Coordination among flower pigments, scents and pollinators in ornamental plants

Yuxiao Shen1,2,3, Yufei Rao1, Mengni Ma1, Yajun Li1, Yanhong He1, Zheng Wang3, Mei Liang1(), Guogui Ning1()

PDF
Horticulture Advances ›› 2024, Vol. 2 ›› Issue (1) : 6. DOI: 10.1007/s44281-024-00029-4
Review

Coordination among flower pigments, scents and pollinators in ornamental plants

  • Yuxiao Shen1,2,3, Yufei Rao1, Mengni Ma1, Yajun Li1, Yanhong He1, Zheng Wang3, Mei Liang1(), Guogui Ning1()
Author information +
History +

Abstract

Flower color and scent, crucial qualitative characteristics of ornamental plants, display extensive variation. These distinct pigments and scents play a key role in attracting specific pollinators. While previous research primarily delved into the synthetic regulatory mechanisms of individual traits and their respective attraction to insects, recent studies unveil an interconnectedness between flower color and scent through transcriptional regulatory networks. Moreover, evidence suggests that both color and scent actively contribute to insect attraction. This review summarizes the co-regulation and synthesis of pigments and scents, highlighting their pivotal roles in pollinator attraction. The insights provided will serve as valuable references for applications in metabolic engineering, novel variety breeding, and insect and pest detection and management.

Keywords

Floral pigment / Scent / Cooperative regulation / Transcription factor / Pollinator attraction

Cite this article

Download citation ▾
Yuxiao Shen, Yufei Rao, Mengni Ma, Yajun Li, Yanhong He, Zheng Wang, Mei Liang, Guogui Ning. Coordination among flower pigments, scents and pollinators in ornamental plants. Horticulture Advances, 2024, 2(1): 6 https://doi.org/10.1007/s44281-024-00029-4

