Advancing immunotherapy for intrahepatic cholangiocarcinoma: exploring the tumor immune microenvironment and innovative treatments

Pengcheng Wei , Zhao Li

Hepatoma Research ›› 2024, Vol. 10 : 39

PDF
Hepatoma Research ›› 2024, Vol. 10:39 DOI: 10.20517/2394-5079.2024.72
Review

Advancing immunotherapy for intrahepatic cholangiocarcinoma: exploring the tumor immune microenvironment and innovative treatments

Author information +
History +
PDF

Abstract

Intrahepatic cholangiocarcinoma (ICC), a highly malignant tumor characterized by poor prognosis, has shown limited response to conventional treatments. Recently, advances in immunotherapy have offered new hope for treating such tumors. This article reviews the tumor immune microenvironment (TIME) of ICC, its pivotal role in immunotherapy, and methods to enhance ICC treatment by converting ‘cold tumors’ to ‘hot tumors’ through immune activation. Additionally, the article examines the characteristics of immune checkpoint inhibitors and their essential role in immunotherapy. Recent research and clinical trial outcomes for various immunotherapeutic approaches - namely immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell therapy (ACT) - are detailed, highlighting challenges in patient variability, side effect management, cost, and treatment accessibility. Furthermore, the article explores future research directions such as identifying new immunotherapy targets, applying precision medicine, and developing integrated therapeutic strategies to enhance immunotherapy efficacy and improve survival rates for ICC patients.

Keywords

Intrahepatic cholangiocarcinoma / biliary tract cancer / immunotherapy / tumor immune microenvironment / immune checkpoint inhibitors

Cite this article

Download citation ▾
Pengcheng Wei, Zhao Li. Advancing immunotherapy for intrahepatic cholangiocarcinoma: exploring the tumor immune microenvironment and innovative treatments. Hepatoma Research, 2024, 10: 39 DOI:10.20517/2394-5079.2024.72

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acalovschi M.The growing interest in the combined hepatocellular-intrahepatic cholangiocarcinoma (cHCC-CCA).J Gastrointestin Liver Dis2023;32:135-8

[2]

Mazzaferro V,Roayaie S,Sapisochin G.Liver resection and transplantation for intrahepatic cholangiocarcinoma.J Hepatol2020;72:364-77

[3]

Ali H,Waqar SH,Cate EL.Changing incidence and survival of intrahepatic cholangiocarcinoma based on surveillance, epidemiology, and end results database (2000-2017).Ann Hepatobiliary Pancreat Surg2022;26:235-43 PMCID:PMC9428430

[4]

Becht R.New options for systemic therapies in intrahepatic cholangiocarcinoma (ICCA).Medicina (Kaunas)2023;59:1174 PMCID:PMC10304133

[5]

Kelley RK,Gores GJ.Systemic therapies for intrahepatic cholangiocarcinoma.J Hepatol2020;72:353-63

[6]

Moris D,Kim C,Morse MA.Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current and future therapeutic landscape for clinicians.CA Cancer J Clin2023;73:198-222

[7]

Riley RS,Langer R.Delivery technologies for cancer immunotherapy.Nat Rev Drug Discov2019;18:175-96 PMCID:PMC6410566

[8]

Ricci AD,Brandi G.Immunotherapy in biliary tract cancer: worthy of a second look.Cancer Control2020;27:1073274820948047 PMCID:PMC7791443

[9]

Sender R,Navon Y.The total mass, number, and distribution of immune cells in the human body.Proc Natl Acad Sci U S A2023;120:e2308511120 PMCID:PMC10623016

[10]

Brodin P.Human immune system variation.Nat Rev Immunol2017;17:21-9 PMCID:PMC5328245

[11]

Mohme M,Pantel K.Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape.Nat Rev Clin Oncol2017;14:155-67

[12]

Zingoni A,Sozzani S,Cippitelli M.The senescence journey in cancer immunoediting.Mol Cancer2024;23:68 PMCID:PMC10983694

[13]

Atsou K,Braud VM.A size and space structured model of tumor growth describes a key role for protumor immune cells in breaking equilibrium states in tumorigenesis.PLoS One2021;16:e0259291 PMCID:PMC8608488

[14]

Colombo MP.Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy.Nat Rev Cancer2007;7:880-87.

