CsABCG11.2 mediates theanine uptake to alleviate cadmium toxicity in tea plants ( Camellia sinensis)

Xulei Hao1,2, Long Xiahou1,2, Hanyang Zhao1,2, Jiatong Liu1,2, Fei Guo1,2, Pu Wang1,2, Mingle Wang1,2, Yu Wang1,2, Dejiang Ni1,2, Hua Zhao1,2()()

PDF
Horticulture Advances ›› 2024, Vol. 2 ›› Issue (1) : 19. DOI: 10.1007/s44281-024-00036-5
Research Article

CsABCG11.2 mediates theanine uptake to alleviate cadmium toxicity in tea plants ( Camellia sinensis)

  • Xulei Hao1,2, Long Xiahou1,2, Hanyang Zhao1,2, Jiatong Liu1,2, Fei Guo1,2, Pu Wang1,2, Mingle Wang1,2, Yu Wang1,2, Dejiang Ni1,2, Hua Zhao1,2()()
Author information +
History +

Abstract

Theanine (Thea) is a unique metabolite in tea plants, but its physiological functions remain elusive. A low soil pH increases cadmium (Cd) availability, affecting the quality of tea plant products. In this study, we found that Thea reversed the Cd-induced reduction in free amino acid (FAA) and caffeine (CAF) in the young tea leaves, as well as the down-regulation in the expression of nitrate transporters CsNRT1.2 and CsNRT2.5, and genes responsible for the nitrogen (N) assimilation. We demonstrated that Thea could alleviate Cd-induced oxidative stresses and enhance photosynthesis. Moreover, an ATP-binding cassette (ABC) transporter, CsABCG11.2, could uptake distinct Cd substrates and the five major amino acids in tea plants. Heterologous expression of CsABCG11.2 in yeast indicated a competitive absorption between Cd and Thea in a concentration-dependent pattern. CsABCG11.2-overexpressing Arabidopsis plants exhibited increased sensitivity to Cd due to enhanced Cd concentration, accumulation in the shoots, and reduction in the primary root length. Exogenous application of Thea at environmentally regular levels attenuated the adverse effects of Cd-induced growth inhibition and chlorosis in CsABCG11.2-overexpressing Arabidopsis plants. Knockdown of CsABCG11.2 tea plants significantly lowered Cd levels in young shoots. Our results suggest that Thea plays beneficial roles in alleviating Cd stress directly or indirectly by modulating CsABCG11.2-mediated Cd uptake and translocation within plants.

Keywords

Cadmium (Cd) / CsABCG11.2 / Tea plant / Theanine

Cite this article

Download citation ▾
Xulei Hao, Long Xiahou, Hanyang Zhao, Jiatong Liu, Fei Guo, Pu Wang, Mingle Wang, Yu Wang, Dejiang Ni, Hua Zhao. CsABCG11.2 mediates theanine uptake to alleviate cadmium toxicity in tea plants ( Camellia sinensis). Horticulture Advances, 2024, 2(1): 19 https://doi.org/10.1007/s44281-024-00036-5

