Immune microenvironment and immunotherapy strategies in MAFLD-related hepatocellular carcinoma

Hao-Nan Han , Jin-Hu Ma , Jia-Bei Wang , Yao Liu

Hepatoma Research ›› 2025, Vol. 11 : 24

PDF
Hepatoma Research ›› 2025, Vol. 11:24 DOI: 10.20517/2394-5079.2025.54
Review

Immune microenvironment and immunotherapy strategies in MAFLD-related hepatocellular carcinoma

Author information +
History +
PDF

Abstract

Driven by the global pandemic of obesity and metabolic syndrome, metabolic-associated fatty liver disease (MAFLD) has emerged as a principal driver of hepatocellular carcinoma (HCC). MAFLD-related HCC (MAFLD-HCC) exhibits distinct pathological features and a unique immune microenvironment, which collectively contribute to its poorer response to immune checkpoint inhibitors (ICIs) compared to HCC of other etiologies. This review systematically outlines the immune microenvironment in MAFLD-HCC, focusing on the dynamic changes and interactions among dysfunctional CD8+ T cells, regulatory T cells, myeloid cells, and B cells, as well as their crosstalk with metabolic reprogramming. These changes collectively result in a highly immunosuppressive tumor microenvironment, leading to resistance to ICIs. Addressing the challenges in treating MAFLD-HCC, this paper discusses the current progress in immunotherapy for MAFLD-HCC and explores potential directions for future immunotherapy research.

Keywords

MAFLD-related HCC / immune microenvironment / immunotherapy

Cite this article

Download citation ▾
Hao-Nan Han, Jin-Hu Ma, Jia-Bei Wang, Yao Liu. Immune microenvironment and immunotherapy strategies in MAFLD-related hepatocellular carcinoma. Hepatoma Research, 2025, 11: 24 DOI:10.20517/2394-5079.2025.54

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F,Sung H.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2024;74:229-63

[2]

Rumgay H,de Martel C.Global, regional and national burden of primary liver cancer by subtype.Eur J Cancer2022;161:108-18

[3]

Allemani C, Matsuda T, Di Carlo V, et al.; CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries.Lancet2018;391:1023-75 PMCID:PMC5879496

[4]

Wong GL.Risk prediction of hepatitis B virus-related hepatocellular carcinoma in the era of antiviral therapy.World J Gastroenterol2013;19:6515-22 PMCID:PMC3801362

[5]

Liu Y.Changes in the epidemiology of hepatocellular carcinoma in Asia.Cancers2022;14:4473 PMCID:PMC9496757

[6]

Eslam M,Sarin SK.A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement.J Hepatol2020;73:202-9

[7]

Rinella ME, Lazarus JV, Ratziu V, et al.; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature.Hepatology2023;78:1966-86 PMCID:PMC10653297

[8]

Habibullah M,Ouda A,Malki MI.Metabolic-associated fatty liver disease: a selective review of pathogenesis, diagnostic approaches, and therapeutic strategies.Front Med2024;11:1291501 PMCID:PMC10845138

[9]

Hong S,Hao Y.From NAFLD to MASLD: when metabolic comorbidity matters.Ann Hepatol2024;29:101281

[10]

Hagström H,Ekstedt M.99% of patients with NAFLD meet MASLD criteria and natural history is therefore identical.J Hepatol2024;80:e76-7

[11]

Crane H,Sharma A.MAFLD: an optimal framework for understanding liver cancer phenotypes.J Gastroenterol2023;58:947-64 PMCID:PMC10522746

[12]

Costante F,Santopaolo F,Pompili M.Immunotherapy for nonalcoholic fatty liver disease-related hepatocellular carcinoma: lights and shadows.World J Gastrointest Oncol2022;14:1622-36 PMCID:PMC9516656

[13]

Chan SL,Xu Y.The Lancet Commission on addressing the global hepatocellular carcinoma burden: comprehensive strategies from prevention to treatment.Lancet2025;406:731-78

[14]