[15]

Job S,Dos Santos A.Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma.Hepatology2020;72:965-81 PMCID:PMC7589418

[16]

Cheng K,Zhu J,Liang H.Tumor-associated macrophages in liver cancer: from mechanisms to therapy.Cancer Commun (Lond)2022;42:1112-40 PMCID:PMC9648394

[17]

Domingues MJ,Heazlewood SY,Nilsson SK.Niche extracellular matrix components and their influence on HSC.J Cell Biochem2017;118:1984-93

[18]

Guedj N,Cauchy F,Soubrane O.Prognostic value of desmoplastic stroma in intrahepatic cholangiocarcinoma.Mod Pathol2021;34:408-16

[19]

Czekay RP,Samarakoon R,Higgins PJ.Cancer-associated fibroblasts: mechanisms of tumor progression and novel therapeutic targets.Cancers (Basel)2022;14:1231 PMCID:PMC8909913

[20]

Khan GJ,Khan S,Nongyue H.Versatility of cancer associated fibroblasts: commendable targets for anti-tumor therapy.Curr Drug Targets2018;19:1573-88

[21]

Belhabib I,Lac C,Jean C.Extracellular matrices and cancer-associated fibroblasts: targets for cancer diagnosis and therapy?.Cancers (Basel)2021;13:3466 PMCID:PMC8303391

[22]

Lin Y,Chen Y.CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase.Hepatology2022;75:28-42

[23]

Fabris L,Mertens J.The tumour microenvironment and immune milieu of cholangiocarcinoma.Liver Int2019;39 Suppl 1:63-78 PMCID:PMC10878127

[24]

Yang X,Shi Y.FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling.Cancer Res2016;76:4124-35

[25]

Zhang Q.Tumor-associated macrophage subsets: shaping polarization and targeting.Int J Mol Sci2023;24:7493 PMCID:PMC10138703

[26]

Cencini E,Ciofini S,Bocchia M.Tumor-associated macrophages in multiple myeloma: key role in disease biology and potential therapeutic implications.Curr Oncol2023;30:6111-33 PMCID:PMC10378698

[27]

Ge W.Influencing factors and significance of tumor-associated macrophage polarization in tumor microenvironment.Zhongguo Fei Ai Za Zhi2023;26:228-37 PMCID:PMC10106802

[28]

Li L.The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment.Biomed Pharmacother2023;161:114504

[29]

Zhang X,Ma Y.Tumor-associated M2 macrophages in the immune microenvironment influence the progression of renal clear cell carcinoma by regulating M2 macrophage-associated genes.Front Oncol2023;13:1157861 PMCID:PMC10285481

[30]

Nam SJ,Kwon D.Prognostic implications of tumor-infiltrating macrophages, M2 macrophages, regulatory T-cells, and indoleamine 2,3-dioxygenase-positive cells in primary diffuse large B-cell lymphoma of the central nervous system.Oncoimmunology2018;7:e1442164 PMCID:PMC5993494

[31]

Zhou M,Bai M.IRG1 restrains M2 macrophage polarization and suppresses intrahepatic cholangiocarcinoma progression via the CCL18/STAT3 pathway.Cancer Sci2024;115:777-90 PMCID:PMC10920997

[32]

Vadevoo SMP,Yoo JD.Epigenetic therapy reprograms M2-type tumor-associated macrophages into an M1-like phenotype by upregulating miR-7083-5p.Front Immunol2022;13:976196 PMCID:PMC9724234

[33]