References

[1]
?kesson A, Barregard L, Bergdahl IA, Nordberg GF, Nordberg M, Skerfving S. Non-renal effects and the risk assessment of environmental cadmium exposure. Environ Health Perspect. 2014;122:431–8. https://doi.org/10.1289/ehp.1307110.
[2]
Besnard J, Pratelli R, Zhao C, Sonawala U, Collakova E, Pilot G, et al. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. J Exp Bot. 2016;67:6385–97. https://doi.org/10.1093/jxb/erw412.
[3]
Brunetti P, Zanella L, DePaolis A, DiLitta D, Cecchetti V, Falasca G, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot. 2015;66:3815–29. https://doi.org/10.1093/jxb/erv185.
[4]
Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhanceactivities of superoxide dismutase, ascorbate peroxidase, and glutathione reductasein bean leaves. Plant Physiol. 1992;98:1222–7. https://doi.org/10.1104/pp.98.4.1222.
[5]
Chen Z, Lin S, Li J, Chen T, Gu Q, Yang T, et al. Thea improves salt stress tolerance via modulating redox homeostasis in tea plants (Camellia sinensis L.). Front Plant Sci. 2021;12:770398. https://doi.org/10.3389/fpls.2021.770398.
[6]
Deng Y, Xiao W, Chen L, Liu Q, Liu Z, Gong Z. In vivo antioxidative effects of L-Thea in the presence or absence of Escherichia coli-induced oxidative stress. J Funct Foods. 2016;24:527–36. https://doi.org/10.1016/j.jff.2016.04.029.
[7]
Dong C, Li F, Yang T, Feng L, Zhang S, Li F, et al. Thea transporters identified in tea plants (Camellia sinensis L.). Plant J. 2020;101:57–70. https://doi.org/10.1111/tpj.14517.
[8]
Du Y, Hu X, Wu X, Shu Y, Jiang Y, Yan X. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess. 2013;185:9843–56. https://doi.org/10.1007/s10661-013-3296-y.
[9]
Fang Y, Deng X, Lu X, Zheng J, Jiang H, Rao Y, et al. Differential phosphoproteome study of the response to cadmium stress in rice. Ecotoxicol Environ Saf. 2019;180:780–8. https://doi.org/10.1016/j.ecoenv.2019.05.068.
[10]
Feng L, Yang T, Zhang Z, Li F, Chen Q, Sun J, et al. Identification and characterization of cationic amino acid transporters (CATs) in tea plant (Camellia sinensis). Plant Growth Regul. 2018;84:57–69. https://doi.org/10.1007/s10725-017-0321-0.
[11]
Fu S, Lu Y, Zhang X, Yang G, Chao D, Wang Z, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot. 2019;70:5909–18. https://doi.org/10.1093/jxb/erz335.
[12]
Giannopolitis CN, Ries SK. Superoxide dismutases: I. Occurrence in Higher. Plants Plant Physiol. 1977;59:309–14. https://doi.org/10.1104/pp.59.2.309.
[13]
Gong Z, Lin L, Liu Z, Zhang S, Liu A, Chen L. Immunemodulatory effects and mechanism of action of L-Thea on ETEC-inducedimmune-stressed mice via nucleotide-binding oligomerization domain-likereceptor signaling pathway. J Funct Foods. 2019;54:32–40. https://doi.org/10.1016/j.jff.2019.01.011.
[14]
Gr?fe K, Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. J Exp Bot. 2021;72:92–106. https://doi.org/10.1093/jxb/eraa260.
[15]
Guan M, Zhu Y, Liu X, Jin C. Induction of S-nitrosoglutathione reductase reduces root cadmium uptake by inhibiting Iron-regulatedtransporter 1. Plant Soil. 2019;438:251–62. https://doi.org/10.1007/s11104-019-04014-z.
[16]
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–11. https://doi.org/10.1007/s004250050524.
[17]
Hua Y, Chen J, Zhou T, Zhang T, Shen D, Feng Y, et al. Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum). J Exp Bot. 2022;73:7516–37. https://doi.org/10.1093/jxb/erac364.
[18]
Huang W, Ma D, Liu H, Luo J, Wang P, Wang M, et al. Genome-wide identification of CsATGs in tea plant and the involvement of CsATG8e in nitrogen utilization. Int J Mol Sci. 2020;21:7043. https://doi.org/10.3390/ijms21197043.
[19]
Hwang J, Song W, Hong D, Ko D, Yamaoka Y, Jang S, et al. Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant. 2016;9:338–55. https://doi.org/10.1016/j.molp.2016.02.003.
[20]
Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics. 2019;11:225. https://doi.org/10.1039/c8mt00247a.
[21]
Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61:682–99. https://doi.org/10.1007/s00018-003-3336-9.
[22]
Kang J, Hwang J, Lee M, Kim Y, Assmann SM, Martinoia E, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci. 2010;107:2355–60. https://doi.org/10.1073/pnas.0909222107.
[23]
Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007;50:207–18. https://doi.org/10.1111/j.1365-313x.2007.03044.x.
[24]
Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, et al. Expression of iron-acquisition-related genes in iron-deficientrice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot. 2005;56:1305–16. https://doi.org/10.1093/jxb/eri131.
[25]
K?hl K. Population-specific traits and their implication for the evolution of a drought-adapted ecotype in armeria maritima. Bot Acta. 1996;109:206–15. https://doi.org/10.1111/j.1438-8677.1996.tb00565.x.
[26]
Le Hir R, Sorin C, Chakraborti D, Moritz T, Schaller H, Tellier F, et al. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. Plant J. 2013;76:811–24. https://doi.org/10.1111/tpj.12334.
[27]
Lee M, Lee K, Lee J, Noh EW, Lee Y. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol. 2005;138:827–36. https://doi.org/10.1104/pp.104.058107.
[28]
Lei M, Tie B, Song Z, Liao B, Lepo JE, Huang Y. Heavy metalpollution and potential health risk assessment of white rice around mine areas in Hunan Province, China. Food Secur. 2015;7:45–54. https://doi.org/10.1007/s12571-014-0414-9.
[29]
Li Z, Li L, Pan G, Chen GPJ. Bioavailability of Cd in a soil-rice system in China: soil type versus genotype effects. Plant Soil. 2005;271:165–73. https://doi.org/10.1007/s11104-004-2296-7.
[30]
Li X, Ahammed GJ, Zhang Y, Zhang G, Sun Z, Zhou J, et al. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biol. 2015;17:81–9. https://doi.org/10.1111/plb.12211.
[31]
Li X, Wei J, Ahammed GJ, Zhang L, Li Y, Yan P, et al. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing Thea biosynthesis in Camellia sinensis L. Front Plant Sci. 2018;9:1016. https://doi.org/10.3389/fpls.2018.01016.
[32]
Li F, Dong C, Yang T, Bao S, Fang W, Lucas WJ, et al. The tea plant CsLHT1 and CsLHT6 transporters take up amino acids, as a nitrogen source, from the soil of organic tea plantations. Hort Res. 2021;8:178. https://doi.org/10.1038/s41438-021-00615-x.
[33]
Liu J, Zhang Q, Liu M, Ma M, Shi Y, Ruan J. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season. J Agric Food Chem. 2016;64:3302–9. https://doi.org/10.1021/acs.jafc.6b00404.
[34]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.
[35]
Meng X, Li W, Shen R, Lan P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. J Hazard Mater. 2022;422:126913. https://doi.org/10.1016/j.jhazmat.2021.126913.
[36]
Nordberg GF. Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol. 2009;238:192–200. https://doi.org/10.1016/j.taap.2009.03.015.
[37]
Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotech Bioch. 2011;75:1211–3. https://doi.org/10.1271/bbb.110193.
[38]
Park J, Song W, Ko D, Eom Y, Hansen TH, Schiller M, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012;69:278–88. https://doi.org/10.1111/j.1365-313x.2011.04789.x.
[39]
Raichaudhuri A. Arabidopsis thaliana MRP1 (AtABCC1) nucleotide binding domain contributes to arsenic stress tolerance with serine triad phosphorylation. Plant Physiol Biochem. 2016;108:109–20. https://doi.org/10.1016/j.plaphy.
[40]
Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, et al. GABA signalling modulates plant growth bydirectly regulating the activity of plant-specific anion transporters. Nat Commun. 2015;6:7879. https://doi.org/10.1038/ncomms8879.
[41]
Rea PA. Plant ATP-binding cassette transporters. Annu Rev Plant Biol. 2007;58:347–75. https://doi.org/10.1146/annurev.arplant.57.032905.105406.
[42]
Sarwar S, Ahmad F, Waheed A, Zaman QU. Study on the determination of nutrient status of NTRI tea gardens soils. Sci Technol Dev. 2011;30:39–43.
[43]
Sasaki A, Yamaji N, Yokosho K, Ma J. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell. 2012;24:2155–67. https://doi.org/10.1105/tpc.112.096925.
[44]
Sasaki A, Yamaji N, Ma J. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot. 2014;65:6013–21. https://doi.org/10.1093/jxb/eru340.
[45]
Shan D, Zhang Q, Guo J, Liu S, Chen Z, Zhou T, et al. Influence of Thea on the growth and physiological indexes of tobacco seedlings. J Anhui Agric University. 2015;42:283–9.
[46]
Shi M, Wang S, Zhang Y, Wang S, Zhao J, Feng H, et al. Genome-wide characterization and expression analysis of ATP-binding cassette (ABC) transporters in strawberry reveal the role of FvABCC11 in cadmium tolerance. Sci Hortic. 2020;271:109464. https://doi.org/10.1016/j.scienta.2020.109464.
