The new era of cholangiocarcinoma treatment: application of nano-based drug delivery systems

Paweena Dana , Prattana Tanyapanyachon , Saksorn Klibaim , Monthira Rattanatayarom , Walailuk Chonniyom , Nattika Saengkrit

Hepatoma Research ›› 2025, Vol. 11 : 17

PDF
Hepatoma Research ›› 2025, Vol. 11:17 DOI: 10.20517/2394-5079.2024.148
Review

The new era of cholangiocarcinoma treatment: application of nano-based drug delivery systems

Author information +
History +
PDF

Abstract

Cholangiocarcinoma (CCA) is a rare primary cancer of the bile duct epithelium, accounting for about 3% of all gastrointestinal cancers worldwide. CCA incidence is notably higher in Southeast and East Asia, particularly in northeastern Thailand. The early diagnosis of CCA is limited, while the cancer tends to metastasize rapidly, contributing to high mortality rates. Current treatments for CCA, including conventional chemotherapies, often cause drug resistance and induce significant side effects due to the drug going off-target. This underlines the need for novel therapeutic strategies, including chemopreventive and adjuvant treatments. Targeted drug delivery systems using nano-based technologies offer a promising approach to enhance treatment specificity and effectiveness, thereby minimizing side effects. This review provides an overview of nanomedicine’s application in the treatment of CCA. Polymeric and lipid-based nanoparticles (NPs), as examples of passive targeting mechanisms such as the enhanced permeability and retention effect, are discussed. Additionally, functionalized NPs are described, focusing on their role in active targeting strategies in CCA therapy. This summary will support the development of more effective drugs for CCA.

Keywords

Bile duct cancer / cholangiocarcinoma / liver fluke / cancer treatment / nanomedicine / drug delivery system

Cite this article

Download citation ▾
Paweena Dana, Prattana Tanyapanyachon, Saksorn Klibaim, Monthira Rattanatayarom, Walailuk Chonniyom, Nattika Saengkrit. The new era of cholangiocarcinoma treatment: application of nano-based drug delivery systems. Hepatoma Research, 2025, 11: 17 DOI:10.20517/2394-5079.2024.148

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blechacz B,Roskams T.Clinical diagnosis and staging of cholangiocarcinoma.Nat Rev Gastroenterol Hepatol2011;8:512-22 PMCID:PMC3331791

[2]

Khan SA,Brandi G.Cholangiocarcinoma: epidemiology and risk factors.Liver Int2019;39 Suppl 1:19-31

[3]

Sarantis P,Ioakeimidou E.Cholangiocarcinoma: the role of genetic and epigenetic factors; current and prospective treatment with checkpoint inhibitors and immunotherapy.Am J Transl Res2021;13:13246-60 PMCID:PMC8748131

[4]

Sripa B.Cholangiocarcinoma: lessons from Thailand.Curr Opin Gastroenterol2008;24:349-56 PMCID:PMC4130346

[5]

Gibson RN,Hadjis N.Percutaneous transhepatic endoprostheses for hilar cholangiocarcinoma.Am J Surg1988;156:363-7

[6]

Wu Q,Lang R.Overexpression of 14-3-3σ modulates cholangiocarcinoma cell survival by PI3K/Akt signaling.Biomed Res Int2020;2020:3740418 PMCID:PMC7330627

[7]

Qi S.Effect of percutaneous transhepatic cholangial drainag + radiofrequency ablation combined with biliary stent implantation on the liver function of patients with cholangiocarcinoma complicated with malignant obstructive jaundice.J Transl Res2021;13:1817-24

[8]

Li S,Peng Y,Lin G.Differentiating peripheral cholangiocarcinoma in stages T1N0M0 and T2N0M0 from hepatic hypovascular nodules using dynamic contrast-enhanced MRI.Sci Rep2017;7:8084 PMCID:PMC5556016

[9]

Zanuso V,Valenzi E.New systemic treatment options for advanced cholangiocarcinoma.J Liver Cancer2024;24:155-70 PMCID:PMC11449581

[10]

Hirohashi K,Kubo S.Macroscopic types of intrahepatic cholangiocarcinoma: clinicopathologic features and surgical outcomes.Hepatogastroenterology2002;49:326-9.