Pinter M,Ramadori P.NASH and hepatocellular carcinoma: immunology and immunotherapy.Clin Cancer Res2023;29:513-20 PMCID:PMC9890137

[15]

Yahoo N,Knolle P.Role of immune responses in the development of NAFLD-associated liver cancer and prospects for therapeutic modulation.J Hepatol2023;79:538-51

[16]

Llovet JM,Yarchoan M.Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma.Nat Rev Clin Oncol2024;21:294-311 PMCID:PMC11984461

[17]

Kudo M,Galle PR.IMbrave150: efficacy and safety of atezolizumab plus bevacizumab versus sorafenib in patients with barcelona clinic liver cancer stage b unresectable hepatocellular carcinoma: an exploratory analysis of the phase III study.Liver Cancer2023;12:238-50 PMCID:PMC10521324

[18]

Peng Y,Yu J.The paradox of immunotherapy in NASH-HCC.Signal Transduct Target Ther2021;6:228 PMCID:PMC8192918

[19]

Pfister D,Pinyol R.NASH limits anti-tumour surveillance in immunotherapy-treated HCC.Nature2021;592:450-6 PMCID:PMC8046670

[20]

Cheu JWS.The immune microenvironment of steatotic hepatocellular carcinoma: current findings and future prospects.Hepatol Commun2024;8:e0516 PMCID:PMC11371312

[21]

McLane LM,Wherry EJ.CD8 T cell exhaustion during chronic viral infection and cancer.Annu Rev Immunol2019;37:457-95

[22]

Dudek M,Donakonda S.Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH.Nature2021;592:444-9

[23]

Li M,Cong L.Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma.Hepatology2024;79:560-74 PMCID:PMC10871559

[24]

Pan Y,Zhang X.METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy.Cell Rep Med2023;4:101144 PMCID:PMC10439254

[25]

Valenzuela-Pérez L,Bayer RL.CD4+ T cells promote fibrosis during metabolic dysfunction-associated steatohepatitis.bioRxiv2025; PMCID:PMC12236817

[26]

Brown ZJ,Ma C.Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4+ T cell apoptosis promoting HCC development.Cell Death Dis2018;9:620 PMCID:PMC5966464

[27]

Schneider C,Yevsa T.Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer.Gut2012;61:1733-43 PMCID:PMC4533880

[28]

Miao Y,Feng J.The role of CD4+T cells in nonalcoholic steatohepatitis and hepatocellular carcinoma.Int J Mol Sci2024;25:6895 PMCID:PMC11240980

[29]

Ohkura N.Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases.Cell Res2020;30:465-74 PMCID:PMC7264322

[30]

Ma X,Mohamood AR,Ravi R.A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury.Hepatology2007;46:1519-29

[31]

Roh YS,Park S.Toll-like receptor-7 signaling promotes nonalcoholic steatohepatitis by inhibiting regulatory T cells in mice.Am J Pathol2018;188:2574-88

[32]

Zhang C,Feng K,Xue W.‘Repair’ Treg cells in tissue injury.Cell Physiol Biochem2017;43:2155-69

[33]

Katz SC,Ahmed N.Obstructive jaundice expands intrahepatic regulatory T cells, which impair liver T lymphocyte function but modulate liver cholestasis and fibrosis.J Immunol2011;187:1150-6 PMCID:PMC3372324

[34]

Fabregat I, Moreno-Càceres J, Sánchez A, et al.; IT-LIVER Consortium. TGF-β signalling and liver disease.FEBS J2016;283:2219-32

[35]

Wang H,Wang Y.Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis.J Hepatol2021;75:1271-83

[36]

Behary J,Jiang XT.Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma.Nat Commun2021;12:187 PMCID:PMC7794332

[37]

Wang H,Mishra L.Regulatory T cell: a double-edged sword from metabolic-dysfunction-associated steatohepatitis to hepatocellular carcinoma.EBioMedicine2024;101:105031 PMCID:PMC10904199

[38]

Hindson J.T cells in NASH and liver cancer: pathology and immunotherapy.Nat Rev Gastroenterol Hepatol2021;18:367

[39]