References

[1]
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, et al. Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. Front Plant Sci. 2021a;12:623742. https://doi.org/10.3389/fpls.2021.623742.
[2]
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, et al. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. Plant Cell Rep. 2021b;40:1269–84. https://doi.org/10.1007/s00299-021-02709-1.
[3]
Aguiar JM, de Souza Ferreire G, Sanches PA, Bento JMS, Sazima M. What pollinators see does not match what they smell: Absence of color-fragrance association in the deceptive orchid Ionopsis utricularioides. Phytochemistry. 2021;182:112591. https://doi.org/10.1016/j.phytochem.2020.112591.
[4]
Almut K, Warant EJ, Michal P, Wallen R, Theobald JC, Wislo WT, et al. Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav Ecol. 2006;17:63–72. https://doi.org/10.1093/beheco/arj001.
[5]
Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, et al. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr Biol. 2016;26:3303–12. https://doi.org/10.1016/j.cub.2016.10.023.
[6]
Aslam MZ, Lin X, Li X, Yang N, Chen L. Molecular cloning and functional characterization of CpMYC2 and CpBHLH13 transcription factors from Wintersweet (Chimonanthus praecox L.). Plants. 2020;9:785. https://doi.org/10.3390/plants9060785.
[7]
Azeredo HMC. Betalains: properties, sources, applications, and stability–a review. Int J Food Sci Technol. 2009;44:2365–76. https://doi.org/10.1111/j.1365-2621.2007.01668.x.
[8]
Bhatia C, Gaddam SR, Pandey A, Trivedi PK. COP1 mediates light-dependent regulation of flavonol biosynthesis through HY5 in Arabidopsis. Plant Sci. 2021;303:110760. https://doi.org/10.1016/j.plantsci.2020.110760.
[9]
Boersma MR, Patrick RM, Jillings SL, Shaipulah N, Sun P, Haring MA, et al. ODORANT1 targets multiple metabolic networks in petunia flowers. Plant J. 2022;109:1134–51. https://doi.org/10.1111/tpj.15618.
[10]
Bonar N, Liney M, Zhang R, Austin C, Dessoly J, Davidson D, et al. Potato miR828 is associated with purple tuber skin and flesh color. Front Plant Sci. 2018;9:1742. https://doi.org/10.3389/fpls.2018.01742.
[11]
Byers DL, Chang SM. Studying plant–pollinator interactions facing climate change and changing environments. Appl Plant Sci. 2017;5:1700052. https://doi.org/10.3732/apps.1700052.
[12]
Byers KJRP, Bradshaw HD, Riffell JA. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). J Exp Bot. 2014;217:614–23. https://doi.org/10.1242/jeb.092213.
[13]
Can’ani A, Spitzer-Rimon B, Ravid J, Farhi M, Masci T, Aravena-Calvo J, et al. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers. New Phytol. 2015;208:708–14. https://doi.org/10.1111/nph.13534.
[14]
Cao Y, Liu L, Ma K, Wang W, Lv H, Gao M, et al. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. J Integr Plant Biol. 2022;64:1102–15. https://doi.org/10.1111/jipb.13248.
[15]
Chen XM, Kobayashi H, Sakai M, Hirata H, Asai T, Ohnishi T, et al. Functional characterization of rose phenylacetaldehyde reductase (PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol. J Plant Physiol. 2011;168:88–95. https://doi.org/10.1016/j.jplph.2010.06.011.
[16]
Cheng MN, Huang ZJ, Hua QZ, Shan W, Kuang JF, Lu WJ, et al. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Hortic Res. 2017;4:17039. https://doi.org/10.1038/hortres.2017.39.
[17]
Chuang YC, Lee MC, Chang YL, Chen WH, Chen HH. Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids. Bot Stud. 2017;58:50. https://doi.org/10.1186/s40529-017-0204-8.
[18]
Clement JS, Mabry TJ. Pigment evolution in the Caryophyllales: a systematic overview. Bot Acta. 1996;109:360–7. https://doi.org/10.1111/j.1438-8677.1996.tb00584.x.
[19]
Cna’ani A, Shavit R, Ravid J, Aravena-Calvo J, Skaliter O, Masci T, et al. Phenylpropanoid scent compounds in Petunia × hybrida are glycosylated and accumulate in vacuoles. Front Plant Sci. 2017;8:1898. https://doi.org/10.3389/fpls.2017.01898.
[20]
Colquhoun TA, Schwieterman ML, Wedde AE, Schimmel BC, Marciniak DM, Verdonk JC, et al. EOBII controls flower opening by functioning as a general transcriptomic switch. Plant Physiol. 2011;156:974–84. https://doi.org/10.1104/pp.111.176248.
[21]
Cordeiro GD, D?tterl S. Global warming impairs the olfactory foral signaling in strawberry. BMC Plant Biol. 2023;23:549. https://doi.org/10.1186/s12870-023-04564-6.
[22]
Dang Q, Sha H, Nie J, Wang Y, Yuan Y, Jia D. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. Hortic Res. 2021;8:223. https://doi.org/10.1038/s41438-021-00694-w.
[23]
Ding W, Ouyang Q, Li Y, Shi T, Li L, Yang X, et al. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiol. 2020;40:557–72. https://doi.org/10.1093/treephys/tpz129.
[24]