[11]

Lazaridis KN.Cholangiocarcinoma.Gastroenterology2005;128:1655-67

[12]

Mosconi S,Labianca R,Gatta G.Cholangiocarcinoma.Crit Rev Oncol Hematol2009;69:259-70

[13]

Su CH,Lui WY.Hepatolithiasis associated with cholangiocarcinoma.Br J Surg1997;84:969-73

[14]

Flavell DJ.Opisthorchis viverrini: pathogenesis of infection in immunodeprived hamsters.Parasite Immunol1986;8:455-66

[15]

Sripa B.Localisation of parasite antigens and inflammatory responses in experimental opisthorchiasis.Int J Parasitol2000;30:735-40

[16]

Sripa B,Brindley PJ.Co-infections with liver fluke and Helicobacter species: a paradigm change in pathogenesis of opisthorchiasis and cholangiocarcinoma?.Parasitol Int2017;66:383-9 PMCID:PMC5457716

[17]

Blechacz BR.Cholangiocarcinoma.Clin Liver Dis2008;12:131-50

[18]

Doherty B,Palmer WC.Update on the diagnosis and treatment of cholangiocarcinoma.Curr Gastroenterol Rep2017;19:2

[19]

Pinlaor S,Ma N.Nitrative and oxidative DNA damage in intrahepatic cholangiocarcinoma patients in relation to tumor invasion.World J Gastroenterol2005;11:4644-9 PMCID:PMC4615404

[20]

Sripa B,Mulvenna J.The tumorigenic liver fluke Opisthorchis viverrini--multiple pathways to cancer.Trends Parasitol2012;28:395-407 PMCID:PMC3682777

[21]

Lozano E,Monte MJ.Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development.Mol Cancer Res2014;12:91-100

[22]

Park JH,Kwon M.Association between non-alcoholic fatty liver disease and the risk of biliary tract cancers: a South Korean nationwide cohort study.Eur J Cancer2021;150:73-82

[23]

Gatselis NK,Loukopoulos A.Hepatitis B virus and intrahepatic cholangiocarcinoma.Cancer Invest2007;25:55-8

[24]

Matsumoto K,Kawata S.Hepatitis B and C virus infection is a risk factor for the development of cholangiocarcinoma.Intern Med2014;53:651-4

[25]

Ralphs S.The role of the hepatitis viruses in cholangiocarcinoma.J Viral Hepat2013;20:297-305

[26]

Kirstein MM.Epidemiology and risk factors of cholangiocarcinoma.Visc Med2016;32:395-400 PMCID:PMC5290446

[27]

Ramírez-Merino N,Cortés-Funes H.Chemotherapy for cholangiocarcinoma: an update.World J Gastrointest Oncol2013;5:171-6 PMCID:PMC3731530

[28]

Forner A,Rengo M,Ponz-Sarvisé M.Clinical presentation, diagnosis and staging of cholangiocarcinoma.Liver Int2019;39 Suppl 1:98-107

[29]

Saha SK,Fuchs CS.Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise.Oncologist2016;21:594-9 PMCID:PMC4861366

[30]

Rizzo A.BILCAP trial and adjuvant capecitabine in resectable biliary tract cancer: reflections on a standard of care.Expert Rev Gastroenterol Hepatol2021;15:483-5

[31]

Sirica AE.Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy.Hepatology2005;41:5-15

[32]

Bhagyaraj SM,Thomas S.Synthesis of Inorganic Nanomaterials: Advances and Key Technologies. Cambridge: Woodhead Publishing; 2018.

[33]

R. A. J. Freitas, Nanomedicine, Volume I: Basic Capabilities. 1st ed. Boca Raton: CRC Press; 1999.

[34]

Chamundeeswari M,Verma ML.Nanocarriers for drug delivery applications.Environ Chem Lett2019;17:849-65

[35]

Priem B,Teunissen AJP.Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition.Cell2020;183:786-801.e19 PMCID:PMC8074872

[36]

Fan D,Cao M,Cao Y.Nanomedicine in cancer therapy.Signal Transduct Target Ther2023;8:293 PMCID:PMC10404590

[37]

Manzari MT,Kiguchi H,Scaltriti M.Targeted drug delivery strategies for precision medicines.Nat Rev Mater2021;6:351-70 PMCID:PMC8691416

[38]

Rosenblum D,Tao W,Peer D.Progress and challenges towards targeted delivery of cancer therapeutics.Nat Commun2018;9:1410 PMCID:PMC5897557

[39]

Youn YS.Perspectives on the past, present, and future of cancer nanomedicine.Adv Drug Deliv Rev2018;130:3-11

[40]