Wolf MJ,Piotrowitz K.Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes.Cancer Cell2014;26:549-64

[40]

Clària J.Natural killer cell recognition and killing of activated hepatic stellate cells.Gut2012;61:792-3

[41]

Tang W,Yang W.Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver.Cell Mol Immunol2022;19:834-47 PMCID:PMC9243114

[42]

Xu J,Wu T.Prophylactic treatment with Bacteroides uniformis and Bifidobacterium bifidum counteracts hepatic NK cell immune tolerance in nonalcoholic steatohepatitis induced by high fat diet.Gut Microbes2024;16:2302065 PMCID:PMC10793665

[43]

Martínez-Chantar ML,Beraza N.Revisiting the role of natural killer cells in non-alcoholic fatty liver disease.Front Immunol2021;12:640869 PMCID:PMC7930075

[44]

Hunter S,Davey MS.Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations.J Hepatol2018;69:654-65 PMCID:PMC6089840

[45]

Harley IT,Giles DA.IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice.Hepatology2014;59:1830-9 PMCID:PMC3975735

[46]

Zhan C,Wei H,Ou Y.Diverse subsets of γδT cells and their specific functions across liver diseases.Int J Mol Sci2025;26:2778 PMCID:PMC11943347

[47]

Li F,Chen Y.The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner.Nat Commun2017;7:13839 PMCID:PMC5227332

[48]

Marinović S,Mladenić K.NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis.Sci Immunol2023;8:eadd1599 PMCID:PMC7615627

[49]

Li Y,Tang R.Tissue-resident memory T cells in chronic liver diseases: phenotype, development and function.Front Immunol2022;13:967055 PMCID:PMC9511135

[50]

Koda Y,Chu PS.CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells.Nat Commun2021;12:4474 PMCID:PMC8298513

[51]

Gupta PK,Wolski D.CD39 expression identifies terminally exhausted CD8+ T cells.PLoS Pathog2015;11:e1005177 PMCID:PMC4618999

[52]

Li Y,Jiang X.Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization.Front Immunol2018;9:1994 PMCID:PMC6131560

[53]

Toubal A,Beaudoin L.Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity.Nat Commun2020;11:3755 PMCID:PMC7381641

[54]

Deschler S,Ramsauer L.Polyunsaturated fatty acid-induced metabolic exhaustion and ferroptosis impair the anti-tumour function of MAIT cells in MASLD.J Hepatol2025;83:1364-78

[55]

Karl M,Zhou Y.Dual roles of B lymphocytes in mouse models of diet-induced nonalcoholic fatty liver disease.Hepatology2022;76:1135-49

[56]

Xie Y,Li ZY.Interleukin-21 receptor signaling promotes metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma by inducing immunosuppressive IgA+ B cells.Mol Cancer2024;23:95 PMCID:PMC11077880

[57]

Huang Y,Zhang Y.Single-cell transcriptome reveals the reprogramming of immune microenvironment during the transition from MASH to HCC.Mol Cancer2025;24:177 PMCID:PMC12153197

[58]

Petriv N,Hochnadel I.Essential roles of B cell subsets in the progression of MASLD and HCC.JHEP Rep2024;6:101189 PMCID:PMC11602976

[59]

Kotsiliti E,Schuehle S.Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling.J Hepatol2023;79:296-313 PMCID:PMC10360918

[60]

Barrow F,Fredrickson G.Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling.Hepatology2021;74:704-22 PMCID:PMC8377092

[61]

Wang H,Barrow F.Single-cell RNA sequencing reveals a reprogramming of hepatic immune cells and a protective role for B cells in MASH-driven HCC.Hepatol Commun2025;9:e0668 PMCID:PMC12014033

[62]

Zhang P,Kuang H.Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment.Cell Metab2022;34:1359-76.e7 PMCID:PMC9458631

[63]

Batlle E.Transforming growth factor-β signaling in immunity and cancer.Immunity2019;50:924-40 PMCID:PMC7507121

[64]

