PDF
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and a leading cause of cancer-related mortality globally. The heterogeneity of HCC complicates prognostic, management, and predictive strategies across different patient populations. Recent advancements in artificial intelligence (AI) and machine learning (ML) offer transformative opportunities to improve HCC management. This review consolidates findings from various studies regarding integrating AI in detecting, diagnosing, and treating HCC, leveraging diverse data sources such as radiological imaging, genomics, and clinical records. AI-based approaches have shown potential to improve the accuracy and efficiency of HCC screening, early detection, tumor characterization, and treatment response evaluation, surpassing traditional methods. However, the deployment of AI technologies is hindered by challenges, including data standardization, validation across multiple centers, and ethical considerations regarding AI applications. This review emphasizes the need to establish comprehensive multimodal datasets and collaborative research efforts to validate AI applications in HCC management. By addressing these challenges, the integration of AI technology has the potential to revolutionize HCC care, ultimately leading to improved patient outcomes and a more personalized approach to treatment strategies.
Keywords
Hepatocellular carcinoma (HCC)
/
artificial intelligence (AI)
/
machine learning (ML)
/
validation
/
convolutional neural network (CNN)
Cite this article
Download citation ▾
Walaa Abdelhamed, Mohamed El-Kassas.
Integrating artificial intelligence into multidisciplinary evaluations of HCC: opportunities and challenges.
Hepatoma Research, 2025, 11: 8 DOI:10.20517/2394-5079.2024.138
| [1] |
Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49
|
| [2] |
Rumgay H,de Martel C.Global, regional and national burden of primary liver cancer by subtype.Eur J Cancer2022;161:108-18
|
| [3] |
Liu Y,Hao J.Global burden of primary liver cancer by five etiologies and global prediction by 2035 based on global burden of disease study 2019.Cancer Med2022;11:1310-23 PMCID:PMC8894698
|
| [4] |
Zhang CH,Zhang S,Gao Q.Changing epidemiology of hepatocellular carcinoma in Asia.Liver Int2022;42:2029-41
|
| [5] |
Lazarus JV,Francque SM,Terrault NA.Reply: a multi-society Delphi consensus statement on new fatty liver disease nomenclature.Hepatology2024;79:E93-4
|
| [6] |
Singal AG,Yarchoan M.AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma.Hepatology2023;78:1922-65 PMCID:PMC10663390
|
| [7] |
Reig M,Rimola J.BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update.J Hepatol2022;76:681-93 PMCID:PMC8866082
|
| [8] |
Singal AG,Bruix J.Breakthroughs in hepatocellular carcinoma therapies.Clin Gastroenterol Hepatol2023;21:2135-49 PMCID:PMC10293061
|
| [9] |
Seif El Dahan K,Daher D.Multidisciplinary care for patients with HCC: a systematic review and meta-analysis.Hepatol Commun2023;7:e0143 PMCID:PMC10146543
|
| [10] |
Wu J,Qiu X.A noninvasive approach to evaluate tumor immune microenvironment and predict outcomes in hepatocellular carcinoma.Phenomics2023;3:549-64 PMCID:PMC10781918
|
| [11] |
Lassau N,Chouzenoux E.Three artificial intelligence data challenges based on CT and ultrasound.Diagn Interv Imaging2021;102:669-74
|
| [12] |
Lakkaraju H,Jure L.Interpretable decision sets: a joint framework for description and prediction.KDD2016;2016:1675-84 PMCID:PMC5108651
|
| [13] |
Min JK,Cha JM.Overview of deep learning in gastrointestinal endoscopy.Gut Liver2019;13:388-93 PMCID:PMC6622562
|
| [14] |
Yasaka K,Kunimatsu A,Abe O.Deep learning with convolutional neural network in radiology.Jpn J Radiol2018;36:257-72
|
| [15] |
Milea D, Najjar RP, Zhubo J, et al; BONSAI Group. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382:1687-95.