Bertrand N,Xu X,Farokhzad OC.Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology.Adv Drug Deliv Rev2014;66:2-25 PMCID:PMC4219254

[41]

Masoudifar R,Liu D.Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy.Applied Materials Today2022;29:101646

[42]

Doroudian M,Goodarzi N,Donnelly SC.Smart nanotherapeutics and lung cancer.Pharmaceutics2021;13:1972 PMCID:PMC8619749

[43]

Farjadian F,Fakhimi M,Mohammadi-Samani S.Glucosamine-modified mesoporous silica-coated magnetic nanoparticles: A “Raisin-Cake”-like structure as an efficient theranostic platform for targeted methotrexate delivery.Pharmaceutics2023;15:2491 PMCID:PMC10610088

[44]

Wang C.Advantages of nanomedicine in cancer therapy: a review.ACS Appl Nano Mater2023;6:22594-610

[45]

Adiseshaiah PP,Hook SS.Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer.Nat Rev Clin Oncol2016;13:750-65

[46]

Rahimian S,Kamalinejad A.Exosome-based advances in pancreatic cancer: the potential of mesenchymal stem cells.Crit Rev Oncol Hematol2025;207:104594

[47]

Yadav HK,shaluf SI.Polymer-based nanomaterials for drug-delivery carriers. nanocarriers for drug delivery. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra KR, Thomas S, editors. Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery. Amsterdam: Elsevier; 2019. p. 531-56.

[48]

Wang JJ,Xiao RZ.Recent advances of chitosan nanoparticles as drug carriers.Int J Nanomedicine2011;6:765-74 PMCID:PMC3090273

[49]

Moghaddam FD,Hassanpour M.Chitosan-based nanosystems for cancer diagnosis and therapy: stimuli-responsive, immune response, and clinical studies.Carbohydr Polym2024;330:121839

[50]

Yang JI,Yun JJ.pH and redox-dual sensitive chitosan nanoparticles having methyl ester and disulfide linkages for drug targeting against cholangiocarcinoma Cells.Materials (Basel)2022;15:3795 PMCID:PMC9181436

[51]

Lee HM,Kim DH.Ursodeoxycholic acid-conjugated chitosan for photodynamic treatment of HuCC-T1 human cholangiocarcinoma cells.Int J Pharm2013;454:74-81

[52]

Kennedy L,Harper ME.Role of glutathione in cancer: from mechanisms to therapies.Biomolecules2020;10:1429 PMCID:PMC7600400

[53]

Correia JH,Pimenta S,Yang Z.Photodynamic therapy review: principles, photosensitizers, applications, and future directions.Pharmaceutics2021;13:1332 PMCID:PMC8470722

[54]

Sadat Tabatabaei Mirakabad F,Akbarzadeh A.PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac J Cancer Prev2014;15:517-35

[55]

Hines DJ.Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.Crit Rev Ther Drug Carrier Syst2013;30:257-76 PMCID:PMC3719420

[56]

Jeong YI,Chung CW.Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer.Int J Nanomedicine2011;6:1415-27 PMCID:PMC3141869

[57]

Omar AI,Chittasupho C.Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma.Clin Exp Pharmacol Physiol2021;48:318-28

[58]

Sheoran S,Samsonraj R,Vuree S.Lipid-based nanoparticles for treatment of cancer.Heliyon2022;8:e09403 PMCID:PMC9160046

[59]

Allo G,Wahba R.Nanoliposomal irinotecan in combination with leucovorin and 5-fluorouracil in advanced biliary tract cancers.Mol Clin Oncol2022;16:52 PMCID:PMC8764657

[60]

Plunkett W,Xu YZ,Grunewald R.Gemcitabine: metabolism, mechanisms of action, and self-potentiation.Semin Oncol1995;22(4 Suppl 11):3-10

[61]

Gilbert JA,Ji Y.Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics.Clin Cancer Res2006;12:1794-803

[62]

Kim DH,Hwang HS.Gemcitabine-loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment.Biomaterials2018;183:139-50

[63]

Choi KH,Kim CH,Jeong YI.Effect of 5-aminolevulinic acid-encapsulate liposomes on photodynamic therapy in human cholangiocarcinoma cells.J Nanosci Nanotechnol2014;14:5628-32

[64]

Maphanao P,Choodet C.Development and in vitro evaluation of ursolic acid-loaded poly(lactic-co-glycolic acid) nanoparticles in cholangiocarcinoma.RSC Adv2024;14:24828-37 PMCID:PMC11306966

[65]

Alshammari BH,Mahmood MA.Organic and inorganic nanomaterials: fabrication, properties and applications.RSC Adv2023;13:13735-85 PMCID:PMC10162010

[66]

Paul W.Inorganic nanoparticles for targeted drug delivery. In: Sharma CP, editor. Biointegration of Medical Implant Materials (2nd ed). Cambridge: Woodhead Publishing; 2010. p. 204-35.

