Advances in radiomics applications for intrahepatic cholangiocarcinoma: a comprehensive review and future directions

Jia-Wei Xu , Bing-Hua Li , De-Cai Yu

Hepatoma Research ›› 2024, Vol. 10 : 45

PDF
Hepatoma Research ›› 2024, Vol. 10:45 DOI: 10.20517/2394-5079.2024.79
Review

Advances in radiomics applications for intrahepatic cholangiocarcinoma: a comprehensive review and future directions

Author information +
History +
PDF

Abstract

Radiomics was first introduced by Lambin et al. in 2012, and since then, research in this field has grown rapidly. Researchers have shown great interest in developing efficient methods for automatically extracting a large number of quantitative features from medical images, aiming to enhance diagnostic accuracy and predictive capability. Although there has been a rise in Radiomics studies focusing on intrahepatic cholangiocarcinoma (ICC) in recent years, comprehensive reviews are still relatively scarce. This study explores how Radiomics technology can be utilized in modeling analyses to predict lymph node metastasis, microvascular invasion, and early recurrence of ICC, as well as the application of deep learning in these analyses. This paper provides a brief overview of the current state of Radiomics research and offers references for future studies.

Keywords

Radiomics / artificial intelligence / intrahepatic cholangiocarcinoma

Cite this article

Download citation ▾
Jia-Wei Xu, Bing-Hua Li, De-Cai Yu. Advances in radiomics applications for intrahepatic cholangiocarcinoma: a comprehensive review and future directions. Hepatoma Research, 2024, 10: 45 DOI:10.20517/2394-5079.2024.79

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lambin P,Leijenaar R.Radiomics: extracting more information from medical images using advanced feature analysis.Eur J Cancer2012;48:441-6 PMCID:PMC4533986

[2]

McKinney SM,Godbole V.International evaluation of an AI system for breast cancer screening.Nature2020;577:89-94

[3]

Bejnordi B, Veta M, Johannes van Diest P, et al; the CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-210. PMCID:PMC5820737

[4]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[5]

Choi JH.Recent advances in pathology of intrahepatic cholangiocarcinoma.Cancers (Basel)2024;16:1537 PMCID:PMC11048541

[6]

Sirica AE,Groopman JD.Intrahepatic cholangiocarcinoma: continuing challenges and translational advances.Hepatology2019;69:1803-15 PMCID:PMC6433548

[7]

Ilyas SI.Pathogenesis, diagnosis, and management of cholangiocarcinoma.Gastroenterology2013;145:1215-29 PMCID:PMC3862291

[8]

Krenzien F,Krombholz A.Treatment of intrahepatic cholangiocarcinoma-a multidisciplinary approach.Cancers (Basel)2022;14:362 PMCID:PMC8773654

[9]

Wang K,Xia Y,Shen F.Surgical options for intrahepatic cholangiocarcinoma.Hepatobiliary Surg Nutr2017;6:79-90 PMCID:PMC5411277

[10]

Capuozzo M,Landi L.Evolution of treatment in advanced cholangiocarcinoma: old and new towards precision oncology.Int J Mol Sci2022;23:15124 PMCID:PMC9740631

[11]

Shen X,Jin X.Development and validation of a machine learning-based nomogram for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis.Hepatobiliary Surg Nutr2021;10:749-65 PMCID:PMC8683924

[12]

Granata V,Belli A.Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma.Infect Agent Cancer2022;17:13 PMCID:PMC8961950

[13]

Nwogu I.Exploratory identification of image-based biomarkers for solid mass pulmonary tumors.Med Image Comput Comput Assist Interv2008;11:612-9

[14]

Segal E,Ooi C.Decoding global gene expression programs in liver cancer by noninvasive imaging.Nat Biotechnol2007;25:675-80

[15]

Buch K,Qureshi MM,Anderson SW.Quantitative assessment of variation in CT parameters on texture features: pilot study using a nonanatomic phantom.AJNR Am J Neuroradiol2017;38:981-5 PMCID:PMC7960393

[16]

Qiu Q,Duan Z.Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability.Quant Imaging Med Surg2019;9:453-64 PMCID:PMC6462568

