Predicting microvascular invasion plus cytokeratin 19 expression positivity in hepatocellular carcinoma based on EOB-MRI using multitask deep learning

Yuanyuan Zhao , Xiang Huang , Meili Sun , Jia Chen , Jian Zhang , Shi-ting Feng , Jianpeng Li , Kangyang Cao , Jifei Wang , Bingsheng Huang , Yujian Zou

Hepatoma Research ›› 2025, Vol. 11 : 12

PDF
Hepatoma Research ›› 2025, Vol. 11:12 DOI: 10.20517/2394-5079.2024.143
Original Article

Predicting microvascular invasion plus cytokeratin 19 expression positivity in hepatocellular carcinoma based on EOB-MRI using multitask deep learning

Author information +
History +
PDF

Abstract

Aim: To construct and validate a multitask deep learning (DL) model based on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) contrast-enhanced magnetic resonance imaging (MRI) for predicting microvascular invasion (MVI) plus cytokeratin 19 (CK19) positivity in patients with hepatocellular carcinoma (HCC).

Methods: A total of 145 pathologically confirmed HCC patients undergoing preoperative enhanced MRI were assessed between January 2012 and January 2023. A predictive model, whose skeleton structure was an expert shared network based on spatial transformations and relational reasoning, was established based on hepatobiliary phase (HBP) images using a training set (n = 66, Center 1) and validated using an external (n = 79, Centers 2 and 3) test set. A receiver operating characteristic (ROC) curve was used to evaluate MVI CK19 positivity.

Results: The area under the ROC curve (AUC) of the new model, named Expert Sharing Network, for the prediction of the CK19 and MVI expression was 0.87 and 0.88 in the training set and 0.80 and 0.85 in the validation set, respectively, which was superior to the ResNeSt50-based model, EfficientNet-b0-based model, and ResNet50-based model. The AUC of the DL model for the prediction of the MVI was 0.88 in the training set and 0.85 in the validation set, which was superior to the other three models.

Conclusion: This new model can accurately predict CK19 expression and MVI in patients with HCC.

Keywords

Hepatocellular carcinoma / cytokeratin 19 / microvascular invasion / deep learning / multitask learning

Cite this article

Download citation ▾
Yuanyuan Zhao, Xiang Huang, Meili Sun, Jia Chen, Jian Zhang, Shi-ting Feng, Jianpeng Li, Kangyang Cao, Jifei Wang, Bingsheng Huang, Yujian Zou. Predicting microvascular invasion plus cytokeratin 19 expression positivity in hepatocellular carcinoma based on EOB-MRI using multitask deep learning. Hepatoma Research, 2025, 11: 12 DOI:10.20517/2394-5079.2024.143

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Llovet JM,Villanueva A.Hepatocellular carcinoma.Nat Rev Dis Primers2021;7:6. Erratum in: Nat Rev Dis Primers 2024;10:10

[2]

Mak LY,Chinchilla-López P.Global epidemiology, prevention, and management of hepatocellular carcinoma.Am Soc Clin Oncol Educ Book2018;38:262-79

[3]

Shinkawa H,Kabata D.The prognostic impact of tumor differentiation on recurrence and survival after resection of hepatocellular carcinoma is dependent on tumor size.Liver Cancer2021;10:461-72 PMCID:PMC8527909

[4]

Saito A,Kobayashi M.Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning.Mod Pathol2021;34:417-25 PMCID:PMC7817520

[5]

Li P,Li Z.Spleen radiomics signature: a potential biomarker for prediction of early and late recurrences of hepatocellular carcinoma after resection.Front Oncol2021;11:716849 PMCID:PMC8414994

[6]

Wang W,Zhong J.The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma.Sci Rep2021;11:2415 PMCID:PMC7843639

[7]

Niu ZS,Wang WH.Genetic alterations in hepatocellular carcinoma: An update.World J Gastroenterol2016;22:9069-95 PMCID:PMC5107590

[8]

Su H,He Y.Molecular mechanism of CK19 involved in the regulation of postoperative recurrence of HBV-associated primary hepatocellular carcinoma in Guangxi.Ann Transl Med2021;9:1780 PMCID:PMC8756222

[9]

Uenishi T,Yamamoto T.Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence.Cancer Sci2003;94:851-7 PMCID:PMC11160230