[67]

Tang T,Chen B.Effects of targeting magnetic drug nanoparticles on human cholangiocarcinoma xenografts in nude mice.Hepatobiliary Pancreat Dis Int2007;6:303-7.

[68]

Ngernyuang N,Daduang S,Limpaiboon T.Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.Mater Sci Eng C Mater Biol Appl2016;60:411-5

[69]

Long C,Yang W.Targeted delivery of gemcitabine for precision therapy of cholangiocarcinoma using hyaluronic acid-modified metal-organic framework nanoparticles.ACS Omega2024;9:11998-2005 PMCID:PMC10938583

[70]

Xia J,Suehiro T,Sato K.Carbon dots have antitumor action as monotherapy or combination therapy.Drug Discov Ther2019;13:114-7

[71]

Chen M,Ma N.Mesenchymal stem cell-derived exosomes loaded with 5-Fu against cholangiocarcinoma in vitro.Mol Med Rep2022;25:213 PMCID:PMC9133964

[72]

Chen Z,Long L,Chen A.Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation.Coord Chem Rev2023;481:215051

[73]

Haaft BH, Pedregal M, Prato J, Klümpen HJ, Moreno V, Lamarca A. Revolutionizing anti-HER2 therapies for extrahepatic cholangiocarcinoma and gallbladder cancer: Current advancements and future perspectives.Eur J Cancer2024;199:113564

[74]

Zhang X,Zhang Y.Bio-engineered cell membrane nanovesicles as precision theranostics for perihilar cholangiocarcinoma.Biomater Sci2020;8:1575-9

[75]

Liu Y,Sun S.Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside.Exp Hematol Oncol2022;11:97 PMCID:PMC9650829

[76]

Ahn S,Shin DW,Hwang JH.High PD-L1 expression is associated with therapeutic response to pembrolizumab in patients with advanced biliary tract cancer.Sci Rep2020;10:12348 PMCID:PMC7378166

[77]

Gondaliya P,Yan IK,Ziemer A.Targeting PD-L1 in cholangiocarcinoma using nanovesicle-based immunotherapy.Mol Ther2024;32:2762-77 PMCID:PMC11405167

[78]

Gabriel E,Attwood K,Hochwald S.Gemcitabine and capecitabine for advanced biliary cancer.J Gastrointest Oncol2017;8:728-36 PMCID:PMC5582046

[79]

Zhou Y,Wang Z.Sequentially targeting and intervening mutual polo-like kinase 1 on CAFs and tumor cells by dual targeting nano-platform for cholangiocarcinoma treatment.Theranostics2022;12:3911-27 PMCID:PMC9131280

[80]

P. K. W. C. S. P. and K. V. P. Srikoon, “Deoxycholic acid-formulated curcumin enhances caspase 3/7-dependent apoptotic induction in cholangiocarcinoma cell lines,” Journal of Bacic and Applied Pharmacology, 2021;1. Available from: https://www.researchgate.net/publication/361332214_Deoxycholic_acid-formulated_curcumin_enhances_caspase_37-dependent_apoptotic_induction_in_cholangiocarcinoma_cell_lines (accessed on 2025-7-4)

[81]

Brumfiel G.Nanotechnology: a little knowledge.Nature2003;424:246-8

[82]

Dreher KL.Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles.Toxicol Sci2004;77:3-5

[83]

Zielińska A,Ferreira MV.Nanotoxicology and nanosafety: safety-by-design and testing at a glance.Int J Environ Res Public Health2020;17:4657 PMCID:PMC7369733

[84]

Donahue ND,Wilhelm S.Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.Adv Drug Deliv Rev2019;143:68-96

[85]

Knaapen AM,Albrecht C.Inhaled particles and lung cancer. Part A: mechanisms.Int J Cancer2004;109:799-809

[86]

Sharma N,Singh D.Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies.J Drug Target2024;32:457-69

[87]

Sengul AB.Toxicity of metal and metal oxide nanoparticles: a review.Environ Chem Lett2020;18:1659-83

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/