Genomic alterations in intrahepatic cholangiocarcinoma

Sara E. Young , Ramja Sritharan , Daniela Sia

Hepatoma Research ›› 2023, Vol. 9 : 34

PDF
Hepatoma Research ›› 2023, Vol. 9:34 DOI: 10.20517/2394-5079.2023.37
Review

Genomic alterations in intrahepatic cholangiocarcinoma

Author information +
History +
PDF

Abstract

Intrahepatic cholangiocarcinoma (iCCA) is an aggressive and heterogeneous biliary cancer with a poor prognosis and limited treatment options. The molecular pathogenesis of iCCA involves a highly complex process entailing multiple genetic alterations and dysregulation of signaling pathways. Recent advancements in our understanding of the genetic landscape of iCCA have opened new opportunities for therapeutic interventions. Technologies such as next-generation sequencing (NGS) have contributed to elucidating the genetic heterogeneity of iCCA, leading to the identification of numerous potentially actionable genetic alterations. Despite these advances, the prognosis of iCCA patients remains dismal. In this review, we provide an extensive summary of the current knowledge on genetic alterations in iCCA, their biological impact on patients, potential therapeutic targets, approved targeted therapies, and ongoing clinical trials with targeted agents. Furthermore, we discuss the main technologies available for studying genetic alterations and their advantages and limitations. Finally, we highlight future directions in studying genetic alterations and the development of new targeted therapies and personalized medicine approaches.

Keywords

Cholangiocarcinoma / iCCA / cancer / genetic alterations / targeted therapy / precision medicine

Cite this article

Download citation ▾
Sara E. Young, Ramja Sritharan, Daniela Sia. Genomic alterations in intrahepatic cholangiocarcinoma. Hepatoma Research, 2023, 9: 34 DOI:10.20517/2394-5079.2023.37

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banales JM,Lamarca A.Cholangiocarcinoma 2020: the next horizon in mechanisms and management.Nat Rev Gastroenterol Hepatol2020;17:557-88 PMCID:PMC7447603

[2]

Moeini A,Sia D.Cell of origin in biliary tract cancers and clinical implications.JHEP Rep2021;3:100226 PMCID:PMC7902553

[3]

Vithayathil M.Current epidemiology of cholangiocarcinoma in Western countries.J Hepatol2022;77:1690-8

[4]

Izquierdo-Sanchez L,La Casta A.Cholangiocarcinoma landscape in Europe: diagnostic, prognostic and therapeutic insights from the ENSCCA Registry.J Hepatol2022;76:1109-21

[5]

Casadio M,Overi D.Molecular landscape and therapeutic strategies in cholangiocarcinoma: an integrated translational approach towards precision medicine.Int J Mol Sci2021;22:5613 PMCID:PMC8199244

[6]

Normanno N,Melisi D.Role of molecular genetics in the clinical management of cholangiocarcinoma.ESMO Open2022;7:100505 PMCID:PMC9198375

[7]

Chung T.Up-to-date pathologic classification and molecular characteristics of intrahepatic cholangiocarcinoma.Front Med2022;9:857140.

[8]

Meng ZW,Hong HJ,Chen YL.Macroscopic types of intrahepatic cholangiocarcinoma and the eighth edition of AJCC/UICC TNM staging system.Oncotarget2017;8:101165-74 PMCID:PMC5731864

[9]

Akita M,Komatsu M.An immunostaining panel of C-reactive protein, N-cadherin, and S100 calcium binding protein P is useful for intrahepatic cholangiocarcinoma subtyping.Hum Pathol2021;109:45-52

[10]

Lamarca A,Wasan HS.Advanced intrahepatic cholangiocarcinoma: post Hoc analysis of the ABC-01, -02, and -03 clinical trials.J Natl Cancer Inst2020;112:200-10

[11]

Okusaka T,Fukutomi A.Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan.Br J Cancer2010;103:469-74 PMCID:PMC2939781

[12]

Tsukiyama I,Yamamoto Y.A Cost-effectiveness analysis of gemcitabine plus cisplatin versus gemcitabine alone for treatment of advanced biliary tract cancer in Japan.J Gastrointest Cancer2017;48:326-32 PMCID:PMC5660135