[17]

Lecler A,Balvay D.Combining multiple magnetic resonance imaging sequences provides independent reproducible radiomics features.Sci Rep2019;9:2068 PMCID:PMC6376058

[18]

Gillies RJ,Hricak H.Radiomics: images are more than pictures, they are data.Radiology2016;278:563-77 PMCID:PMC4734157

[19]

Just N.Improving tumour heterogeneity MRI assessment with histograms.Br J Cancer2014;111:2205-13 PMCID:PMC4264439

[20]

Park JE,Kim HJ.Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives.Korean J Radiol2019;20:1124-37 PMCID:PMC6609433

[21]

Saha A,Grimm LJ.A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features.Br J Cancer2018;119:508-16 PMCID:PMC6134102

[22]

Mayerhoefer ME,Langs G.Introduction to radiomics.J Nucl Med2020;61:488-95 PMCID:PMC9374044

[23]

Park JE.Radiomics as a quantitative imaging biomarker: practical considerations and the current standpoint in neuro-oncologic studies.Nucl Med Mol Imaging2018;52:99-108 PMCID:PMC5897262

[24]

Bridgewater J,Khan SA.Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma.J Hepatol2014;60:1268-89

[25]

Xu X,Tang Y.Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on radiomic analysis.Comput Math Methods Med2022;2022:5334095 PMCID:PMC8885247

[26]

Xue B,Zheng M.Development and validation of a radiomic-based model for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis complicated by imagologically diagnosed mass.Front Oncol2020;10:598253 PMCID:PMC7817533

[27]

Chen X,Chen H.Machine learning based on gadoxetic acid-enhanced MRI for differentiating atypical intrahepatic mass-forming cholangiocarcinoma from poorly differentiated hepatocellular carcinoma.Abdom Radiol (NY)2023;48:2525-36

[28]

Liu X,Namdar K.Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?.Eur Radiol2021;31:244-55

[29]

Deng X.A machine-learning model based on dynamic contrast-enhanced MRI for preoperative differentiation between hepatocellular carcinoma and combined hepatocellular-cholangiocarcinoma.Clin Radiol2024;79:e817-25

[30]

Liu N,Tao Y.Differentiation of hepatocellular carcinoma from intrahepatic cholangiocarcinoma through MRI radiomics.Cancers (Basel)2023;15:5373 PMCID:PMC10670473

[31]

Mahmoudi S,Ackermann J.Computed tomography radiomics to differentiate intrahepatic cholangiocarcinoma and hepatocellular carcinoma.Clin Oncol (R Coll Radiol)2023;35:e312-8

[32]

Xu H,Zhao Y.Differentiation of intrahepatic cholangiocarcinoma and hepatic lymphoma based on radiomics and machine learning in contrast-enhanced computer tomography.Technol Cancer Res Treat2021;20:15330338211039125 PMCID:PMC8435928

[33]

Peng Y,Wu L.Ultrasound-based radiomics analysis for preoperatively predicting different histopathological subtypes of primary liver cancer.Front Oncol2020;10:1646 PMCID:PMC7543652

[34]

Xu Y,Li L.MRI-based radiomics nomogram for preoperatively differentiating intrahepatic mass-forming cholangiocarcinoma from resectable colorectal liver metastases.Acad Radiol2023;30:2010-20

[35]

Fiz F,Costa G.PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival.Eur J Nucl Med Mol Imaging2022;49:3387-400

[36]

Wang S,Yin X,Cai J.Differentiating HCC from ICC and prediction of ICC grade based on MRI deep-radiomics: using lesions and their extended regions.Phys Med2024;120:103322

[37]

Huang JL,Wu ZH.Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms.J Cancer Res Clin Oncol2023;149:10161-8

[38]

Jiang C,Xin B,Wang X.18F-FDG PET/CT radiomic analysis for classifying and predicting microvascular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.Quant Imaging Med Surg2022;12:4135-50 PMCID:PMC9338369

[39]

Zhou Y,Zhang J,Zhu F.DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma.Eur Radiol2022;32:5004-15

[40]