Dormont L, Delle-Vedove R, Bessière JM, Key MH, Schatz B. Helping in food-deceptive orchids? A possible new mechanism maintaining polymorphism of floral signals. Plant Signal Behav. 2010;5:526–7. https://doi.org/10.4161/psb.10967.
[25]
Duan Q, Bonn B, Kreuzwieser J. Terpenoids are transported in the xylem sap of Norway spruce. Plant Cell Environ. 2020;43:1766–78. https://doi.org/10.1111/pce.13763.
[26]
Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 2008;55:940–53. https://doi.org/10.1111/j.1365-313X.2008.03564.x.
[27]
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198:16–32. https://doi.org/10.1111/nph.12145.
[28]
Dyer AG, Jentsch A, Burd M, Garcia JE, Giejsztowt J, Camargo M, et al. Fragmentary blue: resolving the rarity paradox in flower colors. Front Plant Sci. 2021;11:618203. https://doi.org/10.3389/fpls.2020.618203.
[29]
Fenske MP, Imaizumi T. Circadian rhythms in floral scent emission. Front Plant Sci. 2016;7:462. https://doi.org/10.3389/fpls.2016.00462.
[30]
Feussner I, Wastemack C. The lipoxygenase pathway. Annu Rev Plant Biol. 2002;53:275–97. https://doi.org/10.1146/annurev.arplant.53.100301.135248.
[31]
Fu CC, Han YC, Fan ZQ, Chen JY, Chen WX, Lu WJ, et al. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. J Agric Food Chem. 2016;64:5454–63. https://doi.org/10.1021/acs.jafc.6b01020.
[32]
Fu CC, Han YC, Kuang JF, Chen JY, Lu WJ. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening. Plant Cell Physiol. 2017;58:2155–65. https://doi.org/10.1093/pcp/pcx149.
[33]
Gao Y, Liu J, Chen Y, Tang H, Wang Y, He Y, et al. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Hortic Res. 2018;5:27. https://doi.org/10.1038/s41438-018-0032-3.
[34]
García Y, Friberg M, Parachnowitsch AL. Spatial variation in scent emission within flowers. Nord J Bot. 2021;39:e3014. https://doi.org/10.1111/njb.03014.
[35]
Giuliano G, Giliberto L, Rosati C. Carotenoid isomerase: a tale of light and isomers. Trends Plant Sci. 2002;7:427–9. https://doi.org/10.1016/S1360-1385(02)02329-4.
[36]
Glenny WR, Runyon JB, Burkle LA. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. New Phytol. 2018;220:785–98. https://doi.org/10.1111/nph.15081.
[37]
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23:1512–22. https://doi.org/10.1105/tpc.111.084525.
[38]
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;57:761–80. https://doi.org/10.1146/annurev.arplant.57.032905.105248.
[39]
Han Y, Wang H, Wang X, Li K, Dong M, Li Y, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Hortic Res. 2019;6:106. https://doi.org/10.1038/s41438-019-0189-4.
[40]
Han H, Xu F, Li Y, Yu L, Fu M, Liao Y, et al. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Sci Rep. 2021;11:23420. https://doi.org/10.1038/s41598-021-02839-2.
[41]
Hannah L, Dyer AG, Garcia JE, Dorin A, Burd M. Psychophysics of the hoverfly: categorical or continuous color discrimination? Curr Zoo. 2019;65:483–92. https://doi.org/10.1093/cz/zoz008.
[42]
Hatlestad GJ, Akhavan NA, Sunnadeniya RM, Elam L, Cargile S, Hembd A, et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nat Genet. 2015;47:92–6. https://doi.org/10.1038/ng.3163.
[43]
Heppel SC, Jaffé FW, Takos AM, Schellmann S, Rausch T, Walker AR, et al. Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Mol Biol. 2013;82:457–71. https://doi.org/10.1007/s11103-013-0074-8.
[44]
Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant. 2010;3:509–23. https://doi.org/10.1093/mp/ssp118.
[45]
Hirota SK, Nitta K, Kim Y, Kato A, Kawakubo N, Yasumoto AA, et al. Relative role of flower color and scent on pollinator attraction: experimental tests using F1 and F2 hybrids of daylily and nightlily. PLoS ONE. 2012;7:e39010. https://doi.org/10.1371/journal.pone.0039010.
[46]
Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell. 2012;24:2635–48. https://doi.org/10.1105/tpc.112.098749.
[47]
Huang FC, Molnár P, Schwab W. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot. 2009;60:3011–22. https://doi.org/10.1093/jxb/erp137.
[48]
Iijima L, Kishimoto S, Ohmiya A, Yagi M, Okamoto E, Miyahara T, et al. Esterified carotenoids are synthesized in petals of carnation (Dianthus caryophyllus) and accumulate in differentiated chromoplasts. Sci Rep. 2020;10:15256. https://doi.org/10.1038/s41598-020-72078-4.
[49]
Iwashina T. Flavonoid properties in plant families synthesizing betalain pigments (Review). Nat Prod Commun. 2015;10:1103–14. https://doi.org/10.1177/1934578X1501000675.
[50]
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013;18:477–83. https://doi.org/10.1016/j.tplants.2013.06.003.
[51]
Jaakola L, Poole M, Jones MO, Kamararinen-Karppinen T, Koskimaki JJ, Hohtola A, et al. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol. 2010;153:1619–29. https://doi.org/10.1104/pp.110.158279.
[52]
