Plastid-encoded RNA polymerase variation in Pelargonium sect Ciconium
Cyto-Nuclear Incompatibility (CNI), in which there is a mismatch in the interaction between organelles and nucleus, impacts plant species evolution as it has a direct effect on the fitness of plants. It can reduce fertility and/or result in bleached plants devoid of functional chloroplasts. Understanding the processes leading to CNI could help to improve breeding efforts, especially in cases where species with desirable traits need to be crossed into existing cultivars. To better understand the occurrence of CNI and its effects on plant phenotype, we combined near comprehensive crossing series across a clade of species from Pelargonium section Ciconium with comparative genomics and protein modelling for plastid-encoded RNA polymerase (PEP), as the rpo genes encoding PEP subunits were found to be unusually highly divergent, especially in two length-variable regions. Of all plastome-encoded genes, we found these genes to contain more variation than observed across angiosperms and that this underlies structural variation inferred for PEP in P. sect. Ciconium. This variation, resulting in differing physico-chemical properties of the rpo-encoded peptides, provides a possible explanation for the observed CNI, but we cannot directly correlate plastid related CNI phenotypes to rpo genotypes. This suggests that more than one interaction between the nuclear genome and the plastome genes are needed to fully explain the observed patterns.
Pelargonium / Evolution / Plastid encoded polymerase / CNI / Ciconium
[1] | Apitz J, Weihe A, Pohlheim F, B?rner T. Biparental inheritance of organelles in Pelargonium: evidence for intergenomic recombination of mitochondrial DNA. Planta. 2013;237:509–15. https://doi.org/10.1007/s00425-012-1768-x. |
[2] | Bakker FT, Hellbrügge D, Culjam A, Gibby M. Phylogenetic relationships within Pelargonium sect. Peristera (Geraniaceae) inferred from nrDNA and cpDNA sequence comparisons. Syst Evol. 1998;211:273–87. https://doi.org/10.1007/BF00985364. |
[3] | Bakker FT, Culham A, Daugherty LC, Gibby M. A trnL-F based phylogeny for species of (Geraniaceae) with small chromosomes Pelargonium. Pl Syst Evol. 1999;216:309–24. https://doi.org/10.1007/BF01084405. |
[4] | Bakker FT, Culham A, Hettiarachi P, Touloumenidou T, Gibby M. Phylogeny of Pelargonium (Geraniaceae) based on DNA sequences from three genomes. Taxon. 2004;53:17–28. https://doi.org/10.2307/4135485. |
[5] | Bakker FT, Culham A, Marais EM, Gibby M. Nested radiation in cape Pelargonium. In: Bakker FT, Chartrou LW, Gravendeel B, Pielser PB, editors. Plant species-level systematics: new perspectives on pattern and process. A. R. G. Ganter Verlag K. G., Ruggell, Liechtstein. 2005. pp. 75–100. |
[6] | Barnard-Kubow KB, So N, Galloway LF. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution. 2016;70:2752–66. https://doi.org/10.1111/evo.13075. |
[7] | Barnard-Kubow KB, McCoy MA, Galloway LF. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. New Phytol. 2017;213:1466–76. https://doi.org/10.1111/nph.14222. |
[8] | Bateson W. Heredity and variation in modern lights. In: Seward AC, editor. Darwin and modern science. Cambridge, UK: Cambridge University Press; 1909. p. 85–101. |
[9] | Baur E. Das Wesen und die Erblichkeitsverh?ltnisse der, Varietates albomarginatae hort. Von Pelargonium zonale . Z Ver-erbungslehre. 1909;1:330–51. https://doi.org/10.1007/BF01990603. |
[10] | Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep. 2017;7:10480. https://doi.org/10.1038/s41598-017-09654-8. |
[11] | Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8. https://doi.org/10.1093/nar/gku340. |
[12] | Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, et al. The SWISS-MODEL repository – new features and functionality. Nucleic Acids Res. 2017;45:D313–9. https://doi.org/10.1093/nar/gkw1132. |
[13] | Blazier JC, Ruhlman TA, Weng ML, Rehman SK, Sabir JSM, Jansen RK. Divergence of RNA polymerase a subunits in angiosperm plastid genomes is mediated by genomic rearrangement. Sci Rep. 2016;6(24):595. https://doi.org/10.1038/srep24595. |