Xue B,Zhang M.A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis.Abdom Radiol (NY)2021;46:3835-44

[41]

Ren S,Liu S.Clinical value of machine learning-based ultrasomics in preoperative differentiation between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: a multicenter study.Front Oncol2021;11:749137 PMCID:PMC8604281

[42]

Valle JW,Nervi B,Zhu AX.Biliary tract cancer.Lancet2021;397:428-44

[43]

Songthamwat M,Khuntikeo N.Evaluating a preoperative protocol that includes magnetic resonance imaging for lymph node metastasis in the cholangiocarcinoma screening and care program (CASCAP) in Thailand.World J Surg Oncol2017;15:176 PMCID:PMC5607577

[44]

Malikowski T,Gleeson FC.Endoscopic ultrasound/fine needle aspiration is effective for lymph node staging in patients with cholangiocarcinoma.Hepatology2020;72:940-8

[45]

Zhang S,He W.Radiomics-based preoperative prediction of lymph node metastasis in intrahepatic cholangiocarcinoma using contrast-enhanced computed tomography.Ann Surg Oncol2022;29:6786-99

[46]

Xu Y,Yang Y.A CT-based radiomics approach to predict intra-tumoral tertiary lymphoid structures and recurrence of intrahepatic cholangiocarcinoma.Insights Imaging2023;14:173 PMCID:PMC10577112

[47]

Xu L,Luo C.Integrating intratumoral and peritumoral features to predict tumor recurrence in intrahepatic cholangiocarcinoma.Phys Med Biol2021;66:125001

[48]

Ji GW,Zhang YD.A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma.Eur Radiol2019;29:3725-35

[49]

Pan YJ,Zeng Y.Intra- and peri-tumoral radiomics based on dynamic contrast enhanced-MRI to identify lymph node metastasis and prognosis in intrahepatic cholangiocarcinoma.J Magn Reson Imaging2024;Online ahead of print.

[50]

Xu L,Liang W.A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma.Theranostics2019;9:5374-85 PMCID:PMC6691572

[51]

Khan SA,Brandi G.Cholangiocarcinoma: epidemiology and risk factors.Liver Int2019;39 Suppl 1:19-31

[52]

Chen Y,Zhang J.Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: a multicenter study from China.BMC Cancer2021;21:1299 PMCID:PMC8645153

[53]

Xiang F,Liu X,Yang L.Radiomics analysis of contrast-enhanced CT for the preoperative prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma.Front Oncol2021;11:774117 PMCID:PMC8640186

[54]

Zhou Y,Zhang J,Wang X.Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma.Eur Radiol2021;31:6846-55

[55]

Chen S,Wan L,Zhang H.Predicting the microvascular invasion and tumor grading of intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance imaging radiomics and morphological features.Quant Imaging Med Surg2023;13:8079-93 PMCID:PMC10722063

[56]

Ma X,Wang Q.Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma.Radiol Med2023;128:1296-309 PMCID:PMC10620280

[57]

Qian X,Ma X.A multi-parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma.Front Oncol2022;12:838701 PMCID:PMC8907475

[58]

Fiz F,Langella S.Radiomic analysis of intrahepatic cholangiocarcinoma: non-invasive prediction of pathology data: a multicenter study to develop a clinical-radiomic model.Cancers (Basel)2023;15:4204 PMCID:PMC10486795

[59]

Spolverato G,Alexandrescu S.Management and outcomes of patients with recurrent intrahepatic cholangiocarcinoma following previous curative-intent surgical resection.Ann Surg Oncol2016;23:235-43

[60]

Zhang XF,Bagante F.Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent.Br J Surg2018;105:848-56

[61]

King MJ,Lee KM.Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative imaging features.Cancer Imaging2020;20:43 PMCID:PMC7333305

[62]

Chen B,Li J.Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study.Comput Biol Med2023;167:107612

[63]

Zhu Y,Chen J.Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection.Sci Rep2021;11:18347 PMCID:PMC8443588

[64]

Qin H,Zhang J.Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative resection.Liver Int2021;41:837-50

[65]