Zhang Y,Zhang T.Emerging advances in nanobiomaterials-assisted chimeric antigen receptor (CAR)-macrophages for tumor immunotherapy.Front Bioeng Biotechnol2023;11:1211687 PMCID:PMC10301827

[34]

Wang X,Wu Y,Zhang M.The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification).BMC Cancer2023;23:20 PMCID:PMC9817270

[35]

Zhou SL,Song CL.Genomic evolution and the impact of SLIT2 mutation in relapsed intrahepatic cholangiocarcinoma.Hepatology2022;75:831-46

[36]

Wang J,Suo T.Tumor-infiltrating neutrophils predict prognosis and adjuvant chemotherapeutic benefit in patients with biliary cancer.Cancer Sci2018;109:2266-74 PMCID:PMC6029827

[37]

Ohms M,Laskay T.An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro.Front Immunol2020;11:532 PMCID:PMC7198726

[38]

Mishalian I,Levy L,Michaeli J.Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression.Cancer Immunol Immunother2013;62:1745-56 PMCID:PMC11028422

[39]

Zhang F,Wang X.TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype.Oncotarget2016;7:52294-306 PMCID:PMC5239552

[40]

Shen Y,Wang Z.TGF-β regulates hepatocellular carcinoma progression by inducing treg cell polarization.Cell Physiol Biochem2015;35:1623-32

[41]

Lonardi S,Calza S.Tumor-associated neutrophils (TANs) in human carcinoma-draining lymph nodes: a novel TAN compartment.Clin Transl Immunology2021;10:e1252 PMCID:PMC7886597

[42]

Barcellos-Hoff MH.Molecular pathways and mechanisms of TGF-β in cancer therapy.Clin Cancer Res2023;29:2025-33 PMCID:PMC10238558

[43]

Zhao Y,Shen X.Targeting myeloid-derived suppressor cells in tumor immunotherapy: current, future and beyond.Front Immunol2023;14:1157537 PMCID:PMC10063857

[44]

Ostrand-Rosenberg S,Pawelec G.Here, there, and everywhere: myeloid-derived suppressor cells in immunology.J Immunol2023;210:1183-97 PMCID:PMC10111205

[45]

Ballbach M,Singh A.Expression of checkpoint molecules on myeloid-derived suppressor cells.Immunol Lett2017;192:1-6

[46]

Sui H,Liu X.Immunotherapy of targeting MDSCs in tumor microenvironment.Front Immunol2022;13:990463 PMCID:PMC9484521

[47]

Fletcher M,Sierra RA.l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells.Cancer Res2015;75:275-83 PMCID:PMC4297565

[48]

Srivastava MK,Clements VK,Ostrand-Rosenberg S.Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine.Cancer Res2010;70:68-77 PMCID:PMC2805057

[49]

Bayik D,Roversi GA.Hepatobiliary malignancies have distinct peripheral myeloid-derived suppressor cell signatures and tumor myeloid cell profiles.Sci Rep2020;10:18848 PMCID:PMC7606602

[50]

Rose P,Kovács JR,Boon L.Anti-Gr-1 antibody provides short-term depletion of MDSC in lymphodepleted mice with active-specific melanoma therapy.Vaccines (Basel)2022;10:560 PMCID:PMC9032646

[51]

Petrova V,Bitsch R.Immunosuppressive capacity of circulating MDSC predicts response to immune checkpoint inhibitors in melanoma patients.Front Immunol2023;14:1065767 PMCID:PMC9968744

[52]

Mishra HK,Michelotti EF.Anti-ADAM17 monoclonal antibody MEDI3622 increases IFNγ production by human NK cells in the presence of antibody-bound tumor cells.Cancer Immunol Immunother2018;67:1407-16 PMCID:PMC6126979

[53]

Fahrner R,Corazza N.Tumor necrosis factor-related apoptosis-inducing ligand on NK cells protects from hepatic ischemia-reperfusion injury.Transplantation2014;97:1102-9