[14] | B?rner T, Aleynikova AY, Zubo YO, Kusnetsov VV. Chloroplast RNA polymerases: role in chloroplast biogenesis. BBA. 2015;1847:761–9. https://doi.org/10.1016/j.bbabio.2015.02.004. |
[15] | Breman FC, Snijder RC, Korver JW, Pelzer S, Sancho Such M, Schranz ME, et al. Interspecific hybrids between Pelargonium × hortorum and species from P. section Ciconium reveal biparental plastid inheritance and multi-locus cyto-nuclear incompatibility. Front Plant Sci. 2020;11:614871. |
[16] | Breman FC, Schranz ME, Chen G, Snijder RC, Bakker FT. (2021a). Repeatome-based phylogenetics in Pelargonium section Ciconium (Sweet) Harvey. Genome Biology and Evolution evab269. https://doi.org/10.1093/gbe/evab269. |
[17] | Breman FC. (2021b). Exploring patterns of cytonuclear incompatibility in Pelargonium section Ciconium. PhD thesis, Wageningen UR, the Netherlands. https://doi.org/10.18174/551565. |
[18] | Breman FC, Schranz ME, Chen G, Snijder RC, Bakker FT. Repeatome-based phylogenetics in Pelargonium section Ciconium (Sweet) harvey. Genome Biol Evol. 2021;13:evab269. https://doi.org/10.1093/gbe/evab269. |
[19] | Breman FC. Exploring patterns of cytonuclear incompatibility in Pelargonium section Ciconium. PhD thesis, Wageningen UR, the Netherlands. 2021. https://doi.org/10.18174/551565. |
[20] | Canonge J, Roby C, Hamon C, Potin P, Pfannschmidt T, Philippot M. Occurrence of albinism during wheat androgenesis is correlated with repression of the key genes required for proper chloroplast biogenesis. Planta. 2021;254:123. https://doi.org/10.1007/s00425-021-03773-3. |
[21] | Cavalier-Smith FLST. The origins of plastids. Biol J Linn Soc. 1982;17:289–306. https://doi.org/10.1111/j.1095-8312.1982.tb02023.x. |
[22] | Chumley TW, Palmer JD, Mower JP, Fourcade MH, Calie PJ, Boore JL, et al. The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol. 2006;23:2175–90. https://doi.org/10.1093/molbev/msl089. |
[23] | De Laat A, Godhe W, Vogelzang M. Determination of ploidy of single plants and populations by flow cytometry. Plant Breed. 1987;99:303–7. https://doi.org/10.1111/j.1439-0523.1987.tb01186.x. |
[24] | Demarsy E, Courtois F, Azevedo J, Buhot L, Lerbs-Mache S. Building up of the plastid transcriptional machinery during germination and early plant development. Physiol. 2006;142:993–1003. https://doi.org/10.1104/pp.106.085043. |
[25] | Dobzhansky T. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics. 1936;21:113–35. https://doi.org/10.1093/genetics/21.2.113. |
[26] | Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, et al. Genomic repeat abundances contain phylogenetic signal. Syst Biol. 2015;64:112–26. https://doi.org/10.1093/sysbio/syu080. |
[27] | Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell. 2011;146:533–43. https://doi.org/10.1016/j.cell.2011.07.034. |
[28] | Forsythe ES, Williams AM, Sloan DB. Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. Plant Cell. 2021;33:980–97. https://doi.org/10.1093/plcell/koab021. |
[29] | Greiner S, Rauwulf, U, Meurer J, Hermann RG. (2011). The role of plastids in plant speciation. Mol. Ecol. 20, 671–691. https://doi.org/10.1111/j.1365-294X.2010.04984.x. |
[30] | Greiner S, Bock R. Tuning a ménage à trois: co-evolution and co-adaptation of nuclear and organellar genomes in plants. Bioessays. 2013;35:354–65. https://doi.org/10.1002/bies.201200137. |
[31] | Greiner S, Sobanski J, Bock R. Why are most organelle genomes transmitted maternally? Bioessays. 2015;37:80–94. https://doi.org/10.1002/bies.201400110. |
[32] | Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad. 2008;105:18424–9. https://doi.org/10.1073/pnas.0806759105. |
[33] | Guo FL, Hu SY. Cytological evidence of biparental inheritance of plastids and mitochondria in Pelargonium. Protoplasma. 1995;186:201–7. https://doi.org/10.1007/BF01281330. |
[34] | Harvey WH. Geraniaceae. In: Harvey WH, Sonder OW, editors. Flora capensis, vol. 1. Hodges, Smith & Co, Dublin; 1860. p. 259–308. |