Zhao L,Liang M.Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers.Cancer Imaging2019;19:49 PMCID:PMC6631577

[66]

Song Y,Zhou Y.Artificial intelligence CT radiomics to predict early recurrence of intrahepatic cholangiocarcinoma: a multicenter study.Hepatol Int2023;17:1016-27

[67]

Liang W,Yang P.Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma.Front Oncol2018;8:360 PMCID:PMC6131601

[68]

Bo Z,Yang Y.Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: a multicentre cohort study.Eur J Nucl Med Mol Imaging2023;50:2501-13

[69]

Yang Y,Zhou W.DWI-based radiomic signature: potential role for individualized adjuvant chemotherapy in intrahepatic cholangiocarcinoma after partial hepatectomy.Insights Imaging2022;13:37 PMCID:PMC8897536

[70]

Mavros MN,Alexiou VG.Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis.JAMA Surg2014;149:565-74

[71]

Lee AJ.Intrahepatic cholangiocarcinoma: the AJCC/UICC 8th edition updates.Chin Clin Oncol2018;7:52

[72]

Tang YY,Zhang T,Ma XL.Comprehensive radiomics nomogram for predicting survival of patients with combined hepatocellular carcinoma and cholangiocarcinoma.World J Gastroenterol2021;27:7173-89 PMCID:PMC8613648

[73]

Li MD,Liu JF.Preoperative survival prediction in intrahepatic cholangiocarcinoma using an ultrasound-based radiographic-radiomics signature.J Ultrasound Med2022;41:1483-95

[74]

Fiz F,Langella S.Radiomics of intrahepatic cholangiocarcinoma and peritumoral tissue predicts postoperative survival: development of a CT-based clinical-radiomic model.Ann Surg Oncol2024;31:5604-14

[75]

Deng L,Zhan C.A novel clinical-radiomics model based on sarcopenia and radiomics for predicting the prognosis of intrahepatic cholangiocarcinoma after radical hepatectomy.Front Oncol2021;11:744311 PMCID:PMC8639693

[76]

Park HJ,Park SY.Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features.Eur Radiol2021;31:8638-48

[77]

Tang Y,Zhou X.The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma.World J Surg Oncol2021;19:45 PMCID:PMC8327418

[78]

Yang Y,Zhou W.Multiparametric MRI-based radiomic signature for preoperative evaluation of overall survival in intrahepatic cholangiocarcinoma after partial hepatectomy.J Magn Reson Imaging2022;56:739-51

[79]

Silva M,Leoni E.Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics.Abdom Radiol (NY)2021;46:4689-700 PMCID:PMC8435517

[80]

Qian X,Wang F.Development and validation of combined Ki67 status prediction model for intrahepatic cholangiocarcinoma based on clinicoradiological features and MRI radiomics.Radiol Med2023;128:274-88 PMCID:PMC10020304

[81]

Zhan PC,Li Z.CT-based radiomics analysis for noninvasive prediction of perineural invasion of perihilar cholangiocarcinoma.Front Oncol2022;12:900478 PMCID:PMC9252420

[82]

Brunese MC,Fusco R.Update on the applications of radiomics in diagnosis, staging, and recurrence of intrahepatic cholangiocarcinoma.Diagnostics (Basel)2023;13:1488 PMCID:PMC10137417

[83]

Liu Z,Chen X.Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study.Int J Surg2024;110:1039-51 PMCID:PMC10871628

[84]

Aherne EA,Goldman DA.Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics?.Abdom Radiol (NY)2018;43:2665-72 PMCID:PMC6113129

[85]

Saini A,Pershad Y.Radiogenomics and radiomics in liver cancers.Diagnostics (Basel)2018;9:4 PMCID:PMC6468592

[86]

Jeong WK,Felker ER,Lu DS.Radiomics and radiogenomics of primary liver cancers.Clin Mol Hepatol2019;25:21-9 PMCID:PMC6435966

[87]

Rizzo S,Buscarino V.CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer.Eur Radiol2016;26:32-42

[88]

Rios Velazquez E,Liu Y.Somatic mutations drive distinct imaging phenotypes in lung cancer.Cancer Res2017;77:3922-30 PMCID:PMC5528160

