Glucose addiction of cholangiocarcinoma: opportunities for therapeutic development

Atipat Singkarin , Charat Kusoltech , Jirayu Sriphaiboon , Chatchai Phoomak , Charupong Saengboonmee

Hepatoma Research ›› 2025, Vol. 11 : 1

PDF
Hepatoma Research ›› 2025, Vol. 11:1 DOI: 10.20517/2394-5079.2024.128
Review

Glucose addiction of cholangiocarcinoma: opportunities for therapeutic development

Author information +
History +
PDF

Abstract

The association between diabetes mellitus, hyperglycemia, and cholangiocarcinoma (CCA) development and progression has been established. One speculation of the effects of high glucose levels promoting CCA progression is via the feeding of substrate to the aerobic glycolysis or so-called Warburg effects in CCA cells. Several glycolytic enzymes and glucose transporters are upregulated in CCA and further activated by high glucose conditions. However, the increased glucose uptake and the increased aggressive phenotypes of CCA under high glucose conditions might not be solely due to this aberrant energy metabolism. High glucose conditions have been proven to be the activator of the other signaling pathways, as well as the precursors for dysregulated glycosylation of oncoproteins in CCA. The higher requirement of glucose and the abundant glucose availability in diabetic conditions then synergize to promote aggressive CCA phenotypes. Additionally, the glucose avidity could also become the Achilles heel of CCA cells, as they could be sensitive to glucose deprivation. The development of therapeutic agents targeting glucose metabolisms or glucose-activated pathways is promising for CCA treatments. This article reviews and discusses the up-to-date research on how high glucose is involved in CCA progression, both via Warburg effects and other mechanisms.

Keywords

Cholangiocarcinoma / diabetes mellitus / glycolysis / hyperglycemia / warburg effect

Cite this article

Download citation ▾
Atipat Singkarin, Charat Kusoltech, Jirayu Sriphaiboon, Chatchai Phoomak, Charupong Saengboonmee. Glucose addiction of cholangiocarcinoma: opportunities for therapeutic development. Hepatoma Research, 2025, 11: 1 DOI:10.20517/2394-5079.2024.128

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brindley PJ,Ilyas SI.Cholangiocarcinoma.Nat Rev Dis Primers2021;7:65 PMCID:PMC9246479

[2]

Banales JM,Lamarca A.Cholangiocarcinoma 2020: the next horizon in mechanisms and management.Nat Rev Gastroenterol Hepatol2020;17:557-88 PMCID:PMC7447603

[3]

Treeprasertsuk S,Soonthornworasiri N.A significant cancer burden and high mortality of intrahepatic cholangiocarcinoma in Thailand: a nationwide database study.BMC Gastroenterol2017;17:3 PMCID:PMC5216607

[4]

Pupacdi B, Loffredo CA, Budhu A, et al; TIGER-LC Consortium. The landscape of etiological patterns of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in Thailand. Int J Cancer. 2024;155:1387-99. PMCID:PMC11326978

[5]

Chaisaingmongkol J,Dang H.Common molecular subtypes among Asian hepatocellular carcinoma and cholangiocarcinoma.Cancer Cell2017;32:57-70.e3. PMCID:PMC5524207

[6]

Chan-On W,Ong CK.Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers.Nat Genet2013;45:1474-8

[7]

Jusakul A,Yong CH.Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma.Cancer Discov2017;7:1116-35 PMCID:PMC5628134

[8]

Hong JH,Heng HL.Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies.Gut2024;73:966-84

[9]

Raggi C,Rae C,Marra F.Metabolic reprogramming in cholangiocarcinoma.J Hepatol2022;77:849-64

[10]

Pastore M,Gentilini A.Multifaceted aspects of metabolic plasticity in human cholangiocarcinoma: an overview of current perspectives.Cells2020;9:596 PMCID:PMC7140515

[11]

Yang F,Shaha A.Metabolic reprogramming and its clinical implication for liver cancer.Hepatology2023;78:1602-24 PMCID:PMC10315435

[12]

Pant K,Peixoto E.Role of glucose metabolism reprogramming in the pathogenesis of cholangiocarcinoma.Front Med2020;7:113 PMCID:PMC7146077