|
| [16] |
Noorbakhsh J,Foroughi Pour A.Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images.Nat Commun2020;11:6367 PMCID:PMC7733499
|
| [17] |
Russakovsky O,Su H.ImageNet large scale visual recognition challenge.Int J Comput Vis2015;115:211-52
|
| [18] |
Anwer R,Keshk A.A comparative study of machine learning and deep learning algorithms for speech emotion recognition.IJCI Int J Comput Inform2023;10:82-9
|
| [19] |
Kawka M,Jiao LR.Artificial intelligence in the detection, characterisation and prediction of hepatocellular carcinoma: a narrative review.Transl Gastroenterol Hepatol2022;7:41 PMCID:PMC9468986
|
| [20] |
Wang S.Machine learning and radiology.Med Image Anal2012;16:933-51 PMCID:PMC3372692
|
| [21] |
Ioannou GN,Beste LA.Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis.JAMA Netw Open2020;3:e2015626 PMCID:PMC7489819
|
| [22] |
Calderaro J,Luedde T.Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma.J Hepatol2022;76:1348-61 PMCID:PMC9126418
|
| [23] |
Omata M,Kokudo N.Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update.Hepatol Int2017;11:317-70 PMCID:PMC5491694
|
| [24] |
Schattenberg JM,Alkhouri N.Artificial intelligence applications in hepatology.Clin Gastroenterol Hepatol2023;21:2015-25
|
| [25] |
Heimbach JK,Finn RS.AASLD guidelines for the treatment of hepatocellular carcinoma.Hepatology2018;67:358-80
|
| [26] |
Marrero JA,Sirlin CB.Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases.Hepatology2018;68:723-50
|
| [27] |
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma.J Hepatol2018;69:182-236
|
| [28] |
Schmauch B,Jehanno P.Diagnosis of focal liver lesions from ultrasound using deep learning.Diagn Interv Imaging2019;100:227-33
|
| [29] |
Yang Q,Hao X.Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: a multicentre study.EBioMedicine2020;56:102777 PMCID:PMC7262550
|
| [30] |
Guo LH,Qian YY.A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images.Clin Hemorheol Microcirc2018;69:343-54
|
| [31] |
Ta CN,Eghtedari M.Focal liver lesions: computer-aided diagnosis by using contrast-enhanced US cine recordings.Radiology2018;286:1062-71 PMCID:PMC5831265
|
| [32] |
Preis O,Scott JA.Neural network evaluation of PET scans of the liver: a potentially useful adjunct in clinical interpretation.Radiology2011;258:714-21
|
| [33] |
Mokrane FZ,Vavasseur A.Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules.Eur Radiol2020;30:558-70
|
| [34] |
Yasaka K,Abe O.Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study.Radiology2018;286:887-96
|
| [35] |
Shi W,Cao S.Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT imaging protocol.Abdom Radiol2020;45:2688-97
|
| [36] |
Chlebus G,Moltz JH,Hahn HK.Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing.Sci Rep2018;8:15497 PMCID:PMC6195599
|
| [37] |
Jansen MJA,Veldhuis WB,Viergever MA.Automatic classification of focal liver lesions based on MRI and risk factors.PLoS One2019;14:e0217053 PMCID:PMC6522218
|
| [38] |
Hamm CA,Savic LJ.Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.Eur Radiol2019;29:3338-47 PMCID:PMC7251621
|
| [39] |
Zhang F,Nezami N.Liver tissue classification using an auto-context-based deep neural network with a multi-phase training framework. In: Bai W, Sanroma G, Wu G, Munsell BC, Zhan Y, Coupé P, editors. Patch-based techniques in medical imaging. Cham: Springer International Publishing; 2018. pp. 59-66. PMCID:PMC7236808
|
| [40] |
Zhen SH,Tao YB.Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data.Front Oncol2020;10:680 PMCID:PMC7271965
|
| [41] |
Wang CJ,Savic LJ.Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.Eur Radiol2019;29:3348-57 PMCID:PMC7243989
|
| [42] |
Liao H,Han R.Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma.Clin Transl Med2020;10:e102 PMCID:PMC7403820
|
| [43] |