Jian W, Cao H, Yuan S, Liu Y, Lu J, Lu W, et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic Res. 2019;6:22. https://doi.org/10.1038/s41438-018-0098-y.
[53]
Joh EA, Pak HS, Lee GJ. Flower color and scent: how to regulate the flower color and fragrance in ornamentals? Flower Res J. 2020;28:228–40. https://doi.org/10.11623/frj.2020.28.4.01.
[54]
Kang JH, Gonzales-Vigil E, Matsuba Y, Pichersky E, Barry CS. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. Plant Physiol. 2014;164:80–91. https://doi.org/10.1104/pp.113.230466.
[55]
Kantsa A, Raguso RA, Dyer AG, Sgardelis SP, Olesen JM, Petanidou T. Community-wide integration of floral colour and scent in a Mediterranean scrubland. Nat Ecol Evol. 2017;1:1502–10. https://doi.org/10.1038/s41559-017-0298-0.
[56]
Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–4. https://doi.org/10.1126/science.291.5511.2141.
[57]
Kishimoto K, Nakayama M, Yagi M, Onozaki T, Oyama-Okubo N. Evaluation of wild Dianthus species as genetic resources for fragrant carnation breeding based on their floral scent composition. J Jpn Soc Hortic. 2011;80:175–81. https://doi.org/10.2503/jjshs1.80.175.
[58]
Klahre U, Gurba A, Hermann K, Saxenhofer M, Bossolini E, Guerin PM, et al. Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr Biol. 2011;21:730–9. https://doi.org/10.1016/j.cub.2011.03.059.
[59]
Klaus L, Lina A, Miniam D, Michele H, Leonie S, Vanessa S, et al. Limitations of learning in the proboscis reflex of the flower visiting syrphid fly Eristalis tenax. PLoS one.2018;13:e0194167. https://doi.org/10.1371/journal.pone.0194167.
[60]
Knauer AC, Schiestl FP. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol Lett. 2015;18:135–43. https://doi.org/10.1111/ele.12386.
[61]
Koethe S, Fischbach V, Banysch S, Reinartz L, Hrncir M, Lunau K. A comparative study of food source selection in stingless bees and honeybees: scent marks, location, or color. Front Plant Sci. 2020;11:516. https://doi.org/10.3389/fpls.2020.00516.
[62]
Koski MH. The role of sensory drive in floral evolution. New Phytol. 2020;227:1012–24. https://doi.org/10.1111/nph.16510.
[63]
Lawson DA, Whitney HM, Rands SA. Colour as a backup for scent in the presence of olfactory noise: testing the efficacy backup hypothesis using bumblebees (Bombus terrestris). R Soc Open Sci. 2017;4:1770996. https://doi.org/10.1098/rsos.170996.
[64]
Lawson DA, Lars C, Whitney HM, Rands SA. Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns. Proc Biol Sci. 2018;285:20180661. https://doi.org/10.1098/rspb.2018.0661.
[65]
Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol. 2016;210:905–21. https://doi.org/10.1111/nph.13816.
[66]
Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. J Exp Bot. 2017;68:4929–38. https://doi.org/10.1093/jxb/erx316.
[67]
Li X, He L, An X, Yu K, Meng N, Duan CQ, et al. VviWRKY40, a WRKY transcription factor, regulates glycosylated monoterpenoid production by VviGT14 in grape berry. Genes. 2020;11:485. https://doi.org/10.3390/genes11050485.
[68]
Li Q, Wang T, Xu C, Li M, Tian J, Wang Y, et al. MdMADS6 recruits histone deacetylase MdHDA19 to repress the expression of the carotenoid synthesis-related gene MdCCD1 during fruit ripening. Plants. 2022a;11:668. https://doi.org/10.3390/plants11050668.
[69]
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, et al. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). Plant J. 2022b;110:1144–65. https://doi.org/10.1111/tpj.15729.
[70]
Liang M, Foster CE, Yuan YW. Lost in translation: molecular basis of reduced flower coloration in a self-pollinated monkeyflower (Mimulus) species. Sci Adv. 2022;8:eabo1113. https://doi.org/10.1126/sciadv.abo1113.
[71]
Liang M, Chen W, LaFountain AM, Liu Y, Peng F, Xia R, et al. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science. 2023;379:576–82. https://doi.org/10.1126/science.adf1323.
[72]
Lin YL, Lee YR, Huang WK, Chang ST, Chu FH. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genet Genomes. 2014;10:75–86. https://doi.org/10.1007/s11295-013-0665-1.
[73]
Lin T, Vrieling K, Laplanche D, Bustos-Segura C, Turlings TCJ, Desurmont GA. Evolutionary changes in an invasive plant support the defensive role of plant volatiles. Curr Biol. 2021;31:3450–6. https://doi.org/10.1016/j.cub.2021.05.055.
[74]
Liu F, Xiao Z, Yang L, Chen Q, Shao L, Liu J, et al. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. New Phytol. 2017;215:1490–502. https://doi.org/10.1111/nph.14675.
[75]
Liu X, Cheng J, Zhang G, Ding W, Duan L, Yang J, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun. 2018;9:448. https://doi.org/10.1038/s41467-018-02883-z.
[76]
Liu S, Zheng X, Pan J, Peng L, Cheng C, Wang X, et al. RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLoS ONE. 2019;14:e0216001. https://doi.org/10.1371/journal.pone.0216001.