[13]

Zhen Y,Shi L.FGFR inhibition blocks NF-ĸB-dependent glucose metabolism and confers metabolic vulnerabilities in cholangiocarcinoma.Nat Commun2024;15:3805 PMCID:PMC11076599

[14]

Yang SM,Lee JY,Lee JM.Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma.BMB Rep2023;56:600-5 PMCID:PMC10689087

[15]

Cao J,Jiang GQ.Expression of GLS1 in intrahepatic cholangiocarcinoma and its clinical significance.Mol Med Rep2019;20:1915-24

[16]

Xu L,Lin Z.FASN-mediated fatty acid biosynthesis remodels immune environment in Clonorchis sinensis infection-related intrahepatic cholangiocarcinoma.J Hepatol2024;81:265-77

[17]

Ruiz de Gauna M,González-Romero F.Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids.Hepatology2022;76:1617-33 PMCID:PMC9790564

[18]

Fu K,Wu H,Li X.Diabetes and PKM2 affect prognosis in patients with intrahepatic cholangiocarcinoma.Oncol Lett2020;20:265 PMCID:PMC7517629

[19]

Saengboonmee C,Sangkhamanon S,Seubwai W.High glucose induced upregulation of cyclin a associating with a short survival of patients with cholangiocarcinoma: a potential target for treatment of patients with diabetes mellitus.Nutr Cancer2022;74:1734-44

[20]

Osataphan S,Saengboonmee C.Obesity and cholangiocarcinoma: a review of epidemiological and molecular associations.J Hepatobiliary Pancreat Sci2021;28:1047-59

[21]

Lee JW,Hong SP.Prognostic impact of visceral adipose tissue imaging parameters in patients with cholangiocarcinoma after surgical resection.Int J Mol Sci2024;25:3939 PMCID:PMC11011754

[22]

Saengboonmee C,Lert-Itthiporn W,Wongkham S.Association of diabetes mellitus and cholangiocarcinoma: update of evidence and the effects of antidiabetic medication.Can J Diabetes2021;45:282-90

[23]

Saengboonmee C,Wongkham C.Diabetes mellitus: possible risk and promoting factors of cholangiocarcinoma: association of diabetes mellitus and cholangiocarcinoma.Cancer Epidemiol2015;39:274-8

[24]

Supabphol S,Wongkham S.High glucose: an emerging association between diabetes mellitus and cancer progression.J Mol Med2021;99:1175-93

[25]

Palmer WC.Are common factors involved in the pathogenesis of primary liver cancers?.J Hepatol2012;57:69-76 PMCID:PMC3804834

[26]

Clements O,Kim JU,Khan SA.Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis.J Hepatol2020;72:95-103

[27]

Sun H.The role of insulin and incretin-based drugs in biliary tract cancer: epidemiological and experimental evidence.Discov Oncol2022;13:70 PMCID:PMC9357599

[28]

Qi X,Yao H.Insulin therapy and biliary tract cancer: insights from real-world data.Endocr Connect2022;11:e210546 PMCID:PMC8942312

[29]

Kinjo Y,Akiba J.SUOX and GLUT1 are biomarkers for the prognosis in large duct type intrahepatic cholangiocarcinoma.Hum Pathol2022;128:11-9

[30]

Thamrongwaranggoon U,Seubwai W,Cha'on U.Aberrant GLUT1 expression is associated with carcinogenesis and progression of liver fluke-associated cholangiocarcinoma.In Vivo2021;35:267-74 PMCID:PMC7880799

[31]

Kubo Y,Tanaka Y.Different expression of glucose transporters in the progression of intrahepatic cholangiocarcinoma.Hum Pathol2014;45:1610-7

[32]

Jóźwiak P,Bryś M.Glucose-dependent glucose transporter 1 expression and its impact on viability of thyroid cancer cells.Oncol Rep2015;33:913-20

[33]

Phoomak C,Silsirivanit A.High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation.Sci Rep2017;7:43842 PMCID:PMC5338328

[34]

Phoomak C,Sawanyawisuth K.Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB.Sci Rep2016;6:27853 PMCID:PMC4904198

