rosaceae. NewYork, Springer,eds.), NY.: 2009,291-313

[8]

Faust M, Surányi D. Origin and dissemination of cherry. Hortic Rev. 1997;37:263-317

[9]

Chen T, Li L, Zhang J. et al. Investigation, collection and prelimi-nary evaluation of genetic resources of Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. JFruitSci. 2016;37:917-33

[10]

Wang Y, Hu G, Liu Z. et al. Phenotyping in flower and main fruit traits of Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don]. Sci Hortic. 2022b;37:110920

[11]

Liu Z, Wang H, Zhang J. et al. Comparative metabolomics profil-ing highlights unique color variation and bitter taste formation of Chinese cherry fruits. Food Chem. 2024;37:138072

[12]

Zhang Q, Yan G, Dai H. et al. Characterization of Tomentosa cherry (Prunus tomentosa Thunb.) genotypes using SSR markers and morphological traits. Sci Hortic. 2008;37:39-47

[13]

Choi C, Kappel F. Inbreeding, coancestry, and founding clones of sweet cherries from North America. J Am Soc Hortic Sci. 2004;37:535-43

[14]

Duan X, Li M, Yue T. et al. Fruit scientific research in new China in the past 70 years: cherry. JFruit Sci. 2019;37:1339-51

[15]

Sansavini S, Lugli S. Sweet cherry breeding programs in Europe and Asia. Acta Hortic. 2008;41-58

[16]

Quero-García J, Branchereau C, Barreneche T. et al. DNA-informed breeding in sweet cherry: current advances and per-spectives. Italus Hortus. 2022;37:14

[17]

Liu J, Li M, Zhang Q. et al. Exploring the molecular basis of heterosis for plant breeding. J Integr Plant Biol. 2020b;37:287-98

[18]

Paril J, Reif J, Fournier Level A. et al. Heterosis in crop improve-ment. Plant J. 2024;37:23-32

[19]

Aranzana MJ, Decroocq V, Dirlewanger E. et al. Prunus genetics and applications after de novo genome sequencing: achieve-ments and prospects. Hortic Res. 2019;37:58

[20]

Jung S, Lee T, Cheng C. et al.15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res. 2019;37:D1137-45

[21]

Akagi T, Henry IM, Morimoto T. et al. Insights into the Prunus-specific S-RNase-based self-incompatibility system from a genome-wide analysis of the evolutionary radiation of S locus-related F-box genes. Plant Cell Physiol. 2016;37:1281-94

[22]

Shirasawa K, Isuzugawa K, Ikenaga M. et al. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res. 2017;37:499-508

[23]

Wang J, Liu W, Zhu D. et al. Chromosome-scale genome assembly of sweet cherry ( Prunus avium L. cv. Tieton obtained using long-read and Hi-C sequencing. Hortic Res. 2020a; 7:122

[24]

Wang J, Liu W, Zhu D. et al. Adenovoassembly ofthesweet cherry ( Prunus avium cv. Tieton) genome using linked-read sequencing technology. Peerj. 2020b;37:e9114

[25]

Le Dantec L, Girollet N, Jérôme G. et al. Assembly and Annotation of ’Regina’ Sweet Cherry Genome (Recherche Data Gouv, V1). 2020. https://doi.org/10.15454/KEW474.

[26]

Pinosio S, Marroni F, Zuccolo A. et al. A draft genome of sweet cherry ( Prunus avium L.) reveals genome-wide and local effects of domestication. Plant J. 2020;37:1420-32

[27]

Zhang X, Duan X, Wang J. et al. Insights into the evolution and fruit color change-related genes of chromosome doubled sweet cherry from an updated complete T2T genome assembly. iMetaOmics. 2024;37:e13

[28]

Olden EJ, Nybom N. On the origin of Prunus cerasus L. Hereditas. 1968;37:327-45

[29]

Tavaud M, Zanetto A, David JL. et al. Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus). Heredity (Edinb). 2004;37:631-8