[77]
Lu S, Ye J, Zhu K, Zhang Y, Zhang M, Xu Q, et al. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. J Exp Bot. 2021;72:3028–43. https://doi.org/10.1093/jxb/erab045.
[78]
Lu C, Qu J, Deng C, Liu F, Zhang F, Huang H, et al. The transcription factor complex CmAP3-CmPI-CmUIF1 modulates carotenoid metabolism by directly regulating carotenogenic gene CmCCD4a-2 in chrysanthemum. Hortic Res. 2022;9:uhac020. https://doi.org/10.1093/hr/uhac020.
[79]
Lucas-Barbosa D, Sun P, Hakman A, van Beek TA, van Loon JJ, Dicke M. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct Ecol. 2016;30:431–41. https://doi.org/10.1111/1365-2435.12509.
[80]
Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M, et al. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Plant Physiol. 2013;163:682–95. https://doi.org/10.1104/pp.113.223297.
[81]
Ma X, Zhang X, Traore SM, Xin Z, Ning L, Li K, et al. Genome-wide identification and analysis of long noncoding RNAs (lncRNAs) during seed development in peanut (Arachis hypogaea L.). BMC Plant Biol. 2020;20:192. https://doi.org/10.1186/s12870-020-02405-4.
[82]
Ma Q, Xu Y, Xiao H, Mariga AM, Chen Y, Zhang X, et al. Rethinking of botanical volatile organic compounds applied in food preservation: Challenges in acquisition, application, microbial inhibition and stimulation. Trends Food Sci Technol. 2022;125:166–84. https://doi.org/10.1016/j.tifs.2022.05.007.
[83]
Ma J, Dai J, Liu X, Lin D. The transcription factor CaBBX20 regulates capsanthin accumulation in pepper (Capsicum annuum L.). Sci Hortic. 2023;314:111907. https://doi.org/10.1016/j.scienta.2023.111907.
[84]
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, et al. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J Exp Bot. 2016;67:3509–22. https://doi.org/10.1093/jxb/erw181.
[85]
Martignier T, Labouche A, Pannell JR. Pollination elicits an accelerated reduction in nocturnal scent emission by flowers of the dioecious herb Silene latifolia. Botany. 2019;97:495–502. https://doi.org/10.1139/cjb-2018-0217.
[86]
Martínez-Harms J, Warskulat AC, Dudek B, Kunert G, Lorenz S, Hansson SS, et al. Biosynthetic and functional color-scent associations in flowers of Papaver nudicaule and its impact on pollinators. ChemBioChem. 2018;19:1553–62. https://doi.org/10.1002/cbic.201800155.
[87]
Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. Plant Cell. 2019;31:2751–67. https://doi.org/10.1105/tpc.19.00480.
[88]
Michael R, Ranjan A, Kumar RS, Pathak PK, Trivedi PK. Light-regulated expression of terpene synthase gene, AtTPS03, is controlled by the bZIP transcription factor, HY5, in Arabidopsis thaliana. Biochem Biophys Res Commun. 2020;529:437–43. https://doi.org/10.1016/j.bbrc.2020.05.222.
[89]
Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol. 2009;50:2210–22. https://doi.org/10.1093/pcp/pcp159.
[90]
Mostafa S, Wang Y, Zeng W, Jin B. Floral scents and fruit aromas: functions, compositions, biosynthesis, and regulation. Front Plant Sci. 2022;13:860157. https://doi.org/10.3389/fpls.2022.860157.
[91]
Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function. Plant Cell Environ. 2014;37:1936–49. https://doi.org/10.1111/pce.12314.
[92]
Nadot S, Carrive L. The colourful life of flowers. Bot Lett. 2021;168:120–30. https://doi.org/10.1080/23818107.2020.1839789.
[93]
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 2020;294:110457. https://doi.org/10.1016/j.plantsci.2020.110457.
[94]
Narbona E, Del Valle JC, Arista M, Buide ML, Ortiz PL. Major flower pigments originate different colour signals to pollinators. Front Ecol Evol. 2021;9:743850. https://doi.org/10.3389/fevo.2021.743850.
[95]
Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell. 2001;13:2099–114. https://doi.org/10.1105/tpc.010098.
[96]
Nieuwenhuizen NJ, Chen X, Wang MY, Matich AJ, Perez RL, Allan AC, et al. Natural variation in mono terpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol. 2015;167:1243–58. https://doi.org/10.1104/pp.114.254367.
[97]
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. Mol Plant. 2015;8:68–82. https://doi.org/10.1016/j.molp.2014.12.007.
[98]
Ohashi K, Makino TT, Arikawa K. Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution. Funct Ecol. 2015;29:1144–55. https://doi.org/10.1111/1365-2435.12420.
[99]
Okamoto T, Svensson GP, Goto R, Kawakita A, Kato M. Nocturnal emission and post-pollination change of floral scent in the leafflower tree, Glochidion rubrum, exclusively pollinated by seed-parasitic leafflower moths. Plant Spec Biol. 2022;37:197–208. https://doi.org/10.1111/1442-1984.12368.
[100]
Pang YZ, Wenger JP, Saathoff K, Peel GJ, Wen JQ, Huhman D, et al. A WD40 Repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol. 2009;151:1114–29. https://doi.org/10.1104/pp.109.144022.