[47]
Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA. 2010;107:21187–92. https://doi.org/10.1073/pnas.1013964107.
[48]
Su Y, Frommer W, Ludewig U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol. 2004;136:3104–13. https://doi.org/10.1104/pp.104.045278.
[49]
Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell. 2003;15:1263–80. https://doi.org/10.1105/tpc.010256.
[50]
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Bandyopadhyay A, Makam SN, Lee OR, et al. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell. 2005;17:2922–39. https://doi.org/10.1105/tpc.105.035816.
[51]
Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: persperctives for reducing grain cadmium accumulation. Rice. 2012;5:5. https://doi.org/10.1186/1939-8433-5-5.
[52]
Wang W, Xin H, Wang M, Ma Q, Wang L, Kaleri NA, et al. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci. 2016;7:385. https://doi.org/10.3389/fpls.2016.00385.
[53]
Wang H, Liu Y, Peng Z, Li J, Huang W, Liu Y, et al. Ectopic expression of poplar ABC transporter PtoABCG36 confers Cd tolerance in Arabidopsis thaliana. Int J Mol Sci. 2019a;20:3293. https://doi.org/10.3390/ijms20133293.
[54]
Wang P, Chen H, Kopittke PM, Zhao FJ. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut. 2019b;249:1038–48. https://doi.org/10.1016/j.envpol.2019.03.063.
[55]
Wilkens S. Structure and mechanism of ABC transporters. F1000prime Rep. 2015;7:14. https://doi.org/10.12703/p7-14.
[56]
Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun. 2021;12:1952. https://doi.org/10.1038/s41467-021-21694-3.
[57]
Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 2016;39:1941–54. https://doi.org/10.1111/pce.12747.
[58]
Yan P, Wu L, Wang D, Fu J, Shen C, Li X, et al. Soil acidification in Chinese tea plantations. Sci Total Environ. 2020;715:136963. https://doi.org/10.1016/j.scitotenv.2020.136963.
[59]
Yang T, Li H, Tai Y, Dong C, Cheng X, Xia E. Transcriptional regulation of amino acid metabolism in response to nitrogen deficiency and nitrogen forms in tea plant root (Camellia sinensis L.). Sci Rep. 2020;10:6868. https://doi.org/10.1038/s41598-020-63835-6.
[60]
Yang G, Fu S, Huang J, Li L, Long Y, Wei Q, et al. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Sci. 2021;307:110894. https://doi.org/10.1016/j.plantsci.2021.110894.
[61]
Yang T, Xie Y, Lu X, Yan X, Wang Y, Ma J, et al. Shading promoted Thea biosynthesis in the roots and allocation in the shoots of the tea plant (Camellia sinensis L.) cultivar Shuchazao. J Agric Food Chem. 2021;69:4795–803. https://doi.org/10.1021/acs.jafc.1c00641.
[62]
Yu Q, Ni D, Kowal J, Manolaridis I, Jackson SM, Stahlberg H, et al. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat Commun. 2021;12:4376. https://doi.org/10.1038/s41467-021-24651-2.
[63]
Zhang L, Wu J, Tang Z, Huang X, Wang X, Salt DE, et al. Variation in the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica rapa vegetables. J Exp Bot. 2019;70:5865–78. https://doi.org/10.1093/jxb/erz310.
[64]
Zhang L, Gao C, Chen C, Zhang W, Huang X, Zhao F. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains. Environ Sci Technol. 2020;54:10100–8. https://doi.org/10.1021/acs.est.0c02877.
[65]
Zhao F, Ma Y, Zhu Y, Tang Z, McGrath SP. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol. 2015;49:750–9. https://doi.org/10.1021/es5047099.
[66]
Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep. 2021;11:9913. https://doi.org/10.1038/s41598-021-89322-0.
[67]
Zhong M, Li S, Huang F, Qiu J, Zhang J, Sheng Z, et al. The phosphoproteomic response of rice seedlings to cadmium stress. Int J Mol Sci. 2017;18:2055. https://doi.org/10.3390/ijms18102055.
[68]
Zhou Y, Deng Y, Liu D, Wang H, Zhang X, Liu T, et al. Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor. Plant Biotechnol J. 2021;19:2398–400. https://doi.org/10.1111/pbi.13724.
[69]
Zhu G, Xiao H, Guo Q, Zhang Z, Zhao J, Yang D. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicol Environ Saf. 2018;158:300–8. https://doi.org/10.1016/j.ecoenv.2018.04.045.
Funding
the National Natural Science Foundation of China(32370390)
PDF

Accesses

Citations

Detail

Sections
Recommended

/