[13]

Valle JW,Jitlal M.Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials.Ann Oncol2014;25:391-8

[14]

Valle JW,Johnson P.Gemcitabine alone or in combination with cisplatin in patients with advanced or metastatic cholangiocarcinomas or other biliary tract tumours: a multicentre randomised phase II study - the UK ABC-01 study.Br J Cancer2009;101:621-7 PMCID:PMC2736816

[15]

Rizzo A.First-line chemotherapy in advanced biliary tract cancer ten years after the ABC-02 trial: "and yet it moves!".Cancer Treat Res Commun2021;27:100335

[16]

Oh D,Qin S.A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1.J Clin Oncol2022;40:378-378

[17]

Kelley RK,Yoo C.Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet2023;401:1853-65

[18]

Javle M,Jain A.Biliary cancer: utility of next-generation sequencing for clinical management.Cancer2016;122:3838-47

[19]

Lowery MA,Jordan E.Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention.Clin Cancer Res2018;24:4154-61 PMCID:PMC6642361

[20]

Qin D.Next-generation sequencing and its clinical application.Cancer Biol Med2019;16:4-10 PMCID:PMC6528456

[21]

Ross JS,Gay L.New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing.Oncologist2014;19:235-42 PMCID:PMC3958461

[22]

Hezel AF,Zhu AX.Genetics of biliary tract cancers and emerging targeted therapies.J Clin Oncol2010;28:3531-40 PMCID:PMC2982782

[23]

Sia D,Villanueva A.Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes.Gastroenterology2013;144:829-40 PMCID:PMC3624083

[24]

Sia D,Moeini A.Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies.Oncogene2013;32:4861-70 PMCID:PMC3718868

[25]

Liu PCC,Wu L.INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models.PLoS One2020;15:e0231877 PMCID:PMC7313537

[26]

Storandt MH,Mahipal A.Pemigatinib in cholangiocarcinoma with a FGFR2 rearrangement or fusion.Expert Rev Anticancer Ther2022;22:1265-74

[27]

Kendre G,Brummer T,Saborowski A.Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma.J Hepatol2023;78:614-26

[28]

Silverman IM,Friboulet L.Clinicogenomic analysis of fgfr2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib.Cancer Discov2021;11:326-39

[29]

Borger DR,Fan KC.Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping.Oncologist2012;17:72-9 PMCID:PMC3267826

[30]

Rimini M,Burgio V.Molecular profile and its clinical impact of IDH1 mutated versus IDH1 wild type intrahepatic cholangiocarcinoma.Sci Rep2022;12:18775 PMCID:PMC9637171

[31]

Dang L,Gross S.Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.Nature2009;462:739-44 PMCID:PMC2818760

[32]

Ward PS,Wise DR.The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate.Cancer Cell2010;17:225-34 PMCID:PMC2849316

[33]

Xu W,Liu Y.Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases.Cancer Cell2011;19:17-30 PMCID:PMC3229304

[34]

Yan H,Jin G.IDH1 and IDH2 mutations in gliomas.N Engl J Med2009;360:765-73 PMCID:PMC2820383

[35]

Farshidfar F,Gingras MC.Cancer Genome Atlas NetworkIntegrative genomic analysis of cholangiocarcinoma identifies distinct idh-mutant molecular profiles.Cell Rep2017;18:2780-94 PMCID:PMC5493145

[36]

Wang P,Zhang C.Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas.Oncogene2013;32:3091-100 PMCID:PMC3500578

[37]

Zhao S,Xu W.Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha.Science2009;324:261-5 PMCID:PMC3251015

[38]

Saha SK,Ghanta KS.Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer.Nature2014;513:110-4 PMCID:PMC4499230

[39]

Dong L,Chen R.Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma.Cancer Cell2022;40:70-87.e15

[40]

Abou-Alfa GK,Hollebecque A.Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study.Lancet Oncol2020;21:671-84 PMCID:PMC8461541

[41]