[35] | He S, Yang Y, Li Z, Wang X, Guo Y, Wu H. Comparative analysis of four Zantedeschia chloroplast genomes: expansion and contraction of the IR region, phylogenetic analyses and SSR genetic diversity assessment. PeerJ. 2020;8:e9132. https://doi.org/10.7717/peerj.9132. |
[36] | Horn W. Interspecific crossability and inheritance in Pelargonium. Plant Breed. 1994;113:3–17. https://doi.org/10.1111/j.1439-0523.1994.tb00696.x. |
[37] | Igloi GL, K?ssel H. The transcriptional apparatus of chloroplasts. Crit Rev Plant Sci. 1992;10:525–58. https://doi.org/10.1080/07352689209382326. |
[38] | Isemer R, Mulisch M, Sch?fer A, Kirchner S, Koop HU, Krupinska K. Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Letters. 2012;586:85–8. https://doi.org/10.1016/j.febslet.2011.11.029. |
[39] | James CM, Gibby M, Barrett JA. Molecular studies in Pelargonium (Geraniaceae). A taxonomic appraisal of section Ciconium and the origin of the “Zonal” and “Ivy-leaved” cultivars. Plant Syst Evol. 2004;243:131–46. https://doi.org/10.1007/s00606-003-0074-2. |
[40] | Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. bioRxiv. 2019; 256479. https://doi.org/10.1101/256479. |
[41] | Jones CS, Bakker FT, Schlichting CD, Nicotra AB. Leaf shape evolution LEAF SHAPE EVOLUTION in the South African genus Pelargonium L’ Hér (Geraniaceae). Evolution. 2009;63:479–97. https://doi.org/10.1111/j.1558-5646.2008.00552.x. |
[42] | Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6. https://doi.org/10.1093/bib/bbx108. |
[43] | Kim N, Jinks-Robertson S. Transcription as a source of genome instability. Nat Rev Genet. 2012;13:204–14. https://doi.org/10.1038/nrg3152. |
[44] | Kirk JTO, Tilney-Bassett RAE. The plastids. London: Freeman and Co.; 1967. |
[45] | Knuth R. Geraniaceae. In: Encler A, editor. Das Pflanzenreich 4. Leipzig: Engelmann; 1912. p. 1–9. |
[46] | Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. https://doi.org/10.1093/molbev/msw054. |
[47] | Kuroiwa H, Kuroiwa T. Giant mitochondria in the mature egg cell of Pelargonium zonale. Protoplasma. 1992;168:184–8. https://doi.org/10.1007/BF01666264. |
[48] | Kuroiwa T, Kawazu T, Ushida H, Ohta T, Kuroiwa H. Direct evidence of plastid DNA and mitochondrial DNA in sperm cells in relation to biparental inheritance of organelle DNA in Pelargonium zonale by fluorescence/electron microscopy. Eur J Cell Biol. 1993;62:307–13. |
[49] | Maréchal A, Parent JS, Véronneau-Lafortune F, Joyeux A, Lang BF, Brisson B. Whirly proteins maintain plastid genome stability in Arabidopsis. PNAS. 2009;106(34):14693–8. https://doi.org/10.1073/pnas.0901710106. |
[50] | Metzlaff M, B?rner T, Hagemann R. Variations of chloroplast DNAs in the genus Pelargonium and their biparental inheritance. Theor Appl Genet. 1981;60:37–41. https://doi.org/10.1007/BF00275175. |
[51] | Müller HJ. Isolating mechanisms, evolution, and temperature. Biol Symp. 1942;6:71–125. |
[52] | Osorio D, Rondon-Villarreal P, Torres R. Peptides: a package for data mining of antimicrobial peptides. The R Journal. 2015;7:4–14. https://doi.org/10.32614/RJ-2015-001. |
[53] | Palomar VM, Jaksich S, Fujii S, Kucinski J, Wierzbicki AT. High-resolution map of plastid-encoded RNA polymerase binding patterns demonstrates a major role of transcription in chloroplast gene expression. Plant J. 2022;111:1139–51. https://doi.org/10.1111/tpj.15882. |
[54] | Postel Z, Touzet P. Cytonuclear genetic incompatibilities in plant speciation. Plants. 2020;9:487. https://doi.org/10.3390/plants9040487. |
[55] | Postel Z, Poux C, Gallina S, Varré J-S, Godé C, Schmitt E, et al. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): a potential involvement of plastid–nuclear incompatibilities. Mol Phylogenet Evol. 2022;169:107436. https://doi.org/10.1016/j.ympev.2022.107436. |
[56] | Qin T, Zhao P, Sun J, Zhao Y, Zhang Y, Yang Q, et al. Research progress of PPR proteins in RNA editing, stress response, plant growth and development. Front Genet. 2021;12:765580. https://doi.org/10.3389/fgene.2021.765580. |