[101]
Parachnowitsch AL, Manson JS. The chemical ecology of plant-pollinator interactions: recent advances and future directions. Curr Opin Insect Sci. 2015;8:41–6. https://doi.org/10.1016/j.cois.2015.02.005.
[102]
Peng Q, Zhao J, Xiang S, Li J, He C, Huang X, et al. Producing fluorescent plants to lure and trap insect pests. Plant Biotechnol J. 2022;20:1847–9. https://doi.org/10.1111/pbi.13887.
[103]
Phillips RD, Bohman B, Brown GR, Tomlinson S, Peakall RA. Specialised pollination system using nectar-seeking thynnine wasps in Caladenia nobilis (Orchidaceae). Plant Biol. 2020;22:157–66. https://doi.org/10.1111/plb.13069.
[104]
Picazo-Aragonés J, Terrab A, Balao F. Plant volatile organic compounds evolution: transcriptional regulation, epigenetics and polyploidy. Int J Mol Sci. 2020;21:8956. https://doi.org/10.3390/ijms21238956.
[105]
Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. PNAS. 2017;114:9062–7. https://doi.org/10.1073/pnas.1707176114.
[106]
Polturak G, Heinig U, Grossman N, Battat M, Leshkowitz D, Malitsky S, et al. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Mol Plant. 2018;11:189–204. https://doi.org/10.1016/j.molp.2017.12.002.
[107]
Qi Z, Tong X, Bu S, Pei J, Zhao L. Cloning and characterization of a novel Carotenoid Cleavage Dioxygenase 1 from Helianthus annuus. Chem Biodivers. 2021;19:e202100694. https://doi.org/10.1002/cbdv.202100694.
[108]
Raguso RA. Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst. 2008;39:549–69. https://doi.org/10.1146/annurev.ecolsys.38.091206.095601.
[109]
Ramya M, Park PH, Chuang YC, Kwon OK, An HR, Park PM, et al. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes. BMC Plant Biol. 2019;19:337. https://doi.org/10.1186/s12870-019-1940-6.
[110]
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, et al. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet. 2018;50:772–7. https://doi.org/10.1038/s41588-018-0110-3.
[111]
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, et al. A regulatory network for coordinated flower maturation. PLoS Genet. 2012;8:e1002506. https://doi.org/10.1371/journal.pgen.1002506.
[112]
Reverté S, Retana J, Gómez JM, Bosch J. Pollinators show flower colour preferences butflowers with similar colours do not attract similar pollinators. Ann Bot. 2016;118:249–57. https://doi.org/10.1093/aob/mcw103.
[113]
Richter R, Dietz A, Foster J, Spaethe J, St?ckl A. Flower patterns improve foraging efficiency in bumblebees by guiding approach flight and landing. Funct Ecol. 2023;37:763–77. https://doi.org/10.1111/1365-2435.14262.
[114]
Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol. 2009;149:1251–60. https://doi.org/10.1104/pp.108.130070.
[115]
Romanowski S, Eustáquio AS. Synthetic biology for natural product drug production and engineering. Curr Opin Chem Biol. 2020;58:137–45. https://doi.org/10.1016/j.cbpa.2020.09.006.
[116]
Roy R, Moreno N, Brockman SA, Carter CJ. Convergent evolution of a blood-red nectar pigment in vertebrate-pollinated flowers. PNAS. 2022;119:e2114420119. https://doi.org/10.1073/pnas.2114420119.
[117]
Ruxton GD, Schaefer HM. Floral colour change as a potential signal to pollinators. Curr Opin Plant Biol. 2016;32:96–100. https://doi.org/10.1016/j.pbi.2016.06.021.
[118]
Sagawa JM, Stanley LE, La Fountain AM, Frank HA, Liu C, Yuan YW. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol. 2016;209:1049–57. https://doi.org/10.1111/nph.13647.
[119]
Sakuta M, Tanaka A, Iwase K, Miyasaka M, Ichiki S, Hatai M, et al. Anthocyanin synthesis potential in betalain-producing Caryophyllales plants. J Plant Res. 2021;134:1335–49. https://doi.org/10.1007/s10265-021-01341-0.
[120]
Schaart JG. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruit. New Phytol. 2013;197:454–67. https://doi.org/10.1111/nph.12017.
[121]
Schlüter PM, Xu S, Gagliardini V, Whittle E, Shanklin J, Grossniklaus U, et al. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids. PNAS. 2011;108:5696–701. https://doi.org/10.1073/pnas.1013313108.
[122]
Schuman MC, Barthel K, Baldwin IT. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. Elife. 2012;1:e00007. https://doi.org/10.7554/eLife.00007.
[123]
Shan X, Li Y, Yang S, Yang Z, Qiu M, Gao R, et al. The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida. New Phytol. 2020;228:1864–79. https://doi.org/10.1111/nph.16818.
[124]
Sharma A, Badola PK, Bhatia C, Sharma D, Trivedi PK. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat Plants. 2020;6:1262–74. https://doi.org/10.1038/s41477-020-00769-x.
[125]
Sheehan H, Hermann K, Kuhlemeier C. Color and scent: how single genes influence pollinator attraction. Cold Spring Harb Symp Quant Biol. 2012;77:117–33. https://doi.org/10.1101/sqb.2013.77.014712.