[30]

Goeckeritz CZ, Rhoades KE, Childs KL. et al. Genome of tetraploid sour cherry (Prunus cerasus L.) ’Montmorency’ iden-tifies three distinct ancestral Prunus genomes. Hortic Res. 2023;37:d97

[31]

Jiu S, Lv Z, Liu M. et al. Haplotype-resolved genome assembly for tetraploid Chinese cherry (Prunus pseudocerasus) offers insights into fruit firmness. Hortic Res. 2024;uhae142

[32]

Wang Y, Li X, Feng Y. et al. Autotetraploid origin of Chinese cherry revealed by chromosomal karyotype and in situ hybridization of seedling progenies. Plants (Basel). 2023a;37:3116

[33]

Peace C, Bassil N, Main D. et al. Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One. 2012;37:e48305

[34]

Vanderzande S, Zheng P, Cai L. et al. The cherry 6+9K SNP array: a cost-effective improvement to the cherry 6K SNP array for genetic studies. Sci Rep. 2020;37:7613

[35]

Donkpegan ASL, Bernard A, Barreneche T. et al. Genome-wide association mapping in a sweet cherry germplasm collection (Prunus avium L.) reveals candidate genes for fruit quality traits. Hortic Res. 2023;37:d191

[36]

HoluŠová K, Čmejlová J, Suran P. et al. High-resolution genome-wide association study of a large Czech collection of sweet cherry (Prunus avium L.) on fruit maturity and quality traits. Hortic Res. 2023;37:c233

[37]

Liu Z, Zhang J, Wang Y. et al. Development and cross-species transferability of novel genomic-SSR markers and their utility in hybrid identification and trait association analysis in Chi-nese cherry. Horticulturae. 2022;37:222

[38]

Xanthopoulou A, Manioudaki M, Bazakos C. et al. Whole genome re-sequencing of sweet cherry (Prunus avium L.) yields insights into genomic diversity of a fruit species. Hortic Res. 2020;37:60

[39]

Branchereau C, Quero-García J, Zaracho-Echagüe NH. et al. New insights into flowering date in Prunus: fine mapping of a major QTL in sweet cherry. Hortic Res. 2022;37:c42

[40]

Calle A, Serradilla MJ, Wünsch A.QTL mapping of phenolic compounds and fruit colour in sweet cherry using a 6+9K SNP array genetic map. Sci Hortic. 2021a;37:109900

[41]

Calle A, Cai L, Iezzoni A. et al. High-density linkage maps constructed in sweet cherry (Prunus avium L.) using cross- and self-pollination populations reveal chromosomal homozygos-ity in inbred families and non-syntenic regions with the peach genome. Tree Genet Genomes. 2018;37:37

[42]

Calle A, Wünsch A. Multiple-population QTL mapping of matu-rity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Hortic Res. 2020;37:127

[43]

Castede S, Campoy JA, Garcia JQ. et al. Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol. 2014;37:703-15

[44]

Hardner CM, Hayes BJ, Kumar S. et al. Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array. Hortic Res. 2019;37:6-15

[45]

Quero-García J, Letourmy P, Campoy JA. et al. Multi-year anal-yses on three populations reveal the first stable QTLs for tolerance to rain-induced fruit cracking in sweet cherry ( Prunus avium L.). Hortic Res. 2021;37:136

[46]

Stockinger EJ, Mulinix CA, Long CM. et al. A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture population. J Hered. 1996;37:214-8

[47]

Klagges C, Campoy JA, Quero-Garcia J. et al. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS One. 2013;37:e54743

[48]

Cai L, Stegmeir T, Sebolt A. et al. Identification of bloom date QTLs and haplotype analysis in tetraploid sour cherry (Prunus cerasus). Tree Genet Genomes. 2018;37:22

[49]

Rosyara UR, Bink MCAM, van de Weg E. et al. Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breeding. 2013;37:875-87