[35]

Zheng P,Zhou XH.Glucose 6 phosphatase dehydrogenase (G6PD): a novel diagnosis marker related to gastrointestinal cancers.Am J Transl Res2023;15:2304-28 PMCID:PMC10182507

[36]

Qu X,Shen L.Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.PLoS One2017;12:e0173712 PMCID:PMC5354635

[37]

Saengboonmee C,Pairojkul C.High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation.Sci Rep2016;6:18995 PMCID:PMC4705543

[38]

Detarya M,Seubwai W.High glucose upregulates FOXM1 expression via EGFR/STAT3 dependent activation to promote progression of cholangiocarcinoma.Life Sci2021;271:119114

[39]

Saengboonmee C,Supabphol S.NF-κB and STAT3 co-operation enhances high glucose induced aggressiveness of cholangiocarcinoma cells.Life Sci2020;262:118548 PMCID:PMC7686287

[40]

Saengboonmee C,Sangkhamanon S.γ-aminobutyric acid B2 receptor: a potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus.World J Gastroenterol2023;29:4416-32 PMCID:PMC10415970

[41]

WARBURG O.On the origin of cancer cells.Science1956;123:309-14

[42]

Thompson CB,Johnson RS.A century of the Warburg effect.Nat Metab2023;5:1840-3

[43]

Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation.Science2009;324:1029-33 PMCID:PMC2849637

[44]

Hanahan D.Hallmarks of cancer: the next generation.Cell2011;144:646-74

[45]

Hanahan D.Hallmarks of cancer: new dimensions.Cancer Discov2022;12:31-46

[46]

Ong CK,Pairojkul C.Exome sequencing of liver fluke-associated cholangiocarcinoma.Nat Genet2012;44:690-3

[47]

Nakamura H,Totoki Y.Genomic spectra of biliary tract cancer.Nat Genet2015;47:1003-10

[48]

Olszewski K,Feng XJ.Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors.Cell Chem Biol2022;29:423-35.e10

[49]

Saisomboon S,Boonnate P.Diminishing acetyl-CoA carboxylase 1 attenuates CCA migration via AMPK-NF-κB-snail axis.Biochim Biophys Acta Mol Basis Dis2023;1869:166694

[50]

Tomacha J,Padthaisong S.Targeting fatty acid synthase modulates metabolic pathways and inhibits cholangiocarcinoma cell progression.Front Pharmacol2021;12:696961 PMCID:PMC8371458

[51]

Panawan O,Chang CH.Establishment and characterization of a novel cancer stem-like cell of cholangiocarcinoma.Cancer Sci2023;114:3230-46 PMCID:PMC10394157

[52]

Diehl FF,Vander Heiden MG.The bidirectional relationship between metabolism and cell cycle control.Trends Cell Biol2024;34:136-49

[53]

Rong Y,Sapp KM,Spencer SL.Cells use multiple mechanisms for cell-cycle arrest upon withdrawal of individual amino acids.Cell Rep2023;42:113539 PMCID:PMC11238304

[54]

Allen CNS,Santerre M.Hallmarks of metabolic reprogramming and their role in viral pathogenesis.Viruses2022;14:602 PMCID:PMC8955778

[55]

Shen X,Xue J.Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma.J Transl Int Med2023;11:322-9 PMCID:PMC10732496

[56]

Tiemin P,Qingfu L.Dysregulation of the miR-148a-GLUT1 axis promotes the progression and chemoresistance of human intrahepatic cholangiocarcinoma.Oncogenesis2020;9:19 PMCID:PMC7018977

[57]

Thamrongwaranggoon U,Araki H.Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin-1.Cancer Sci2023;114:1541-55 PMCID:PMC10067391

[58]

Thamrongwaranggoon U,Seubwai W.Lactic acidosis promotes aggressive features of cholangiocarcinoma cells via upregulating ALDH1A3 expression through EGFR axis.Life Sci2022;302:120648

[59]

Thonsri U,Waraasawapati S.Overexpression of lactate dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis.Histol Histopathol2017;32:503-10

[60]

Colyn L,Latasa MU.New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.J Exp Clin Cancer Res2022;41:183 PMCID:PMC9134609