[126]
Shen Y, Sun T, Pan Q, Anupol N, Chen H, Shi J, et al. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnol J. 2019;17:2078–95. https://doi.org/10.1111/pbi.13123.
[127]
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531.
[128]
Simkin AJ. Carotenoids and apocarotenoids in planta: their role in plant development, contribution to the flavour and aroma of fruits and flowers, and their nutraceutical benefits. Plants. 2021;10:2321. https://doi.org/10.3390/plants10112321.
[129]
Sinha SK, Dolai A, Roy AB, Manna S, Das A. The flower colour infuences spontaneous nectaring in butterfies: a case study with twenty subtropical butterfies. Neotrop Entomol. 2023;52:1027–40. https://doi.org/10.1007/s13744-023-01086-6.
[130]
Sinopoli A, Calogero G, Bartolotta A. Computational aspects of anthocyanidins and anthocyanins: a review. Food Chem. 2019;297:124898. https://doi.org/10.1016/j.foodchem.2019.05.172.
[131]
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future: functions of phenylalanine-derived aroma compounds and advances in their industrial production. Plant Biotechnol J. 2022;20:1651–69. https://doi.org/10.1111/pbi.13863.
[132]
Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, Masci T, et al. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles’ biosynthesis in petunia. Plant Cell. 2010;22:1961–76. https://doi.org/10.1105/tpc.109.067280.
[133]
Spitzer-Rimon B, Farhi M, Albo B, Cna’ani A, Zvi BMM, Masci T, et al. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. Plant Cell. 2012;24:5089–105. https://doi.org/10.1105/tpc.112.105247.
[134]
Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, et al. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol. 2010;188:985–1000. https://doi.org/10.1111/j.1469-8137.2010.03421.x.
[135]
Streisfeld MA, Kohn JR. Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. J Evolution Biol. 2007;20:122–32. https://doi.org/10.1111/j.1420-9101.2006.
[136]
Suchet C, Dormont L, Schatz B, Giurfa M, Simon V, Raynaud C, et al. Floral scent variation in two Antirrhinum majus subspecies influences the choice of na?ve bumblebees. Behav Ecol Sociobiol. 2011;65:1015–27. https://doi.org/10.1007/s00265-010-1106-x.
[137]
Sun P, Schuurink RC, Caissard JC, Hugueney P, Baudino S. My way: noncanonical biosynthesis pathways for plant volatiles. Trends Plant Sci. 2016;21:884–94. https://doi.org/10.1016/j.tplants.2016.07.007.
[138]
Sun L, Huo J, Liu J, Yu J, Zhou J, Sun C, et al. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem. 2023;411:135540. https://doi.org/10.1016/j.foodchem.2023.135540.
[139]
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54:733–49. https://doi.org/10.1111/j.1365-313X.2008.03447.x.
[140]
Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell. 2005;171:1612–24. https://doi.org/10.1105/tpc.104.028837.
[141]
Wang L, Zeng JHQ, Song J, Feng SJ, Yang ZM. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. Plant Sci. 2015;238:273–85. https://doi.org/10.1016/j.plantsci.2015.06.020.
[142]
Wang N, Liu W, Zhang T, Jiang S, Xu H, Wang Y, et al. Transcriptomic analysis of red-fleshed apples reveals the novel role of MdWRKY11 in flavonoid and anthocyanin biosynthesis. J Agric Food Chem. 2018;66:7076–86. https://doi.org/10.1021/acs.jafc.8b01273.
[143]
Widhalm JR, Dudareva N. A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant. 2015;8:83–97. https://doi.org/10.1016/j.molp.2014.12.001.
[144]
Xi W, He Y, Zhu L, Hu S, Xiong S, Zhang Y, et al. CPTA treatment reveals potential transcription factors associated with carotenoid metabolism in flowers of Osmanthus fragrans. Hortic Plant J. 2021;7:479–87. https://doi.org/10.1016/j.hpj.2021.03.002.
[145]
Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 2006;45:895–907. https://doi.org/10.1111/j.1365-313X.2006.02655.x.
[146]
Xie F, Hua Q, Chen C, Zhang Z, Zhang R, Zhao J, et al. Genome-wide characterization of R2R3-MYB transcription factors in pitaya reveals a R2R3-MYB repressor HuMYB1 involved in fruit ripening through regulation of betalain biosynthesis by repressing betalain biosynthesis-telated genes. Cells. 2021;10:1949. https://doi.org/10.3390/cells10081949.
[147]
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015;20:176–85. https://doi.org/10.1016/j.tplants.2014.12.001.
[148]
Yahyaa M, Berim A, Nawade B, Ibdah M, Dudareva N, Ibdah M. Biosynthesis of methyleugenol and methylisoeugenol in Daucus carota leaves: Characterization of eugenol/isoeugenol synthase and O-Methyltransferase. Phytochemistry. 2019;159:79–189. https://doi.org/10.1016/j.phytochem.2018.12.020.
[149]
Yan H, Zhang H, Wang Q, Jian H, Qiu X, Wang J, et al. Isolation and identification of a putative scent-related gene RhMYB1 from rose. Mol Biol Rep. 2011;38:4475–82. https://doi.org/10.1007/s11033-010-0577-1.