Foglia B,Cannito S.Histidine-rich glycoprotein in metabolic dysfunction-associated steatohepatitis-related disease progression and liver carcinogenesis.Front Immunol2024;15:1342404 PMCID:PMC10925642

[65]

Liang Y,Biswas S.Integrated single-cell transcriptomics reveals the hypoxia-induced inflammation-cancer transformation in NASH-derived hepatocellular carcinoma.Cell Prolif2024;57:e13576 PMCID:PMC10984103

[66]

Zhou L,Meng Z.Hepatic danger signaling triggers TREM2+ macrophage induction and drives steatohepatitis via MS4A7-dependent inflammasome activation.Sci Transl Med2024;16:eadk1866 PMCID:PMC12287971

[67]

Zhang Y,Liu X.NCOA5 haploinsufficiency in myeloid-lineage cells sufficiently causes nonalcoholic steatohepatitis and hepatocellular carcinoma.Cell Mol Gastroenterol Hepatol2024;17:1-27 PMCID:PMC10665956

[68]

Clement CC,Yamazaki T.Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery.Immunity2021;54:721-36.e10 PMCID:PMC8046741

[69]

Shi X,Wang X.Compromised macrophages contribute to progression of MASH to hepatocellular carcinoma in FGF21KO mice.Sci Adv2024;10:eado9311 PMCID:PMC11498219

[70]

Rose JP,Sullivan AI.FGF21 reverses MASH through coordinated actions on the CNS and liver.Cell Metab2025;37:1515-29.e6 PMCID:PMC12409791

[71]

Mohammed S,Ohene-Marfo P.Absence of either Ripk3 or Mlkl reduces incidence of hepatocellular carcinoma independent of liver fibrosis.Mol Cancer Res2023;21:933-46 PMCID:PMC10472095

[72]

Naugler WE,Kim S.Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production.Science2007;317:121-4

[73]

Wu XQ,Chung KPS.Intestinal Akkermansia muciniphila complements the efficacy of PD1 therapy in MAFLD-related hepatocellular carcinoma.Cell Rep Med2025;6:101900 PMCID:PMC11866522

[74]

Min BH,Kwon GH.Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation.Gut Microbes2024;16:2307568 PMCID:PMC10841017

[75]

Su T,Wang M.Macrophage-hepatocyte circuits mediated by grancalcin aggravate the progression of metabolic dysfunction associated steatohepatitis.Adv Sci2024;11:e2406500 PMCID:PMC11558151

[76]

Hu S,Gong D.Atf3-mediated metabolic reprogramming in hepatic macrophage orchestrates metabolic dysfunction-associated steatohepatitis.Sci Adv2024;10:eado3141 PMCID:PMC11268416

[77]

Jaitin DA,Thaiss CA.Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner.Cell2019;178:686-98.e14 PMCID:PMC7068689

[78]

Vennin C,Bosch L.Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity.Cancer Cell2023;41:1170-85.e12

[79]

Kohlhepp MS,Tacke F.The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer - challenges and opportunities.Front Mol Biosci2023;10:1129831 PMCID:PMC9950415

[80]

Leslie J,Jamieson T.CXCR2 inhibition enables NASH-HCC immunotherapy.Gut2022;71:2093-106 PMCID:PMC9484388

[81]

Kwak JW.Targeting neutrophils for cancer therapy.Nat Rev Drug Discov2025;24:666-84

[82]

Zhang P,Wu L.Neutrophil serine proteases NE and PR3 controlled by the miR-223/STAT3 axis potentiate MASH and liver fibrosis.Hepatology2025;

[83]

Xu M,Ling YW.Neutrophil extracellular traps-triggered hepatocellular senescence exacerbates lipotoxicity in non-alcoholic steatohepatitis.J Adv Res2025;S2090-1232(25)00175-4

[84]

Xia Y,Xiong Q.Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC.Hepatology2025;81:947-61 PMCID:PMC11881075

[85]

Babuta M,de Carvalho Ribeiro M.Neutrophil extracellular traps activate hepatic stellate cells and monocytes via NLRP3 sensing in alcohol-induced acceleration of MASH fibrosis.Gut2024;73:1854-69 PMCID:PMC11458363