[61]

Liu J,Hu W.Tumor suppressor p53 and metabolism.J Mol Cell Biol2019;11:284-92 PMCID:PMC6487777

[62]

Liu VM,Hosios AM,Israelsen WJ.Cancer-associated mutations in human pyruvate kinase M2 impair enzyme activity.FEBS Lett2020;594:646-64 PMCID:PMC7042059

[63]

Israelsen WJ.Pyruvate kinase: function, regulation and role in cancer.Semin Cell Dev Biol2015;43:43-51 PMCID:PMC4662905

[64]

Liberti MV.The Warburg effect: how does it benefit cancer cells?.Trends Biochem Sci2016;41:211-8

[65]

Liao M,Wu L.Targeting the Warburg effect: a revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer.Acta Pharm Sin B2024;14:953-1008 PMCID:PMC10935242

[66]

Corti F,Raimondi A.Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: a review of current evidences and future perspectives.Cancer Treat Rev2019;72:45-55

[67]

Tian LY,Jücker M.The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism.Int J Mol Sci2023;24:2652 PMCID:PMC9916527

[68]

Thamrongwaranggoon U,Phoomak C.Targeting hexokinase II as a possible therapy for cholangiocarcinoma.BBRC2017;484:409-15

[69]

Thonsri U,Waraasawapati S.Antitumor effect of shikonin, a PKM2 inhibitor, in cholangiocarcinoma cell lines.Anticancer Res2020;40:5115-24

[70]

Infantino V,Convertini P,Iacobazzi V.Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target.Int J Mol Sci2021;22:5703 PMCID:PMC8199012

[71]

Courtnay R,Malik N,Tortorella SM.Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.Mol Biol Rep2015;42:841-51

[72]

Wicks EE.Hypoxia-inducible factors: cancer progression and clinical translation.J Clin Invest2022;e159839:132 PMCID:PMC9151701

[73]

Seubwai W, Kraiklang R, Wongkham C, Wongkham S. Hypoxia enhances aggressiveness of cholangiocarcinoma cells. Asian Pac J Cancer Prev 2012;13:53-8. Available from: https://journal.waocp.org/article_27145_9dfbf7f01173f0a9bed0e95ceb44fb22.pdf. [Last accessed on 9 Dec 2024].

[74]

Thongchot S,Loilome W.High expression of HIF-1α, BNIP3 and PI3KC3: hypoxia-induced autophagy predicts cholangiocarcinoma survival and metastasis.Asian Pac J Cancer Prev2014;15:5873-8

[75]

Chen Y,Wang Y.Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation.J Exp Clin Cancer Res2023;42:265 PMCID:PMC10565972

[76]

Tang J,Gu P,Huang W.Hsa_circ_0019054 up-regulates HIF1A through sequestering miR-340-5p to promote the tumorigenesis of intrahepatic cholangiocarcinoma.Hum Exp Toxicol2022;41:9603271221126494

[77]

Hsu CC,Lee HC.Role of mitochondrial dysfunction in cancer progression.Exp Biol Med2016;241:1281-95 PMCID:PMC4950268

[78]

Senyilmaz D.Chicken or the egg: Warburg effect and mitochondrial dysfunction.F1000Prime Rep2015;7:41 PMCID:PMC4447048

[79]

Suwannakul N,Thanan R.Targeting fructose metabolism by glucose transporter 5 regulation in human cholangiocarcinoma.Genes Dis2022;9:1727-41 PMCID:PMC9485202

[80]

Xu L,Zhou L.SIRT3 elicited an anti-Warburg effect through HIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma tumorigenesis.Cancer Med2019;8:2380-91 PMCID:PMC6536927

[81]

Thonsri U,Wongkham C.High glucose-ROS conditions enhance the progression in cholangiocarcinoma via upregulation of MAN2A2 and CHD8.Cancer Sci2021;112:254-64 PMCID:PMC7780024

[82]

Xu L,Zhou L.The SIRT2/cMYC pathway inhibits peroxidation-related apoptosis in cholangiocarcinoma through metabolic reprogramming.Neoplasia2019;21:429-41 PMCID:PMC6441712