[89]

Brastianos PK,Santagata S.Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations.Nat Genet2013;45:285-9 PMCID:PMC3739288

[90]

Kornepati AVR,Curiel TJ.Programmed death ligand 1 signals in cancer cells.Nat Rev Cancer2022;22:174-89 PMCID:PMC9989967

[91]

Daassi D,Freeman GJ.The importance of exosomal PDL1 in tumour immune evasion.Nat Rev Immunol2020;20:209-15

[92]

Dermani FK,Rahmani G,Najafi R.PD-1/PD-L1 immune checkpoint: potential target for cancer therapy.J Cell Physiol2019;234:1313-25

[93]

Zhang J,Zhang X.Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers.ESMO Open2020;5:e000910 PMCID:PMC7689588

[94]

Prelaj A,Zanitti M.Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.Ann Oncol2024;35:29-65

[95]

He H,Dai J,Sun J.Computed tomography-based radiomics prediction of CTLA4 expression and prognosis in clear cell renal cell carcinoma.Cancer Med2023;12:7627-38 PMCID:PMC10067074

[96]

Ter Maat LS,Elias SG.CT radiomics compared to a clinical model for predicting checkpoint inhibitor treatment outcomes in patients with advanced melanoma.Eur J Cancer2023;185:167-77

[97]

Ge X,Niu R.New research progress on 18F-FDG PET/CT radiomics for EGFR mutation prediction in lung adenocarcinoma: a review.Front Oncol2023;13:1242392 PMCID:PMC10716448

[98]

Chang C,Wang G.A machine learning model based on PET/CT radiomics and clinical characteristics predicts ALK rearrangement status in lung adenocarcinoma.Front Oncol2021;11:603882 PMCID:PMC7962599

[99]

Kelley RK,Gores GJ.Systemic therapies for intrahepatic cholangiocarcinoma.J Hepatol2020;72:353-63

[100]

Greten TF,Bardeesy N.Immunology and immunotherapy of cholangiocarcinoma.Nat Rev Gastroenterol Hepatol2023;20:349-65

[101]

Ilyas SI,Goyal L.Cholangiocarcinoma - novel biological insights and therapeutic strategies.Nat Rev Clin Oncol2023;20:470-86 PMCID:PMC10601496

[102]

Shin J,Baek SE.MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy.Radiology2022;303:351-8

[103]

Chetan MR.Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives.Eur Radiol2021;31:1049-58 PMCID:PMC7813733

[104]

Liu C,Xie J.Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer.Front Immunol2023;14:1115291 PMCID:PMC9978193

[105]

Wesdorp NJ,Jansma EP.Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment.Eur J Nucl Med Mol Imaging2021;48:1785-94 PMCID:PMC8113210

[106]

Huynh E,Narayan V.CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer.Radiother Oncol2016;120:258-66

[107]

Mosconi C,Bruno A.Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation.Eur Radiol2020;30:4534-44

[108]

Ballı HT,Püren Yücel S,Özgül D.Predictability of the radiological response to Yttrium-90 transarterial radioembolization by dynamic magnetic resonance imaging-based radiomics analysis in patients with intrahepatic cholangiocarcinoma.Diagn Interv Radiol2024;30:193-9 PMCID:PMC11095063

[109]

Mirza-Aghazadeh-Attari M,Kamireddy A,Weiss CR.Radiomics features extracted from pre- and postprocedural imaging in early prediction of treatment response in patients undergoing transarterial radioembolization of hepatic lesions: a systematic review, meta-analysis, and quality appraisal study.J Am Coll Radiol2024;21:740-51

[110]

Jiang M,Luo XM.Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer.Eur J Cancer2021;147:95-105

[111]

Xu B,Bai XL.Tumor radiomic features on pretreatment MRI to predict response to lenvatinib plus an anti-PD-1 antibody in advanced hepatocellular carcinoma: a multicenter study.Liver Cancer2023;12:262-76 PMCID:PMC10433098

[112]