Cleary JM,Daina A.Secondary IDH1 resistance mutations and oncogenic IDH2 mutations cause acquired resistance to ivosidenib in cholangiocarcinoma.NPJ Precis Oncol2022;6:61 PMCID:PMC9440204

[42]

Harding JJ,Shih AH.Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition.Cancer Discov2018;8:1540-7 PMCID:PMC6699636

[43]

Sulkowski PL,Robinson ND.2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity.Sci Transl Med2017;9:eaal2463 PMCID:PMC5435119

[44]

Molenaar RJ,Nagata Y.IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors.Clin Cancer Res2018;24:1705-15 PMCID:PMC5884732

[45]

Hachem S,Hachem MC,Gharios J.BRCAness in biliary tract cancer: a new prognostic and predictive biomarker?.Biomark Med2023;17:51-7

[46]

Fanucci K,Shyr D.Multicenter phase II trial of the parp inhibitor olaparib in recurrent IDH1- and IDH2-mutant glioma.Cancer Res Commun2023;3:192-201 PMCID:PMC10035510

[47]

Ornitz DM.The fibroblast growth factor signaling pathway.Wiley Interdiscip Rev Dev Biol2015;4:215-66

[48]

Rizvi S,Hirsova P.A hippo and fibroblast growth factor receptor autocrine pathway in cholangiocarcinoma.J Biol Chem2016;291:8031-47 PMCID:PMC4825008

[49]

Turner N.Fibroblast growth factor signalling: from development to cancer.Nat Rev Cancer2010;10:116-29

[50]

Arai Y,Hosoda F.Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma.Hepatology2014;59:1427-34

[51]

Cleary JM,Wu Q.FGFR2 extracellular domain in-frame deletions are therapeutically targetable genomic alterations that function as oncogenic drivers in cholangiocarcinoma.Cancer Discov2021;11:2488-505 PMCID:PMC8690974

[52]

Makawita S,Roychowdhury S.Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/translocations: the PROOF 301 trial.Future Oncol2020;16:2375-84

[53]

Sia D,Moeini A.Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma.Nat Commun2015;6:6087

[54]

Wu YM,Kalyana-Sundaram S.Identification of targetable FGFR gene fusions in diverse cancers.Cancer Discov2013;3:636-47 PMCID:PMC3694764

[55]

Goyal L,Liu LY.Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma.Cancer Discov2017;7:252-63 PMCID:PMC5433349

[56]

Kendre G,Lorz G.The co-mutational spectrum determines the therapeutic response in murine FGFR2 fusion-driven cholangiocarcinoma.Hepatology2021;74:1357-70

[57]

Lin CC,Ghosh R.Inhibition of basal FGF receptor signaling by dimeric Grb2.Cell2012;149:1514-24

[58]

Carotenuto M,Forgione L.Genomic alterations in cholangiocarcinoma: clinical significance and relevance to therapy.Explor Target Antitumor Ther2022;3:200-23 PMCID:PMC9400790

[59]

Tamborero D,Rachid MH.Cancer Core Europe consortiumThe molecular tumor board portal supports clinical decisions and automated reporting for precision oncology.Nat Cancer2022;3:251-61 PMCID:PMC8882467

[60]

Goyal L,Hollebecque A.FOENIX-CCA2 Study InvestigatorsFutibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma.N Engl J Med2023;388:228-39

[61]

Javle M,Kelley RK.Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study.Lancet Gastroenterol Hepatol2021;6:803-15

[62]

Krook MA,Wilberding M.Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-fusion cholangiocarcinoma.Mol Cancer Ther2020;19:847-57 PMCID:PMC7359896

[63]

Krook MA,Chen HZ.Tumor heterogeneity and acquired drug resistance in FGFR2-fusion-positive cholangiocarcinoma through rapid research autopsy.Cold Spring Harb Mol Case Stud2019;5:a004002 PMCID:PMC6672025

[64]

Goyal L,Liu LY.TAS-120 Overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma.Cancer Discov2019;9:1064-79 PMCID:PMC6677584

[65]

Berchuck JE,DiToro DF.The clinical landscape of cell-free DNA alterations in 1671 patients with advanced biliary tract cancer.Ann Oncol2022;33:1269-83