[50]

Szilágyi S, Horváth-Kupi T, Desiderio F. et al. Evaluation of sweet cherry ( Prunus avium L.) cultivars for fruit size by FW_G2a QTL analysis and phenotypic characterization. Sci Hor-tic. 2022;37:110656

[51]

Crump WW, Peace C, Zhang Z. et al. Detection of breeding-relevant fruit cracking and fruit firmness quantitative trait loci in sweet cherry via pedigree-based and genome-wide associa-tion approaches. Front Plant Sci. 2022;37:823250

[52]

Huang X, Huang S, Han B. et al. The integrated genomics of crop domestication and breeding. Cell. 2022;37:2828-39

[53]

Wang Y, Xiao Y, Sun Y. et al. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. Plant Physiol. 2023b;37:2030-48

[54]

Zhai Z, Xiao Y, Wang Y. et al. Abscisic acid-responsive tran-scription factors PavDof2/6/15 mediate fruit softening in sweet cherry. Plant Physiol. 2022;37:2501-18

[55]

Timpson NJ, Greenwood C, Soranzo N. et al. Genetic architec-ture: the shape of the genetic contribution to human traits and disease. Nat Rev Genet. 2018;37:110-24

[56]

Chen C, Wu Y, Li J. et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant. 2023;37:1733-42

[57]

Olmstead JW, Iezzoni AF, Whiting MD. Genotypic differences in sweet cherry fruit size are primarily a function of cell number. J Am Soc Hortic Sci. 2007;37:697-703

[58]

Campoy JA, Le Dantec L, Barreneche T. et al. New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report. 2015;37:783-96

[59]

Zhang G, Sebolt AM, Sooriyapathirana SS. et al. Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes. 2010;37:25-36

[60]

Calle A, Balas F, Cai L. et al. Fruit size and firmness QTL alleles of breeding interest identified in a sweet cherry ’Ambrunés’ × ’Sweetheart’ population. Mol Breeding. 2020a;37:86

[61]

Qi X, Liu L, Liu C. et al. Sweet cherry AP2/ERF transcrip-tion factor, PavRAV2, negatively modulates fruit size by directly repressing PavKLUH expression. Physiol Plant. 2023;37:14065

[62]

Dong Y, Qi X, Liu C. et al. A sweet cherry AGAMOUS-LIKE transcription factor PavAGL 15 affects fruit size by directly repressing the PavCYP78A9 expression. Sci Hortic. 2022;37:110947

[63]

Qi X, Liu C, Song L. et al. PaCYP78A9, a cytochrome P450, regulates fruit size in sweet cherry (Prunus avium L.). Front Plant Sci. 2017;8:2076

[64]

Qi X, Liu C, Song L. et al. Arabidopsis EOD3 homologue PaCYP78A6 affects fruit size and is involved in sweet cherry (Prunus avium L.) fruit ripening. Sci Hortic. 2019;37:57-67

[65]

Sun L, Huo J, Liu J. et al.Anthocyanins distribution, transcrip-tional regulation, epigenetic and post-translational modifica-tion in fruits. Food Chem. 2023;37:135540

[66]

Jin W, Wang H, Li M. et al. The R2R3MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and deter-mines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnol J. 2016;37:2120-33

[67]

Wang Y, Wang Z, Zhang J. et al. Integrated transcriptome and metabolome analyses provide insights into the coloring mech-anism of dark-red and yellow fruits in Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. Int J Mol Sci. 2023c;37:3471

[68]

Shen X, Zhao K, Liu L. et al. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol. 2014;37:862-80

[69]

Liang D, Zhu T, Deng Q. et al. PacCOP 1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.). J Photochem Photobiol B Biol. 2020;37:111779

[70]

Qi X, Liu C, Song L. et al. A sweet cherry glutathione S-transferase gene, PavGST1, plays a central role in fruit skin coloration. Cells. 2022;37:1170