[150]
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell. 2012;24:15–427. https://doi.org/10.1105/tpc.111.094144.
[151]
Yan J, Wang G, Sui Y, Wang M, Zhang L. Pollinator responses to floral colour change, nectar, and scent promote reproductive fitness in Quisqualis indica (Combretaceae). Sci Rep. 2016;6:24408. https://doi.org/10.1038/srep24408.
[152]
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, et al. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. J Exp Bot. 2020;71:4140–58. https://doi.org/10.1093/jxb/eraa184.
[153]
Yang C, Marillonnet S, Tissier A. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). Plant J. 2021;107:1102–18. https://doi.org/10.1111/tpj.15371.
[154]
Yeon JY, Kim WS. Biosynthetic linkage between the color and scent of flowers: a review. Hortic Sci Technol. 2021;39:697–713. https://doi.org/10.7235/hort.20210062.
[155]
Yoshida K, Oyama-Okubo N, Yamagishi M. An R2R3-MYB transcription factor ODORANT1 regulates fragrance biosynthesis in lilies (Lilium spp.). Mol Breed. 2018;38:144. https://doi.org/10.1007/s11032-018-0902-2.
[156]
Yue Y, Yu R, Fan Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genom. 2015;16:470. https://doi.org/10.1186/s12864-015-1653-7.
[157]
Yue Y, Liu J, Shi T, Chen M, Li Y, Du J, et al. Integrating transcriptomic and GC-MS metabolomic analysis to characterize color and aroma formation during tepal development in Lycoris longituba. Plants. 2019;8:53. https://doi.org/10.3390/plants8030053.
[158]
Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant. 2015;8:163–75. https://doi.org/10.1016/j.molp.2014.12.004.
[159]
Zhang C, Vereecken NJ, Wang L, Tian B, Dafni A, Yang Y, et al. Are nectar guide colour changes a reliable signal to pollinators that enhances reproductive success? Plant Ecol Divers. 2017;10:89–96. https://doi.org/10.1080/17550874.2017.1350763.
[160]
Zhang S, Yang J, Li H, Chiang VL, Fu Y. Cooperative regulation of flavonoid and lignin biosynthesis in plants. Crit Rev Plant Sci. 2021a;40:109–26. https://doi.org/10.1080/07352689.2021.1898083.
[161]
Zhang L, Chen C, Xie F, Hua Q, Zhang Z, Zhang R, et al. A novel WRKY transcription factor HmoWRKY40 associated with betalain biosynthesis in pitaya (Hylocereus monacanthus) through regulating HmoCYP76AD1. Int J Mol Sci. 2021b;22:2171. https://doi.org/10.3390/ijms22042171.
[162]
Zhao J, Dixon RA. The “ins” and “outs” of flavonoid transport. Trends Plant Sci. 2009;15:72–80. https://doi.org/10.1016/j.tplants.2009.11.006.
[163]
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, et al. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnol J. 2021;19:671–88. https://doi.org/10.1111/pbi.13494.
[164]
Zheng J, Hu Z, Guan X, Dou D, Bai G, Wang Y, et al. Transcriptome analysis of Syringa oblata Lindl. inflorescence identifies genes associated with pigment biosynthesis and scent metabolism. PLoS ONE. 2015;10:e0142542. https://doi.org/10.1371/journal.pone.0142542.
[165]
Zheng X, Li P, Lu X. Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants. J Exp Bot. 2019;70:4619–30. https://doi.org/10.1093/jxb/erz203.
[166]
Zhou M, Zhang K, Sun Z, Yan M, Chen C, Zhang X, et al. LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiol. 2017;174:1348–58. https://doi.org/10.1104/pp.17.00160.
[167]
Zhou D, Shen Y, Zhou P, Fatima M, Lin J, Yue J, et al. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Hortic Res. 2019;6:80. https://doi.org/10.1038/s41438-019-0162-2.
[168]
Zhou ZX, Gao HM, Ming JH, Ding ZL, Lin XE, et al. Combined transcriptome and metabolome analysis of pitaya fruit unveiled the mechanisms underlying peel and pulp color formation. BMC Genom. 2020;21:734. https://doi.org/10.1186/s12864-020-07133-5.
[169]
Zhu LS, Liang SM, Chen LL, Wu CJ, Wei W, Shan W, et al. Banana MaSPL16 modulates carotenoid biosynthesis during fruit ripening through activating the transcription of lycopene β-cyclase genes. J Agric Food Chem. 2020;68:1286–96. https://doi.org/10.1021/acs.jafc.9b07134.
[170]
Zhu K, Sun Q, Chen H, Mei X, Lu S, Ye J, et al. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. J Exp Bot. 2021;72:3137–54. https://doi.org/10.1093/jxb/erab047.
[171]
Zvi MMB, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, et al. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J. 2008;6:403–15. https://doi.org/10.1111/j.1467-7652.2008.00329.x.
[172]
Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, et al. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol. 2012;195:335–45. https://doi.org/10.1111/j.1469-8137.2012.04161.x.
Funding
China Agriculture Research System(CARS-23)
PDF

Accesses

Citations

Detail

Sections
Recommended

/