[57] | R?schenbleck J, Wicke S, Weinl S, Kudla J, Müller KF. Genus-wide screening reveals four distinct types of structural plastid genome organization in Pelargonium (Geraniaceae). Genome Biol Evol. 2017;9:64–76. https://doi.org/10.1093/gbe/evw271. |
[58] | R?schenbleck J, Albers F, Müller K, Weinl S, Kudla J. Phylogenetics, character evolution and a subgeneric revision of the genus Pelargonium (Geraniaceae). Phytotaxa. 2014;159:31–76. https://doi.org/10.11646/phytotaxa.159.2.1. |
[59] | Ruhlman TA, Jansen RK. Aberration or analogy? The atypical plastomes of Geraniaceae. In: Chaw, S-M, Jansen RK, editors. Advances in Botanical Research 85: Plastid Genome Evolution. Elsevier, Amsterdam; 2018, pp. 223–62. https://doi.org/10.1016/bs.abr.2017.11.017 |
[60] | Saecker RM, Record TM Jr, deHaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase – promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol. 2011;412:754–71. https://doi.org/10.1016/j.jmb.2011.01.018. |
[61] | Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 1998;3:175–80. https://doi.org/10.1016/S1360-1385(98)01235-7. |
[62] | Sebastian R, Oberdoerffer P. Transcription-associated events affecting genomic integrity. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160288. https://doi.org/10.1098/rstb.2016.0288. |
[63] | Sharbrough J, Conover JL, Gyorfy MF, Grover CE, Miller ER, Wendel JF, et al. Global patterns of subgenome evolution in organelle-targeted genes of six allotetraploid angiosperms. Mol Biol Evol. 2022;39(4):msac074. https://doi.org/10.1093/molbev/msac074. |
[64] | Shikanai T, Fujii S. Function of PPR proteins in plastid gene expression. RNA Biology. 2013;9:1446–56. https://doi.org/10.4161/rna.25207. |
[65] | Siniauskaya MG, Danilenko NG, Lukhanina NV, Shymkevich AM, Davydenko OG. Expression of the chloroplast genome: modern concepts and experimental approaches. Russ J Genet Appl Res. 2016;6:491–509. https://doi.org/10.1134/S2079059716050117. |
[66] | Snijder RC, Brown FS, van Tuyl JM. The Role of plastome-genome incompatibility and biparental plastid inheritance in interspecific hybridization in the genus Zantedeschia (Araceae). Floriculture and Ornamental Biotechnology. 2007;1:150–7. |
[67] | Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3 – a versatile homology modelling toolbox. PLOS Comp Biol. 2021;17:e1008667. https://doi.org/10.1371/journal.pcbi.1008667. |
[68] | Studer G, Rempfer C, Waterhouse AM, Gumienny G, Haas J, Schwede T. QMEAND is co – distance constraints applied on model quality estimation. Bioinformatics. 2020;36:1765–71. https://doi.org/10.1093/bioinformatics/btaa058. |
[69] | Sutherland C, Murakami KS. An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA Polymerase. EcoSal Plus. 2018;8:10. https://doi.org/10.1128/ecosalplus.ESP-0004-2018. |
[70] | Suzuki J, Maliga P. Engineering of the rpl23 gene cluster to replace the plastid RNA polymerase α subunit with the Escherichia coli homologue. Curr Genet. 2000;38:218–25. https://doi.org/10.1007/s002940000141. |
[71] | Sweet R. Geraniaceae: the natural order of gerania, illustrated by coloured figures and descriptions, comprising the numerous and beautiful mule-varieties cultivated in the gardens of Great Britain, with directions for their treatment. London: Printed for James Ridgway, Piccadilly; 1820-1830. https://doi.org/10.5962/bhl.title.102247. |
[72] | Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: plastid-encoded polymerase, nuclear- encoded polymerase and the genomes uncoupled 1-mediated retrograde communication. Phil Trans R Soc B. 2020;375:20190399. https://doi.org/10.1098/rstb.2019.0399. |
[73] | Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. J Exp Bot. 2022;73:3122–37. https://doi.org/10.1093/jxb/erac076. |
[74] | Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. Mol Plant. 2014;7:1105–20. https://doi.org/10.1093/mp/ssu022. |
[75] | Tilney-Bassett RAE, Almouslem AB, Amoate HM. Complementary genes control biparental plastid inheritance in Pelargonium. Theor Appl Genet. 1992;85:317–24. https://doi.org/10.1007/BF00222876. |
[76] | Tilney-Bassett RAE, Almouslem AB. Variation in plastid inheritance between Pelargonium cultivars and their hybrids. Heredity.1989a; 63:145-53.https://doi.org/10.1038/hdy.1989.86. |