[54]

Dianat-Moghadam H,Heidarifard M.NK cells-directed therapies target circulating tumor cells and metastasis.Cancer Lett2021;497:41-53

[55]

Vacca P,Tumino N,Mingari MC.Exploiting human NK cells in tumor therapy.Front Immunol2019;10:3013 PMCID:PMC6978749

[56]

Tsukagoshi M,Yokobori T.Overexpression of natural killer group 2 member D ligands predicts favorable prognosis in cholangiocarcinoma.Cancer Sci2016;107:116-22 PMCID:PMC4768394

[57]

Cho H,Kim S.MICA/B and ULBP1 NKG2D ligands are independent predictors of good prognosis in cervical cancer.BMC Cancer2014;14:957 PMCID:PMC4301905

[58]

Vogler M,Särchen V.Unleashing the power of NK cells in anticancer immunotherapy.J Mol Med (Berl)2022;100:337-49 PMCID:PMC8843917

[59]

Abeynaike SA,Mehmood A.Human hematopoietic stem cell engrafted IL-15 transgenic NSG mice support robust NK cell responses and sustained HIV-1 infection.Viruses2023;15:365 PMCID:PMC9960100

[60]

Li B.Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors?.Front Immunol2022;13:973881 PMCID:PMC9635507

[61]

Levi ST,Nah S.Neoantigen identification and response to adoptive cell transfer in anti-PD-1 naïve and experienced patients with metastatic melanoma.Clin Cancer Res2022;28:3042-52 PMCID:PMC9288495

[62]

Khalili-Tanha G,Gharib M.Dual targeting of TGF-β and PD-L1 inhibits tumor growth in TGF-β/PD-L1-driven colorectal carcinoma.Life Sci2023;328:121865

[63]

Fu J,Xiao X,Zu X.CD4+ T cell exhaustion leads to adoptive transfer therapy failure which can be prevented by immune checkpoint blockade.Am J Cancer Res2020;10:4234-50. PMCID:PMC7783768

[64]

Mauldin IS,Wages NA.Proliferating CD8(+) T cell infiltrates are associated with improved survival in glioblastoma.Cells2021;10:3378 PMCID:PMC8699921

[65]

Zhang C,Huang H.TCR repertoire intratumor heterogeneity of CD4(+) and CD8(+) T cells in centers and margins of localized lung adenocarcinomas.Int J Cancer2019;144:818-27

[66]

Zhang J,Tan H.The development of CD8 T-cell exhaustion heterogeneity and the therapeutic potentials in cancer.Front Immunol2023;14:1166128 PMCID:PMC10232978

[67]

Yin C,Yamamoto A.Prognostic significance of CD8(+) tumor-infiltrating lymphocytes and CD66b(+) tumor-associated neutrophils in the invasive margins of stages I-III colorectal cancer.Oncol Lett2022;24:212 PMCID:PMC9178703

[68]

Koike K,Ogi K.Prognostic value of FoxP3 and CTLA-4 expression in patients with oral squamous cell carcinoma.PLoS One2020;15:e0237465 PMCID:PMC7423125

[69]

Thepmalee C,Sujjitjoon J.Suppression of TGF-β and IL-10 receptors on self-differentiated dendritic cells by short-hairpin RNAs enhanced activation of effector T-cells against cholangiocarcinoma cells.Hum Vaccin Immunother2020;16:2318-27 PMCID:PMC7644170

[70]

Alizadeh D.Chemotherapeutic targeting of cancer-induced immunosuppressive cells.Cancer Res2014;74:2663-8 PMCID:PMC4041515

[71]

Arnold K,Lötscher J.Real-time volatile metabolomics analysis of dendritic cells.Anal Chem2023;95:9415-21 PMCID:PMC10308329

[72]

Chabot V,Iochmann S,Sénécal D.CCL5-enhanced human immature dendritic cell migration through the basement membrane in vitro depends on matrix metalloproteinase-9.J Leukoc Biol2006;79:767-78.