Kiani A,Rajpurkar P.Impact of a deep learning assistant on the histopathologic classification of liver cancer.NPJ Digit Med2020;3:23 PMCID:PMC7044422
|
| [44] |
Calderaro J,Paradis V.Molecular and histological correlations in liver cancer.J Hepatol2019;71:616-30
|
| [45] |
Ziol M,Amaddeo G.Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance.Hepatology2018;68:103-12
|
| [46] |
Wang H,Li B,Li D.Single-cell spatial analysis of tumor and immune microenvironment on whole-slide image reveals hepatocellular carcinoma subtypes.Cancers2020;12:3562 PMCID:PMC7761227
|
| [47] |
Chen M,Topatana W.Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning.NPJ Precis Oncol2020;4:14 PMCID:PMC7280520
|
| [48] |
Kather JN,Halama N.Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.Nat Med2019;25:1054-6 PMCID:PMC7423299
|
| [49] |
Kather JN,Grabsch HI.Pan-cancer image-based detection of clinically actionable genetic alterations.Nat Cancer2020;1:789-99 PMCID:PMC7610412
|
| [50] |
Fu Y,Torne RV.Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.Nat Cancer2020;1:800-10
|
| [51] |
Sangro B,Wadhawan S.Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma.J Hepatol2020;73:1460-9 PMCID:PMC7751218
|
| [52] |
Haber PK,Torres-Martin M.Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma.Gastroenterology2023;164:72-88.e18
|
| [53] |
Johannet P,Donnelly DM.Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma.Clin Cancer Res2021;27:131-40 PMCID:PMC7785656
|
| [54] |
Patel SK,Rai V.Artificial intelligence to decode cancer mechanism: beyond patient stratification for precision oncology.Front Pharmacol2020;11:1177 PMCID:PMC7438594
|
| [55] |
Liu S,Li G.Multi-omics analysis of primary cell culture models reveals genetic and epigenetic basis of intratumoral phenotypic diversity.Genomics Proteomics Bioinformatics2019;17:576-89 PMCID:PMC7212478
|
| [56] |
Zeng WZD,Li Y.Selecting precise reference normal tissue samples for cancer research using a deep learning approach.BMC Med Genomics2019;12:21 PMCID:PMC6357350
|
| [57] |
Chaudhary K,Lu L.Deep learning-based multi-omics integration robustly predicts survival in liver cancer.Clin Cancer Res2018;24:1248-59 PMCID:PMC6050171
|
| [58] |
Chaudhary K,Lu L,Ching T.Multimodal meta-analysis of 1,494 hepatocellular carcinoma samples reveals significant impact of consensus driver genes on phenotypes.Clin Cancer Res2019;25:463-72 PMCID:PMC6542354
|
| [59] |
Hwang B,Bang D.Author Correction: Single-cell RNA sequencing technologies and bioinformatics pipelines.Exp Mol Med2021;53:1005 PMCID:PMC8178331
|
| [60] |
Aizarani N,Sagar .A human liver cell atlas reveals heterogeneity and epithelial progenitors.Nature2019;572:199-204 PMCID:PMC6687507
|
| [61] |
Ramachandran P,Wilson-Kanamori JR.Resolving the fibrotic niche of human liver cirrhosis at single-cell level.Nature2019;575:512-8 PMCID:PMC6876711
|
| [62] |
Zhang Q,Luo N.Landscape and dynamics of single immune cells in hepatocellular carcinoma.Cell2019;179:829-45.e20
|
| [63] |
Papalexi E.Single-cell RNA sequencing to explore immune cell heterogeneity.Nat Rev Immunol2018;18:35-45
|
| [64] |
Kharchenko PV,Scadden DT.Bayesian approach to single-cell differential expression analysis.Nat Methods2014;11:740-2 PMCID:PMC4112276
|
| [65] |
Hwang B,Bang D.Single-cell RNA sequencing technologies and bioinformatics pipelines.Exp Mol Med2018;50:1-14 PMCID:PMC6082860
|
| [66] |
Amodio M,Srinivasan K.Exploring single-cell data with deep multitasking neural networks.Nat Methods2019;16:1139-45 PMCID:PMC10164410
|
| [67] |
Eraslan G,Mircea M,Theis FJ.Single-cell RNA-seq denoising using a deep count autoencoder.Nat Commun2019;10:390 PMCID:PMC6344535
|
| [68] |
Genshaft AS,Gallant CJ.Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction.Genome Biol2016;17:188 PMCID:PMC5027636
|
| [69] |