[10]

Zheng Z,Jianxi W.Microvascular invasion in hepatocellular carcinoma: a review of its definition, clinical significance, and comprehensive management.J Oncol2022;2022:9567041 PMCID:PMC8986383

[11]

Pommergaard HC,Adam R.European Liver and Intestine Transplant Association (ELITA)vascular invasion and survival after liver transplantation for hepatocellular carcinoma: a study from the european liver transplant registry.HPB (Oxford)2018;20:768-75

[12]

Erstad DJ.Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma.Ann Surg Oncol2019;26:1474-93

[13]

Qin SD,Qi YP,Xiang BD.Individual and joint influence of cytokeratin 19 and microvascular invasion on the prognosis of patients with hepatocellular carcinoma after hepatectomy.World J Surg Oncol2022;20:209 PMCID:PMC9210815

[14]

Durnez A,Nevens F.The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin.Histopathology2006;49:138-51

[15]

Govaere O,Berkers J.Keratin 19: a key role player in the invasion of human hepatocellular carcinomas.Gut2014;63:674-85 PMCID:PMC3963546

[16]

Lee JS,Libbrecht L.A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.Nat Med2006;12:410-6

[17]

Zhuo JY,Tan WY,Shen YQ.CK19-positive Hepatocellular carcinoma is a characteristic subtype.J Cancer2020;11:5069-77 PMCID:PMC7378918

[18]

Kim H,Na DC.Human hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression and a poor prognosis.Hepatology2011;54:1707-17

[19]

Lee K,Jung HY.The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas.BMC Cancer2017;17:441 PMCID:PMC5481924

[20]

Yang XR,Shi GM.Cytokeratin 10 and cytokeratin 19: predictive markers for poor prognosis in hepatocellular carcinoma patients after curative resection.Clin Cancer Res2008;14:3850-9

[21]

Choi JY,Sirlin CB.CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects.Radiology2014;272:635-54 PMCID:PMC4263631

[22]

Murakami T,Hori M.Diagnosis of hepatocellular carcinoma using Gd-EOB-DTPA MR imaging.Magn Reson Med Sci2022;21:168-81 PMCID:PMC9199982

[23]

Huang X,Wei J.Radiomics for diagnosis of dual-phenotype hepatocellular carcinoma using Gd-EOB-DTPA-enhanced MRI and patient prognosis.J Cancer Res Clin Oncol2019;145:2995-3003 PMCID:PMC6861194

[24]

Joo I,Lee DH,Han JK.Noninvasive diagnosis of hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout?.Eur Radiol2015;25:2859-68

[25]

Chernyak V,Kamaya A.Liver imaging reporting and data system (LI-RADS) version 2018: Imaging of hepatocellular carcinoma in at-risk patients.Radiology2018;289:816-30 PMCID:PMC6677371

[26]

Qin Q,Chen J.The value of MRI in predicting hepatocellular carcinoma with cytokeratin 19 expression: a systematic review and meta-analysis.Clin Radiol2023;78:e975-84

[27]

Huang M,Xu P.Prediction of microvascular invasion in hepatocellular carcinoma: preoperative Gd-EOB-DTPA-dynamic enhanced MRI and histopathological correlation.Contrast Media Mol Imaging2018;2018:9674565 PMCID:PMC5828041

[28]

Wang W,Wei J.A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI.Eur Radiol2020;30:3004-14

[29]

Feng ST,Liao B.Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.Eur Radiol2019;29:4648-59

[30]

Yip SS.Applications and limitations of radiomics.Phys Med Biol2016;61:R150-66 PMCID:PMC4927328

[31]

Chen Y,Zhang Y.Preoperative prediction of cytokeratin 19 expression for hepatocellular carcinoma with deep learning radiomics based on gadoxetic acid-enhanced magnetic resonance imaging.J Hepatocell Carcinoma2021;8:795-808 PMCID:PMC8314931

[32]

Wang T,Yu H.Prediction of microvascular invasion in hepatocellular carcinoma based on preoperative Gd-EOB-DTPA-enhanced MRI: comparison of predictive performance among 2D, 2D-expansion and 3D deep learning models.Front Oncol2023;13:987781 PMCID:PMC9936232

[33]