[73]

Beskid NM,Coronel MM.IL-10-functionalized hydrogels support immunosuppressive dendritic cell phenotype and function.ACS Biomater Sci Eng2022;8:4341-53 PMCID:PMC10231409

[74]

Ziani L,Chouaib S.Hypoxia increases melanoma-associated fibroblasts immunosuppressive potential and inhibitory effect on T cell-mediated cytotoxicity.Oncoimmunology2021;10:1950953 PMCID:PMC8312612

[75]

Thara E,Pinski JK.Vaccine therapy with sipuleucel-T (provenge) for prostate cancer.Maturitas2011;69:296-303

[76]

Al-Rajhi N,Ahmed SA.CD3+T-lymphocyte infiltration is an independent prognostic factor for advanced nasopharyngeal carcinoma.BMC Cancer2020;20:240 PMCID:PMC7227256

[77]

Ryser MD,Komarova SV.Osteoprotegerin in bone metastases: mathematical solution to the puzzle.PLoS Comput Biol2012;8:e1002703 PMCID:PMC3475686

[78]

Wang Y,Huang Z,Zhang B.The roles of osteoprotegerin in cancer, far beyond a bone player.Cell Death Discov2022;8:252 PMCID:PMC9076607

[79]

Jiang Y,Wang J,Luo T.Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy.J Hematol Oncol2022;15:34 PMCID:PMC8943941

[80]

Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and chemokine receptors: new targets for cancer immunotherapy.Front Immunol2019;10:379 PMCID:PMC6414456

[81]

Palacios-Arreola MI,Castro JI,Carrero JC.The role of chemokines in breast cancer pathology and its possible use as therapeutic targets.J Immunol Res2014;2014:849720 PMCID:PMC4139084

[82]

Nagarsheth N,Zou W.Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy.Nat Rev Immunol2017;17:559-72 PMCID:PMC5731833

[83]

Peng Z,Wu H.CCL2 promotes proliferation, migration and angiogenesis through the MAPK/ERK1/2/MMP9, PI3K/AKT, Wnt/β‑catenin signaling pathways in HUVECs.Exp Ther Med2023;25:77 PMCID:PMC9842938

[84]

Song ZY,Cui SX.Knockdown of CXCR4 inhibits CXCL12-induced angiogenesis in HUVECs through downregulation of the MAPK/ERK and PI3K/AKT and the Wnt/β-catenin pathways.Cancer Invest2018;36:10-8

[85]

Wei J,Han T.Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes.Front Endocrinol (Lausanne)2023;14:1170237 PMCID:PMC10248434

[86]

Nowak M,Kołodzińska K,Choromańska A.Extracellular vesicles as drug transporters.Int J Mol Sci2023;24:10267 PMCID:PMC10299356

[87]

McLaughlin C,Singh YP.Mesenchymal stem cell-derived extracellular vesicles for therapeutic use and in bioengineering applications.Cells2022;11:3366 PMCID:PMC9657427

[88]

Haga H,Takahashi K,Zubair A.Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth.J Extracell Vesicles2015;4:24900 PMCID:PMC4283029

[89]

Zhao K,Shi Y.Exosomes in the tumor microenvironment of cholangiocarcinoma: current status and future perspectives.J Transl Med2022;20:117 PMCID:PMC8900430

[90]

Liu Y,Guo D.PDGF-AA promotes cell-to-cell communication in osteocytes through PI3K/Akt signaling pathway.Acta Biochim Biophys Sin (Shanghai)2021;53:1640-9

[91]

Pandey P,Upadhyay TK,Park MN.New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies.Biomed Pharmacother2023;161:114491

[92]

Seliger B,Yang B.Immune escape mechanisms and their clinical relevance in head and neck squamous cell carcinoma.Int J Mol Sci2020;21:7032 PMCID:PMC7582858