Azer SA.Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: a systematic review.World J Gastrointest Oncol2019;11:1218-30 PMCID:PMC6937442
|
| [70] |
Nam JY,Bae J.Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: a multicenter study.Cancers2020;12:2791 PMCID:PMC7650768
|
| [71] |
Saillard C,Laifa O.Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides.Hepatology2020;72:2000-13
|
| [72] |
Yamashita R,Saleem A,Shen J.Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images.Sci Rep2021;11:2047 PMCID:PMC7820423
|
| [73] |
Lu L.Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma.PeerJ2020;8:e8668 PMCID:PMC7073245
|
| [74] |
Saito A,Kobayashi M.Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning.Mod Pathol2021;34:417-25 PMCID:PMC7817520
|
| [75] |
Ji GW,Xu Q.Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study.EBioMedicine2019;50:156-65 PMCID:PMC6923482
|
| [76] |
Jiang YQ,Cao S.Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning.J Cancer Res Clin Oncol2021;147:821-33 PMCID:PMC7873117
|
| [77] |
Zhang Y,Qiu J.Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma.J Magn Reson Imaging2021;54:134-43
|
| [78] |
Abajian A,Savic LJ.Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept.J Vasc Interv Radiol2018;29:850-7.e1 PMCID:PMC5970021
|
| [79] |
Liu QP,Zhu FP,Liu XS.Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning.EClinicalMedicine2020;23:100379 PMCID:PMC7284069
|
| [80] |
Zhang L,Yan ZP.Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib.Front Oncol2020;10:593292 PMCID:PMC7556271
|
| [81] |
Peng J,Ning Z.Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging.Eur Radiol2020;30:413-24 PMCID:PMC6890698
|
| [82] |
Oezdemir I,Shaw C,Hoyt K.Tumor vascular networks depicted in contrast-enhanced ultrasound images as a predictor for transarterial chemoembolization treatment response.Ultrasound Med Biol2020;46:2276-86 PMCID:PMC7725382
|
| [83] |
Aujay G,Blanc JF.Comparison of MRI-based response criteria and radiomics for the prediction of early response to transarterial radioembolization in patients with hepatocellular carcinoma.Diagn Interv Imaging2022;103:360-6
|
| [84] |
Wang G,Cen X.Prediction of microvascular invasion of hepatocellular carcinoma based on preoperative diffusion-weighted MR using deep learning.Acad Radiol2021;28 Suppl 1:S118-27
|
| [85] |
Song D,Wang W.Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.J Cancer Res Clin Oncol2021;147:3757-67
|
| [86] |
Liu D,Xie X.Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound.Eur Radiol2020;30:2365-76
|
| [87] |
Shan QY,Feng ST.CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation.Cancer Imaging2019;19:11 PMCID:PMC6391838
|
| [88] |
Nachev P,McNally N,Williams B.Redefining the research hospital.NPJ Digit Med2019;2:119 PMCID:PMC6897858
|
| [89] |
Panch T,Celi LA.The “inconvenient truth” about AI in healthcare.NPJ Digit Med2019;2:77 PMCID:PMC6697674
|
| [90] |
Kelly CJ,Suleyman M,King D.Key challenges for delivering clinical impact with artificial intelligence.BMC Med2019;17:195 PMCID:PMC6821018
|
| [91] |
Wei L,Gates EDH.Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration.Br J Radiol2023;96:20230211 PMCID:PMC10546458
|
| [92] |
Hosseiniyan Khatibi SM,Homaei Rad H.Key therapeutic targets implicated at the early stage of hepatocellular carcinoma identified through machine-learning approaches.Sci Rep2023;13:3840 PMCID:PMC9992672
|
| [93] |
Ducreux M,Bekaii-Saab T.The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022.ESMO Open2023;8:101567 PMCID:PMC10245111
|
| [94] |
Sun H,Mao Y.Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering.Front Pharmacol2023;14:1150151 PMCID:PMC10198383
|
| [95] |
Sato M,Fukumoto T.Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation.Hepatol Int2024;18:131-7 PMCID:PMC10857948
|
| [96] |