[86]

Tu T,Alhousari D.Proinflammatory macrophages release CXCL5 to regulate T cell function and limit effects of αPD-1 in steatosis-driven liver cancer.JHEP Rep2025;7:101385 PMCID:PMC12151196

[87]

Teo JMN,Chen W.Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma.J Exp Med2025;222 PMCID:PMC11619716

[88]

Deczkowska A,Ramadori P.XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis.Nat Med2021;27:1043-54

[89]

Merad M,Helft J,Mortha A.The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting.Annu Rev Immunol2013;31:563-604 PMCID:PMC3853342

[90]

Haas JT,Mogilenko DA.Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution.Nat Metab2019;1:604-14 PMCID:PMC6837876

[91]

Seyhan D,Fu Y.Immune microenvironment in hepatocellular carcinoma: from pathogenesis to immunotherapy.Cell Mol Immunol2025;22:1132-58 PMCID:PMC12480583

[92]

Heier EC,Julich-Haertel H.Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis.J Hepatol2017;66:1241-50

[93]

Gabrilovich DI,Chen SH.The terminology issue for myeloid-derived suppressor cells.Cancer Res2007;67:425; author reply 426 PMCID:PMC1941787

[94]

Gabrilovich DI.Myeloid-derived suppressor cells.Cancer Immunol Res2017;5:3-8 PMCID:PMC5426480

[95]

Condamine T,Youn JI.Regulation of tumor metastasis by myeloid-derived suppressor cells.Annu Rev Med2015;66:97-110 PMCID:PMC4324727

[96]

Safarzadeh E,Mohammadi H,Baradaran B.Myeloid-derived suppressor cells: important contributors to tumor progression and metastasis.J Cell Physiol2018;233:3024-36

[97]

Wang L,Liang C.Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis.J Hepatol2023;79:1185-200

[98]

Wen J,Wong CC.Targeting squalene epoxidase restores anti-PD-1 efficacy in metabolic dysfunction-associated steatohepatitis-induced hepatocellular carcinoma.Gut2024;73:2023-36 PMCID:PMC11671884

[99]

Giraud J,Ramel E.THBS1+ myeloid cells expand in SLD hepatocellular carcinoma and contribute to immunosuppression and unfavorable prognosis through TREM1.Cell Rep2024;43:113773

[100]

Zheng C,Yoo JK.Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing.Cell2017;169:1342-56.e16

[101]

Finn RS, Qin S, Ikeda M, et al.; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.N Engl J Med2020;382:1894-905

[102]

Zayac A.Hepatobiliary cancers and immunotherapy: where are we now and where are we heading?.Transl Gastroenterol Hepatol2020;5:8 PMCID:PMC7061229

[103]

Bruix J,Galle PR,Sangro B.Systemic treatment of hepatocellular carcinoma: an EASL position paper.J Hepatol2021;75:960-74

[104]

Cheng AL,Ikeda M.Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma.J Hepatol2022;76:862-73 PMCID:PMC9630017

[105]

Galle PR,Qin S.Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial.Lancet Oncol2021;22:991-1001

[106]

Abou-Alfa GK,Kudo M.Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma.NEJM Evid2022;1:EVIDoa2100070

[107]

Rimassa L,Sangro B.Five-year overall survival update from the HIMALAYA study of tremelimumab plus durvalumab in unresectable HCC.J Hepatol2025;83:899-908

[108]

Ren Z, Xu J, Bai Y, et al.; ORIENT-32 study group. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study.Lancet Oncol2021;22:977-90

[109]

Yau T,Finn RS.Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial.Lancet Oncol2022;23:77-90

[110]

Zhu AX, Finn RS, Edeline J, et al.; KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial.Lancet Oncol2018;19:940-52

[111]

Finn RS, Ryoo BY, Merle P, et al.; KEYNOTE-240 investigators. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial.J Clin Oncol2020;38:193-202

[112]