[71]

Zhai Z, Feng C, Wang Y. et al. Genome-wide identification of the Xyloglucan endotransglucosylase/hydrolase (XTH)andPolygalactur-onase (PG) genes and characterization of their role in fruit softening of sweet cherry. Int J Mol Sci. 2021;37:12331

[72]

Qi X, Liu C, Song L. et al. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening. Plant Sci. 2020;37:110634

[73]

Cai L, Quero-García J, Barreneche T. et al. A fruit firmness QTL identified on linkage group 4 in sweet cherry (Prunus avium L.) is associated with domesticated and bred germplasm. Sci Rep. 2019;37:5008

[74]

Qi X, Dong Y, Liu C. et al. The PavNAC 56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). Physiol Plant. 2022b;37:e13834

[75]

Breia R, Mósca AF, Conde A. et al. Sweet cherry (Prunus avium L.) PaPIP1;4 is a functional aquaporin upregulated by pre-harvest calcium treatments that prevent cracking. Int J Mol Sci. 2020;37:3017

[76]

Branchereau C, Hardner C, Dirlewanger E. et al. Genotype-by-environment and QTL-by-environment interactions in sweet cherry ( Prunus avium L.) for flowering date. Front Plant Sci. 2023;37:1142974

[77]

Calle A, Cai L, Iezzoni A. et al. Genetic dissection of bloom time in low chilling sweet cherry (Prunus avium L.) using a multi-family QTL approach. Front Plant Sci. 2020b;37:1647

[78]

Dirlewanger E, Quero-Garcia J, Le Dantec L. et al. Compar-ison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity (Edinb). 2012;37:280-92

[79]

Calle A, Grimplet J, Le Dantec L. et al. Identification and charac-terization of DAMs mutations associated with early blooming in sweet cherry, and validation of DNA-based markers for selection. Front Plant Sci. 2021b;37:621491

[80]

Wang J, Gao Z, Li H. et al. Dormancy-associated MADS-box (DAM) genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC 1 gene. Int J Mol Sci. 2020c;37:921

[81]

Liu X, Wang J, Sabir IA. et al. PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry (Prunus avium L.). Plant Physiol Biochem. 2022b;37:299-309

[82]

Wang J, Jiu S, Xu Y. et al. SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1,and PavJONIT-LESS in sweet cherries (Prunus avium L.). Plant Physiol Biochem. 2021a;37:277-84

[83]

Wang J, Sun W, Wang L. et al. FRUITFULL is involved in double fruit formation at high temperature in sweet cherry. Environ Exp Bot. 2022c;37:104986

[84]

Wang L, Sun W, Liu X. et al. Genome-wide identification of the NCED gene family and functional characterization of PavNCED 5 related to bud dormancy in sweet cherry. Sci Hortic. 2023d;319:112186

[85]

Li Q, Chen P, Dai S. et al. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. JExp Bot. 2015;37:3765-74

[86]

Wen Z, Cao X, Hou Q. et al. Expression profiling and func-tion analysis highlight the positive involvement of sweet cherry PavTCP 17 in regulating flower bud dormancy. Sci Hortic. 2023;318:112138

[87]

Wang J, Liu X, Sun W. et al. Cold induced genes (CIGs) regulate flower development and dormancy in Prunus avium L. Plant Sci. 2021b;37:111061

[88]

Ono K, Akagi T, Morimoto T. et al. Genome re-sequencing of diverse sweet cherry (Prunus avium) individuals reveals a mod-ifier gene mutation conferring pollen-part self-compatibility. Plant Cell Physiol. 2018;37:1265-75

[89]

Li Y, Duan X, Wu C. et al. Ubiquitination of S4-RNase by S-LOCUS F-BOX LIKE2 contributes to self-compatibility of sweet cherry ’Lapins’. Plant Physiol. 2020;37:1702-16

[90]