Chen M,Copley SJ.A novel radiogenomics biomarker for predicting treatment response and pneumotoxicity from programmed cell death protein or ligand-1 inhibition immunotherapy in NSCLC.J Thorac Oncol2023;18:718-30

[113]

Chu H,Liang W.Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma.Eur Radiol2021;31:2368-76

[114]

Cai L,Nees J.Can multi-modal radiomics using pretreatment ultrasound and tomosynthesis predict response to neoadjuvant systemic treatment in breast cancer?.Eur Radiol2024;34:2560-73 PMCID:PMC10957593

[115]

Han X,Zheng Y.Delta-radiomics features for predicting the major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer.Eur Radiol2024;34:2716-26

[116]

Xia L,Lin J.The cancer metabolic reprogramming and immune response.Mol Cancer2021;20:28 PMCID:PMC7863491

[117]

Sivori S,Quatrini L.NK cells and ILCs in tumor immunotherapy.Mol Aspects Med2021;80:100870

[118]

Petitprez F,Keung EZ.B cells are associated with survival and immunotherapy response in sarcoma.Nature2020;577:556-60

[119]

Sun Z,Ahmad MU.Comprehensive assessment of immune context and immunotherapy response via noninvasive imaging in gastric cancer.J Clin Invest2024;134:e175834 PMCID:PMC10940098

[120]

Liao H,Chen J.Preoperative radiomic approach to evaluate tumor-infiltrating CD8+ T cells in hepatocellular carcinoma patients using contrast-enhanced computed tomography.Ann Surg Oncol2019;26:4537-47

[121]

Sun R,Vakalopoulou M.A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.Lancet Oncol2018;19:1180-91

[122]

Aoude LG,Bonazzi VF.Radiomics biomarkers correlate with CD8 expression and predict immune signatures in melanoma patients.Mol Cancer Res2021;19:950-6

[123]

Jeon SH,Na K,Sohn YM.Radiomic models based on magnetic resonance imaging predict the spatial distribution of CD8+ tumor-infiltrating lymphocytes in breast cancer.Front Immunol2022;13:1080048 PMCID:PMC9806253

[124]

Jiang W,Yang T,Xing W.Profiling regulatory T lymphocytes within the tumor microenvironment of breast cancer via radiomics.Cancer Med2023;12:21861-72 PMCID:PMC10757114

[125]

Lambin P,Deist TM.Radiomics: the bridge between medical imaging and personalized medicine.Nat Rev Clin Oncol2017;14:749-62

[126]

Feng L,Li C.Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.Lancet Digit Health2022;4:e8-e17

[127]

Yu Y,Ouyang J.Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study.EBioMedicine2021;69:103460 PMCID:PMC8261009

[128]

Hatt M,Tixier F,Schick U.Radiomics: data are also images.J Nucl Med2019;60:38S-44S

[129]

Zhang YP,Cheng YT.Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling.Mil Med Res2023;10:22 PMCID:PMC10186733

[130]

Neri E,Paiar F.Radiomics and liquid biopsy in oncology: the holons of systems medicine.Insights Imaging2018;9:915-24 PMCID:PMC6269342

[131]

Torres HR,Morais P,Fonseca JC.Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review.Comput Methods Programs Biomed2018;157:49-67

[132]

Lenchik L,Weaver AA.Automated segmentation of tissues using CT and MRI: a systematic review.Acad Radiol2019;26:1695-706 PMCID:PMC6878163

[133]

Parmar C,Leijenaar R.Robust radiomics feature quantification using semiautomatic volumetric segmentation.PLoS One2014;9:e102107 PMCID:PMC4098900

[134]

Ruf J,Furth C.Significance of a single-time-point somatostatin receptor SPECT/multiphase CT protocol in the diagnostic work-up of gastroenteropancreatic neuroendocrine neoplasms.J Nucl Med2016;57:180-5

[135]

Rizzo S,Raimondi S.Radiomics: the facts and the challenges of image analysis.Eur Radiol Exp2018;2:36 PMCID:PMC6234198

[136]

Bleeker SE,Steyerberg EW.External validation is necessary in prediction research: a clinical example.J Clin Epidemiol2003;56:826-32

PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

/