Finn RS,Chen X.Second-line pembrolizumab for advanced HCC: meta-analysis of the phase III KEYNOTE-240 and KEYNOTE-394 studies.JHEP Rep2025;7:101350 PMCID:PMC12143813

[113]

Kudo M,Santoro A.CheckMate 040 cohort 5: a phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis.J Hepatol2021;75:600-9

[114]

Yau T,Kim TY.Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial.JAMA Oncol2020;6:e204564 PMCID:PMC7530824

[115]

Yau T, Galle PR, Decaens T, et al.; CheckMate 9DW investigators. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): an open-label, randomised, phase 3 trial.Lancet2025;405:1851-64

[116]

Yau T,Finn R.CheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC).Ann Oncol2019;30:v874-5

[117]

Kelley R,Cheng A.VP10-2021: Cabozantinib (C) plus atezolizumab (A) versus sorafenib (S) as first-line systemic treatment for advanced hepatocellular carcinoma (aHCC): results from the randomized phase III COSMIC-312 trial.Ann Oncol2022;33:114-6

[118]

Zhu AX, Kang YK, Yen CJ, et al.; REACH-2 study investigators. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol2019;20:282-96

[119]

Abou-Alfa GK,Cheng AL.Cabozantinib in patients with advanced and progressing hepatocellular carcinoma.N Engl J Med2018;379:54-63 PMCID:PMC7523244

[120]

Abou-Alfa GK,Kudo M.Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA.J Clin Oncol2022;40:379

[121]

Rimini M,Ueshima K.Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis.ESMO Open2022;7:100591 PMCID:PMC9808460

[122]

Meyer T,Lopes A.Aetiology of liver disease and response to immune checkpoint inhibitors: an updated meta-analysis confirms benefit in those with non-viral liver disease.J Hepatol2023;79:e73-6

[123]

Akce M,Waller EK,Lesinski GB.The potential of CAR T cell therapy in pancreatic cancer.Front Immunol2018;9:2166 PMCID:PMC6167429

[124]

Wu X,Liu X,Wan X.Research trends of cellular immunotherapy for primary liver cancer: a bibliometric analysis.Hum Vaccin Immunother2024;20:2426869 PMCID:PMC11572085

[125]

Tian Y,Shao Y.Gene modification strategies for next-generation CAR T cells against solid cancers.J Hematol Oncol2020;13:54 PMCID:PMC7236186

[126]

Shi Y,Chi J.Combined local therapy and CAR-GPC3 T-cell therapy in advanced hepatocellular carcinoma: a proof-of-concept treatment strategy.Cancer Commun2023;43:1064-8 PMCID:PMC10508142

[127]

Steffin D,Montalbano A.Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers.Nature2025;637:940-6

[128]

Liu L.The potential of the gut microbiome to reshape the cancer therapy paradigm: a review.JAMA Oncol2022;8:1059-67

[129]

Guo Z,Huang B.MAFLD-related hepatocellular carcinoma: exploring the potent combination of immunotherapy and molecular targeted therapy.Int Immunopharmacol2024;140:112821

[130]

Lau HCH,Yu J.Gut microbiome in metabolic dysfunction-associated steatotic liver disease and associated hepatocellular carcinoma.Nat Rev Gastroenterol Hepatol2025;22:619-38

[131]

Craven L,Nair Parvathy S.Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial.Am J Gastroenterol2020;115:1055-65

[132]

Xue L,Luo W,Chen Y.Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial.Front Cell Infect Microbiol2022;12:759306 PMCID:PMC9289257

[133]

Aller R,Izaola O et al.Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial.Eur Rev Med Pharmacol Sci2011;15:1090-5

[134]

Zhu W,Cao H,Xu Z.Effects of Clostridium butyricum capsules combined with rosuvastatin on intestinal flora, lipid metabolism, liver function and inflammation in NAFLD patients.Cell Mol Biol2022;68:64-9

[135]

Loguercio C,Tuccillo C.Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases.J Clin Gastroenterol2005;39:540-3

[136]