[77] | Tilney-Bassett RAE, Almouslem AB, Amoatey HM. The complementary gene model for biparental plastid inheritance. In: Boyer CD, Shannon JC, Hardison RC, editors. Physiology, biochemistry, and genetics of nongreen plastids. The American Society of Plant Physiologists 1989b. pp 265-6. |
[78] | Tilney-Bassett RAE. The genetic evidence for nuclear control of chloroplast biogenesis in higher plants. In: Ellis RJ, editor. Chloroplast biogenesis. (Society for Experimental Biology Seminar Series 21). Cambridge University Press, London, 1984. pp.13-50 . |
[79] | Van De Kerke SJ, Shrestha B, Ruhlman TA, Weng ML, Jansen RK, Jones CS, et al. Plastome based phylogenetics and younger crown node age in Pelargonium. Mol Phylogenet Evol. 2019;137:33–43. https://doi.org/10.1016/j.ympev.2019.03.021. |
[80] | Van Der Walt JJA, Albers F, Gibby M. Delimitation of Pelargonium sect Glaucophyllum. Plant Syst Evol. 1990;171:15–26. https://doi.org/10.1007/BF00940594. |
[81] | Vitales D, Garcia S, Dodsworth S. Reconstructing phylogenetic relationships based on repeat sequence similarities. Mol Phyl Evol. 2020;147:106766. https://doi.org/10.1101/624064. |
[82] | Wang X, Yaqi A, Pan X, Jianwei X. Functioning of PPR proteins in organelle RNA metabolism and chloroplast biogenesis. Front Plant Sci. 2021;12:627501. https://doi.org/10.3389/fpls.2021.627501. |
[83] | Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. https://doi.org/10.1093/nar/gky427. |
[84] | Weihe A, Apitz J, Salinas A, Pohlheim F, B?rner T. Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium. Mol Genet Genomics. 2009;282:587–93. https://doi.org/10.1007/s00438-009-0488-9. |
[85] | Weng ML, Ruhlman TA, Gibby M, Jansen RK. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae). Mol Phylogenet Evol. 2012;64:654–70. https://doi.org/10.1016/j.ympev.2012.05.026. |
[86] | Weng ML, Ruhlman TA, Jansen RK. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. New Phytol. 2017;214:842–51. https://doi.org/10.1111/nph.14375. |
[87] | Weng ML, Ruhlman TA, Jansen RK. Plastid‐nuclear interaction and accelerated coevolution in plastid ribosomal genes in Geraniaceae. Genome Biol Evol. 2016;27(8):1824–38. https://doi.org/10.1093/gbe/evw115. |
[88] | Westerich LD, Leon Gotsmann VL, Herkt C, Ries F, Kazek T, et al. The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucl Acids Res. 2021;49(1). https://doi.org/10.1093/nar/gkaa1192. |
[89] | Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–2. https://doi.org/10.1093/bioinformatics/btv383. |
[90] | Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–97. https://doi.org/10.1007/s11103-011-9762-4. |
[91] | Williams-Carrier R, Zoschke R, Belcher S, Pfalz J, Barkan A. A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs. Plant Physiol. 2014;164:239–48. https://doi.org/10.1104/pp.113.228726. |
[92] | Yao JL, Cohen D. Multiple gene control of plastome-genome incompatibility and plastid DNA inheritance in interspecific hybrids of Zantedeschia. Theor Appl Genet. 2000;101:400–6. https://doi.org/10.1007/s001220051496. |
[93] | Yao JL, Cohen D, Rowland RE. Plastid DNA inheritance and plastome-genome incompatibility in interspecific hybrids of Zantedeschia (Araceae). Theor Appl Genet. 1994;88:255–60. https://doi.org/10.1007/BF00225906. |
[94] | Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, et al. Structural basis of transcription initiation. Science. 2012;338:1076–88. https://doi.org/10.1126/science.1227786. |
[95] | Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC Plant Biol. 2013;13:228. https://doi.org/10.1186/1471-2229-13-228. |
[96] | Zhang J, Ruhlman T, Sabir J, Blazier J, Jansen R. Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae. Plant Cell. 2015;27:563–73. https://doi.org/10.1105/tpc.114.134353. |
[97] | Zhang JJ, Ruhlman TA, Sabir JSM, Blazier JC, Weng M-L, Park S, et al. Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity. Genome Biol Evol. 2016;3:622–34. https://doi.org/10.1093/gbe/evw033. |
/
〈 | 〉 |