Christou CD.Challenges involved in the application of artificial intelligence in gastroenterology: the race is on!.World J Gastroenterol2023;29:6168-78 PMCID:PMC10768398
|
| [97] |
Najjar R.Redefining radiology: a review of artificial intelligence integration in medical imaging.Diagnostics2023;13:2760 PMCID:PMC10487271
|
| [98] |
Guo D,Wang H.Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation.Eur J Radiol2019;117:33-40
|
| [99] |
Erstad DJ.Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma.Ann Surg Oncol2019;26:1474-93
|
| [100] |
Dong Y,Xia W.Preoperative prediction of microvascular invasion in hepatocellular carcinoma: initial application of a radiomic algorithm based on grayscale ultrasound images.Front Oncol2020;10:353 PMCID:PMC7096379
|
| [101] |
Famularo S, Donadon M, Cipriani F, et al; HE.RC.O.LE.S. Group. Machine learning predictive model to guide treatment allocation for recurrent hepatocellular carcinoma after surgery. JAMA Surg. 2023;158:192-202. PMCID:PMC9857766
|
| [102] |
Dohan A,Coriat R.A step toward a better understanding of hepatocellular progression after transarterial embolization.Diagn Interv Imaging2022;103:125-6
|
| [103] |
Morshid A,Khalaf AM.A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization.Radiol Artif Intell2019;1:e180021 PMCID:PMC6920060
|
| [104] |
Young S,Kimyon R.Accuracy of liver ablation zone prediction in a single 2450MHz 100 Watt generator model microwave ablation system: an in human study.Diagn Interv Imaging2020;101:225-33
|
| [105] |
An C,Huang Z.Assessment of ablative margin after microwave ablation for hepatocellular carcinoma using deep learning-based deformable image registration.Front Oncol2020;10:573316 PMCID:PMC7546854
|
| [106] |
Parra NS,Khan A.Advancements in the diagnosis of hepatocellular carcinoma.IJTM2023;3:51-65
|
| [107] |
Mohan P, Lochan R, Shetty S. Biomarker in hepatocellular carcinoma.Indian J Surg Oncol2024;15:261-8 PMCID:PMC11133295
|
| [108] |
Han Y,Liu G,Wang G.Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning.Comput Struct Biotechnol J2023;21:3478-89 PMCID:PMC10782000
|
| [109] |
Qin R,Xu F.Biomarkers predicting the efficacy of immune checkpoint inhibitors in hepatocellular carcinoma.Front Immunol2023;14:1326097 PMCID:PMC10770866
|
| [110] |
Gerke S,Evgeniou T.The need for a system view to regulate artificial intelligence/machine learning-based software as medical device.NPJ Digit Med2020;3:53 PMCID:PMC7138819
|
| [111] |
Hwang TJ,Vokinger KN.Lifecycle regulation of artificial intelligence- and machine learning-based software devices in medicine.JAMA2019;322:2285-6
|
| [112] |
Park SH.Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction.Radiology2018;286:800-9
|
| [113] |
Dupuis M,Veil R.External validation of a commercially available deep learning algorithm for fracture detection in children.Diagn Interv Imaging2022;103:151-9
|
| [114] |
Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ; SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ. 2020;370:m3210. PMCID:PMC7490785
|
| [115] |
Vigdorovits A,Olteanu GE.Breaking barriers: AI’s influence on pathology and oncology in resource-scarce medical systems.Cancers2023;15:5692 PMCID:PMC10705335
|
| [116] |
Bhat M,Chara BS.Artificial intelligence, machine learning, and deep learning in liver transplantation.J Hepatol2023;78:1216-33
|
| [117] |
Abdullah R.Health care employees’ perceptions of the use of artificial intelligence applications: survey study.J Med Internet Res2020;22:e17620 PMCID:PMC7256754
|
| [118] |
Fan W,Zhu S.Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS).Ann Oper Res2020;294:567-92
|
| [119] |
Schmidt P,Teubner T.Transparency and trust in artificial intelligence systems.J Decis Syst2020;29:260-78
|
| [120] |
Guidotti R,Ruggieri S,Giannotti F.A survey of methods for explaining black box models.ACM Comput Surv2019;51:1-42
|