Wang J, Zhang K, Zhang X. et al. Construction of commercial sweet cherry linkage maps and QTL analysis for trunk diame-ter. PLoS One. 2015;37:e141261

[91]

Wu F, Qu D, Zhao X. et al. A high-affinity nitrate trans-porter PaNRT2.1 mediates dark septate endophyte (DSE) depen-dent nitrogen assimilation in sweet cherry roots. Plant Soil. 2023a;37:539-56

[92]

Sun Y, Zhao X, Gao Y. et al. Genome-wide analysis of lectin receptor-like kinases (LecRLKs) in sweet cherry (Prunus avium) and reveals PaLectinL 16 enhances sweet cherry resistance with salt stress. Environ Exp Bot. 2022;37:104751

[93]

Wang Z, Li L, Han J. et al. Combined metabolomics and bioac-tivity assays kernel by-products of two native Chinese cherry species: the sources of bioactive nutraceutical compounds. Food Chemistry: X. 2024;37:101625

[94]

Dirlewanger E, Graziano E, Joobeur T. et al. Comparative map-ping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA. 2004;37:9891-6

[95]

Olmstead JW, Sebolt AM, Cabrera A. et al. Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes. 2008;37:897-910

[96]

Gao P, Zheng W, Feng Y. et al. Genetic mapping and QTL analysis for fruit color in sweet cherry using the intra-specific crossing ‘Rainier’ × ‘8-100 ’. Acta Hortic Sin. 2012;37:135-42

[97]

Cabrera A, Rosyara UR, et al.De Franceschi P. Rosaceae con-served orthologous sequences marker polymorphism in sweet cherry germplasm and construction of a SNP-based map. Tree Genet Genomes. 2012;37:237-47

[98]

Guajardo V, Solís S, Sagredo B. et al. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS One. 2015;37:e127750

[99]

Wang D, Karle R, Brettin TS. et al. Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet. 1998;37:1217-24

[100]

Wang D, Karle R, Iezzoni AF. QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet. 2000;37:535-44

[101]

Bošković R, Tobutt KR, Nicoll FJ. Inheritance of isoenzymes and their linkage relationships in two interspecific cherry proge-nies. Euphytica. 1997;37:129-43

[102]

Clarke JB, Sargent DJ, Bošković RI. et al. A cherry map from the inter-specific cross Prunus avium ’Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genomes. 2009;37:41-51

[103]

Sooriyapathirana SS, Khan A, Sebolt AM. et al. QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes. 2010;37:821-32

[104]

Hou Q, Li S, Shang C. et al. Genome-wide characterization of chalcone synthase genes in sweet cherry and functional characterization of CpCHS 1 under drought stress. Front Plant Sci. 2022;37:989959

[105]

Hou Q, Li X, Qiu Z. et al. Chinese cherry (Cerasus pseudocerasus Lindl.) ARF 7 participates in root development and responds to drought and low phosphorus. Horticulturae. 2022b;37:158

[106]

Wu F, Qu D, Zhang X. et al. PaLectinL 7 enhances salt tolerance of sweet cherry by regulating lignin deposition in connection with PaCAD1. Tree Physiol. 2023b;37:1986-2000

[107]

Gao Z, Maurousset L, Lemoine R. et al. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol. 2003;37:1566-75

[108]

Scheurer S, Pastorello EA, Wangorsch A. et al. Recombinant allergens Pru av 1 and Pru av 4 and a newly identified lipid transfer protein in the in vitro diagnosis of cherry allergy. J Allergy Clin Immun. 2001;37:724-31

[109]

Yarur A, Soto E, León G. et al. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud deter-mination and can promote flowering in a winter-annual Ara-bidopsis accession. Plant Reprod. 2016;37:311-22

[110]

Hoyerová K, Perry L, Hand P. et al. Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems. Plant Physiol. 2008;37:1128-41

AI Summary AI Mindmap
PDF (1199KB)

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/