Crawshaw M. Multi-task learning with deep neural networks: a survey. ArXiv: 2009.09796, 20206 [Preprint]. 2020 [cited 2025 Apr 23]: [43 p.]. Available from: https://arxiv.org/abs/2009.09796

[34]

Zhao Y,Che T,Li S.Multi-task deep learning for medical image computing and analysis: A review.Comput Biol Med2023;153:106496

[35]

Caruana R.Multitask Learning.Machine Learning1997;28:41-75

[36]

Chu T,Zhang J.Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma.Ann Surg Oncol2022;29:6774-83 PMCID:PMC9492610

[37]

Fan M,Zhao W.Joint prediction of breast cancer histological grade and Ki-67 expression level based on DCE-MRI and DWI radiomics.IEEE J Biomed Health Inform2020;24:1632-42

[38]

Xu P,Liu K,Xu C.Microvascular invasion in small hepatocellular carcinoma: is it predictable with preoperative diffusion-weighted imaging?.J Gastroenterol Hepatol2014;29:330-6

[39]

Cong WM,Chen J.Guideline committeepractice guidelines for the pathological diagnosis of primary liver cancer: 2015 update.World J Gastroenterol2016;22:9279-87 PMCID:PMC5107692

[40]

Zhang X,Shen F.Significance of presence of microvascular invasion in specimens obtained after surgical treatment of hepatocellular carcinoma.J Gastroenterol Hepatol2018;33:347-54

[41]

Lee S,Lee JE,Park CK.Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma.J Hepatol2017;67:526-34

[42]

Cong WM.New insights into molecular diagnostic pathology of primary liver cancer: Advances and challenges.Cancer Lett2015;368:14-9

[43]

Kim H,Park YN.Histopathological variants of hepatocellular carcinomas: an update according to the 5th edition of the who classification of digestive system tumors.J Liver Cancer2020;20:17-24 PMCID:PMC10035696

[44]

Zhang H,Zhang Z., ResNeSt: split-attention networks. In: Gupta M, Patel V, Souvenir R, Editors. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2022 Jun 18-24; New Orleans, LA, USA. Piscataway: IEEE. 2022. pp. 2735-45.

[45]

He K,Ren S.Deep residual learning for image recognition. In: Bajcsy R, Li FF, Tuytelaars T, Agapito L, Berg T, Kosecka J, Zelnik-Manor L, Editors. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA. Piscataway: IEEE. 2016. pp. 770-8.

[46]

Tan M. Efficientnet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946 [Preprint]. 2019: [cited 2025 Apr 23] [11 p.]. Available from: https://doi.org/10.48550/arXiv.1905.11946

[47]

Caruana R. Promoting poor features to supervisors: some inputs work better as outputs. In: Jordan MI, Kearns MJ, Solla SA, Editors. Proceedings of the 10th International Conference on Neural Information Processing Systems; 1996 Dec 1-6; Denver, CO, USA. Cambridge: MIT Press. 1996. pp. 278-84.

[48]

Misra I,Gupta A.A. G. Cross-stitch networks for multi-task learning. In: Bajcsy R, Li FF, Tuytelaars T, Editors. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA. Piscataway: IEEE. 2016. 3994-4003.

[49]

Jaderberg M,Zisserman A. Spatial transformer networks. arXiv:1506.02025v3 [Preprint]. 2016: [cited 2025 Apr 23] [15 p]. Available from: https://doi.org/10.48550/arXiv.1506.02025

[50]

Santoro A,Barrett DGT. A simple neural network module for relational reasoning. arXiv:1706.01427v1 [Preprint]. 2017: [cited 2025 Apr 23] [16 p] Available form: https://doi.org/10.48550/arXiv.1706.01427

[51]

Yang F,Xu L.MRI-radiomics prediction for cytokeratin 19-positive hepatocellular carcinoma: a multicenter study.Front Oncol2021;11:672126 PMCID:PMC8406635

[52]

Hervella ÁS,Novo J.Multi-adaptive optimization for multi-task learning with deep neural networks.Neural Netw2024;170:254-65

[53]

Zhang Y,Qiu J.Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma.J Magn Reson Imaging2021;54:134-43

[54]

Sun BY,Guan RY.Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma.World J Surg Oncol2022;20:189 PMCID:PMC9178852

PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

/