[93]

Bruno V,Baci D.Endometrial cancer immune escape mechanisms: let us learn from the fetal-maternal interface.Front Oncol2020;10:156 PMCID:PMC7080858

[94]

Patel N,Bodo J.Immune escape mechanisms in intravascular large b-cell lymphoma: a molecular cytogenetic and immunohistochemical study.Am J Clin Pathol2022;157:578-85

[95]

Nakamura H,Totoki Y.Genomic spectra of biliary tract cancer.Nat Genet2015;47:1003-10

[96]

Gani F,Kim Y.Program death 1 immune checkpoint and tumor microenvironment: implications for patients with intrahepatic cholangiocarcinoma.Ann Surg Oncol2016;23:2610-7

[97]

Qiang S,Wang J.Definition of immune molecular subtypes with distinct immune microenvironment, recurrence, and PANoptosis features to aid clinical therapeutic decision-making.Front Genet2022;13:1007108 PMCID:PMC9606342

[98]

Rhee H,Chung T.Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma.Liver Int2018;38:113-24

[99]

Dong L,Chen R.Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma.Cancer Cell2022;40:70-87.e15

[100]

Boers SA,Jansen R.High-throughput multilocus sequence typing: bringing molecular typing to the next level.PLoS One2012;7:e39630 PMCID:PMC3399827

[101]

Genome Atlas Research Network, Analysis Working Group. Integrated genomic characterization of oesophageal carcinoma.Nature2017;541:169-75

[102]

Jones PA,Baylin S.Targeting the cancer epigenome for therapy.Nat Rev Genet2016;17:630-41

[103]

Duffy AG,Makorova-Rusher O.Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma.J Hepatol2017;66:545-51 PMCID:PMC5316490

[104]

Taylor MH,Makker V.Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors.J Clin Oncol2020;38:1154-63 PMCID:PMC7145588

[105]

Couzin-Frankel J.Breakthrough of the year 2013: cancer immunotherapy.Science2013;342:1432-3

[106]

Dobosz P.The intriguing history of cancer immunotherapy.Front Immunol2019;10:2965 PMCID:PMC6928196

[107]

Gao Z,Shi C,Lin A.Tumor immune checkpoints and their associated inhibitors.J Zhejiang Univ Sci B2022;23:823-43 PMCID:PMC9561405

[108]

Guo XJ,Zeng HY.CTLA-4 synergizes with PD1/PD-L1 in the inhibitory tumor microenvironment of intrahepatic cholangiocarcinoma.Front Immunol2021;12:705378 PMCID:PMC8435712

[109]

Kennedy A,Hinze C.The CTLA-4 immune checkpoint protein regulates PD-L1:PD-1 interaction via transendocytosis of its ligand CD80.EMBO J2023;42:e111556 PMCID:PMC9975936

[110]

Yadav R,Wang JC.Role of next generation immune checkpoint inhibitor (ICI) therapy in philadelphia negative classic myeloproliferative neoplasm (MPN): review of the literature.Int J Mol Sci2023;24:12502 PMCID:PMC10420159

[111]

Zhao B,Xia Y.Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy.J Hematol Oncol2022;15:153 PMCID:PMC9597993

[112]

Piha-Paul SA,Ueno M.Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results from the KEYNOTE-158 and KEYNOTE-028 studies.Int J Cancer2020;147:2190-8

[113]

Paz-Ares L,Cobo M.First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial.Lancet Oncol2021;22:198-211

[114]

Kim RD,Alese OB.A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer.JAMA Oncol2020;6:888-94 PMCID:PMC7193528

[115]

Kelley RK,Harris W.Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study.J Clin Oncol2021;39:2991-3001 PMCID:PMC8445563

[116]

Hack SP,Mulla S.IMbrave 151: a randomized phase II trial of atezolizumab combined with bevacizumab and chemotherapy in patients with advanced biliary tract cancer.Ther Adv Med Oncol2021;13:17588359211036544 PMCID:PMC8326820