Hai S,Xie E.Intestinal IL-33 promotes microbiota-derived trimethylamine N-oxide synthesis and drives metabolic dysfunction-associated steatotic liver disease progression by exerting dual regulation on HIF-1α.Hepatology2025;82:184-98 PMCID:PMC12178169

[137]

Zhu X,Huang X.Interplay between gut microbial communities and metabolites modulates pan-cancer immunotherapy responses.Cell Metab2025;37:806-23.e6

[138]

Friedman SL,Rinella M.Mechanisms of NAFLD development and therapeutic strategies.Nat Med2018;24:908-22 PMCID:PMC6553468

[139]

Bian H,Chen ZN.New avenues for NASH therapy by targeting ACC.Cell Metab2022;34:191-3

[140]

Dong L,Xu C.Naringenin cationic lipid-modified nanoparticles mitigate MASLD progression by modulating lipid homeostasis and gut microbiota.J Nanobiotechnology2025;23:168 PMCID:PMC11881431

[141]

Zhang Y,Lin J.A microbial metabolite inhibits the HIF-2α-ceramide pathway to mediate the beneficial effects of time-restricted feeding on MASH.Cell Metab2024;36:1823-38.e6

[142]

Bao J,Xu X.Advances in the use of metformin for liver disease.Curr Med Chem2025;32:3591-605

[143]

Wabitsch S,Kamenyeva O.Metformin treatment rescues CD8+ T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD.J Hepatol2022;77:748-60 PMCID:PMC9391315

[144]

Mossmann D,Park S.Arginine reprograms metabolism in liver cancer via RBM39.Cell2023;186:5068-83.e23 PMCID:PMC10642370

[145]

Chang Y,Li S.SLC3A2-mediated lysine uptake by cancer cells restricts T-cell activity in hepatocellular carcinoma.Cancer Res2025;85:2250-67

[146]

Guo H,Ni C.TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma.J Exp Clin Cancer Res2025;44:20 PMCID:PMC11748316

[147]

Qiu H,Wen X.TREM2: keeping pace with immune checkpoint inhibitors in cancer immunotherapy.Front Immunol2021;12:716710 PMCID:PMC8446424

[148]

Allard B,Cousineau I.Adenosine A2A receptor is a tumor suppressor of NASH-associated hepatocellular carcinoma.Cell Rep Med2023;4:101188 PMCID:PMC10518627

[149]

Yu H,Jove R.STATs in cancer inflammation and immunity: a leading role for STAT3.Nat Rev Cancer2009;9:798-809 PMCID:PMC4856025

[150]

Fu JT,Wu WB.Targeting EFHD2 inhibits interferon-γ signaling and ameliorates non-alcoholic steatohepatitis.J Hepatol2024;81:389-403

[151]

Gu L,Lee M.Angiotensin II receptor inhibition ameliorates liver fibrosis and enhances hepatocellular carcinoma infiltration by effector T cells.Proc Natl Acad Sci U S A2023;120:e2300706120 PMCID:PMC10175751

[152]

Qiu X,Wang K,Shao C.Aspirin in hepatocellular carcinoma: is it an out-of-date or promising treatment?.ILIVER2022;1:55-64 PMCID:PMC12212603

[153]

Fan H,Wen B.Biomarkers and potential therapeutic targets driving progression of non-alcoholic steatohepatitis to hepatocellular carcinoma predicted through transcriptomic analysis.Front Immunol2024;15:1502263 PMCID:PMC11652351

[154]

Zou W,Tu Y.Metabolic reprogramming by chemo-gene co-delivery nanoparticles for chemo-immunotherapy in head and neck squamous cell carcinoma.Acta Biomater2025;199:361-73

[155]

Deng H,Wang B.Reshaping tumor immune microenvironment through ROS-responsive prodrug polyplexes via synergistic effect of CRISPRi system and epigenetic inhibitor for breast cancer therapy.Mater Today Bio2025;35:102285 PMCID:PMC12454885

[156]

Li Q,Ding J.Construction of ROS-responsive poly(β-amino ester)-poly(β-thioether ester) copolymer for enhancing gene delivery and gene therapy.Biomacromolecules2025;26:6702-15

PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

/