[83]

Sun L,Wan Q.cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions.Cell Res2015;25:429-44 PMCID:PMC4387561

[84]

Colyn L,Álvarez-Sola G.Dual targeting of G9a and DNA methyltransferase-1 for the treatment of experimental cholangiocarcinoma.Hepatology2021;73:2380-96

[85]

Ferrer CM,Reginato MJ.O-GlcNAcylation in cancer biology: linking metabolism and signaling.J Mol Biol2016;428:3282-94 PMCID:PMC4983259

[86]

Minh G, Esquea EM, Young RG, Huang J, Reginato MJ. On a sugar high: role of O-GlcNAcylation in cancer.J Biol Chem2023;299:105344 PMCID:PMC10641670

[87]

Phoomak C, Silsirivanit A, Wongkham C, et al. Overexpression of O-GlcNAc-transferase associates with aggressiveness of mass-forming cholangiocarcinoma. Asian Pac J Cancer Prev 2012;13:101-5. Available from: https://journal.waocp.org/article_27153_c1ed4aa079225da4d304049e5bfd1939.pdf. [Last accessed on 9 Dec 2024].

[88]

Phoomak C,Park D.O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1.Oncogene2018;37:5648-65 PMCID:PMC6151127

[89]

Phoomak C,Silsirivanit A.O-GlcNAc-induced nuclear translocation of hnRNP-K is associated with progression and metastasis of cholangiocarcinoma.Mol Oncol2019;13:338-57 PMCID:PMC6360360

[90]

Khawkhiaw K,Kunprom W.Involvement of interleukin-1β in high glucose-activated proliferation of cholangiocarcinoma.Transl Gastroenterol Hepatol2024;9:36 PMCID:PMC11292065

[91]

Kongpetch S,Lim JQ.Lack of targetable FGFR2 fusions in endemic fluke-associated cholangiocarcinoma.JCO Glob Oncol2020;6:628-38 PMCID:PMC7193781

[92]

Liu C,Li K.Shikonin inhibits cholangiocarcinoma cell line QBC939 by regulating apoptosis, proliferation, and invasion.Cell Transplant2021;30:963689720979162 PMCID:PMC7863558

[93]

Qian Z,Lv Z.PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma.Clin Res Hepatol Gastroenterol2020;44:162-73

[94]

Yu W,Xiao Y.Targeting PKM2 improves the gemcitabine sensitivity of intrahepatic cholangiocarcinoma cells via inhibiting β-catenin signaling pathway.Chem Biol Interact2024;387:110816

[95]

Tang D,Zhang M.Metformin facilitates BG45-induced apoptosis via an anti-Warburg effect in cholangiocarcinoma cells.Oncol Rep2018;39:1957-65

[96]

Zhang Y,Huang Z.Targeting glucose metabolism enzymes in cancer treatment: current and emerging strategies.Cancers2022;14:4568 PMCID:PMC9559313

[97]

Molenaar RJ,Khurshed M.Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours.BMJ Open2017;7:e014961 PMCID:PMC5541450

[98]

Khurshed M,van Linde ME.A phase Ib clinical trial of metformin and chloroquine in patients with IDH1-mutated solid tumors.Cancers2021;13:2474 PMCID:PMC8161333

[99]

Mohan A,Wuchu F.Devimistat in combination with gemcitabine and cisplatin in biliary tract cancer: preclinical evaluation and phase Ib multicenter clinical trial (BilT-04).Clin Cancer Res2023;29:2394-400 PMCID:PMC10330233

[100]

Sahai V,Zhen DB.Phase 1b/2 results of a multicenter, randomized phase 1b/2 study of gemcitabine and cisplatin +/- devimistat as first-line therapy for patients with advanced biliary tract cancer (BilT-04).JCO2024;42:4116

[101]

Tsang ES,Knox JJ.A phase II study of olaparib and durvalumab in patients with IDH-mutated cholangiocarcinoma.JCO2023;41:4099

[102]

Britten CD,Chin SH.A phase I study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors.Clin Cancer Res2017;23:4642-50 PMCID:PMC5559328

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/