[117]

Zeng FL.Application of immune checkpoint inhibitors in the treatment of cholangiocarcinoma.Technol Cancer Res Treat2021;20:15330338211039952 PMCID:PMC8450549

[118]

Parvini S,Mortezaee K.The impact of PD-L1 as a biomarker of cancer responses to combo anti-PD-1/CTLA-4.Pathol Res Pract2023;247:154583

[119]

Curran MA,Yagita H.PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.Proc Natl Acad Sci U S A2010;107:4275-80 PMCID:PMC2840093

[120]

Rimini M,Lonardi S.Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer: an early exploratory analysis of real-world data.Liver Int2023;43:1803-12

[121]

Strauss J,Schlom J.Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors.Clin Cancer Res2018;24:1287-95 PMCID:PMC7985967

[122]

Voutsadakis IA.Homologous recombination defects and mutations in DNA damage response (DDR) genes besides BRCA1 and BRCA2 as breast cancer biomarkers for PARP inhibitors and other DDR targeting therapies.Anticancer Res2023;43:967-81

[123]

Dillman RO,Keirstead HS.Autologous dendritic cells loaded with antigens from self-renewing autologous tumor cells as patient-specific therapeutic cancer vaccines.Hum Vaccin Immunother2023;19:2198467 PMCID:PMC10294766

[124]

Schoen RE,Cruz-Correa M.Randomized, double-blind, placebo-controlled trial of MUC1 peptide vaccine for prevention of recurrent colorectal adenoma.Clin Cancer Res2023;29:1678-88 PMCID:PMC10159922

[125]

Fang Y,Shou J.A pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors.Clin Cancer Res2020;26:4511-20

[126]

Löffler MW,Laske K.Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient.J Hepatol2016;65:849-55 PMCID:PMC5756536

[127]

Yoshitomi M,Matsueda S,Komatsu N.Personalized peptide vaccination for advanced biliary tract cancer: IL-6, nutritional status and pre-existing antigen-specific immunity as possible biomarkers for patient prognosis.Exp Ther Med2012;3:463-69. PMCID:PMC3438646

[128]

Yu J,Cao W,Jiang Z.Research progress on dendritic cell vaccines in cancer immunotherapy.Exp Hematol Oncol2022;11:3 PMCID:PMC8784280

[129]

Shimizu K,Aruga A,Takasaki K.Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma.J Hepatobiliary Pancreat Sci2012;19:171-8

[130]

Lepisto AJ,Zeh H,Bartlett D.A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors.Cancer Ther2008;6:955-64. PMCID:PMC2614325

[131]

Kobayashi M,Abe H.Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer.J Gastrointest Surg2013;17:1609-17

[132]

Kaida M,Soeda A.Phase 1 trial of wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer.J Immunother2011;34:92-9

[133]

Khorasani ABS,Pourbagheri-Sigaroodi A,Bashash D.CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges.Int Immunopharmacol2021;101:108260

[134]

Grosser R,Chintala N.Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors.Cancer Cell2019;36:471-82 PMCID:PMC7171534

[135]

Feng KC,Liu Y.Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma.J Hematol Oncol2017;10:4 PMCID:PMC5217546

[136]

Dafni U,Lluesma SM.Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis.Ann Oncol2019;30:1902-13

[137]

Feng K,Guo Y.Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers.Protein Cell2018;9:838-47 PMCID:PMC6160389

[138]

Xing S,Wang Y.Tumor immune microenvironment and immunotherapy in non-small cell lung cancer: update and new challenges.Aging Dis2022;13:1615-32 PMCID:PMC9662266

[139]

Shakya R,Waterhouse N.Immune contexture analysis in immuno-oncology: applications and challenges of multiplex fluorescent immunohistochemistry.Clin Transl Immunology2020;9:e1183 PMCID:PMC7541822

PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

/