[66]

Wu Q,Shi L.EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma.Cancer Discov2022;12:1378-95

[67]

Subbiah V,Maglic D.RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations.Cancer Discov2023;23:OF1-OF20

[68]

Chang EH,Ellis RW,Lowy DR.Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses.Proc Natl Acad Sci USA1982;79:4848-52 PMCID:PMC346782

[69]

Buscail L,Cordelier P.Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer.Nat Rev Gastroenterol Hepatol2020;17:153-68

[70]

Jancík S,Radzioch D.Clinical relevance of KRAS in human cancers.J Biomed Biotechnol2010;2010:150960 PMCID:PMC2896632

[71]

Andersen JB,Blechacz BR.Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.Gastroenterology2012;142:1021-1031.e15 PMCID:PMC3413201

[72]

Martin-Serrano MA,Torres-Martin M.Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications.Gut2023;72:736-48

[73]

Momoi H,Nozaki Y.Microsatellite instability and alternative genetic pathway in intrahepatic cholangiocarcinoma.J Hepatol2001;35:235-44

[74]

Simbolo M,Ruzzenente A.Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups.Oncotarget2014;5:2839-52. PMCID:PMC4058049

[75]

Tannapfel A,Katalinic A.Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver.Gut2000;47:721-7 PMCID:PMC1728101

[76]

Xu RF,Zhang SR.KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients.Biomed Pharmacother2011;65:22-6

[77]

Zheng Y,Gong W.Specific genomic alterations and prognostic analysis of perihilar cholangiocarcinoma and distal cholangiocarcinoma.J Gastrointest Oncol2021;12:2631-42 PMCID:PMC8748027

[78]

Zhu AX,Kim Y.Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets.Ann Surg Oncol2014;21:3827-34 PMCID:PMC4324507

[79]

Karnoub AE.Ras oncogenes: split personalities.Nat Rev Mol Cell Biol2008;9:517-31 PMCID:PMC3915522

[80]

Bamford S,Forbes S.The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website.Br J Cancer2004;91:355-8 PMCID:PMC2409828

[81]

Stolze B,Bulllinger L,Scholl C.Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines.Sci Rep2015;5:8535 PMCID:PMC4336936

[82]

Zhou SL,Sun RQ.Association of KRAS variant subtypes with survival and recurrence in patients with surgically treated intrahepatic cholangiocarcinoma.JAMA Surg2022;157:59-65 PMCID:PMC8567187

[83]

Zou S,Zhou H.Mutational landscape of intrahepatic cholangiocarcinoma.Nat Commun2014;5:5696

[84]

Yokoyama M,Ohtsuka K.KRAS mutation as a potential prognostic biomarker of biliary tract cancers.Jpn Clin Med2016;7:33-9 PMCID:PMC5156551

[85]

Tian W,Shi X.Comprehensive genomic profile of cholangiocarcinomas in China.Oncol Lett2020;19:3101-10 PMCID:PMC7074170

[86]

Zhang Y,Li C.The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers.Nat Commun2022;13:3061 PMCID:PMC9160072

[87]

Guo C,Yu Y.TP53 /KRAS Co-mutations create divergent prognosis signatures in intrahepatic cholangiocarcinoma.Front Genet2022;13:844800.

[88]

Chen TC,Yeh TS.K-ras mutation is strongly associated with perineural invasion and represents an independent prognostic factor of intrahepatic cholangiocarcinoma after hepatectomy.Ann Surg Oncol2012;19 Suppl 3:S675-81

[89]

Churi CR,Wang Y.Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications.PLoS One2014;9:e115383 PMCID:PMC4275227

[90]

Robertson S,Dodson R.The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome.Hum Pathol2013;44:2768-73 PMCID:PMC3838441

[91]

Hong DS,Strickler JH.KRAS(G12C) inhibition with sotorasib in advanced solid tumors.N Engl J Med2020;383:1207-17 PMCID:PMC7571518

[92]

Nakajima EC,Li X.FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC.Clin Cancer Res2022;28:1482-6 PMCID:PMC9012672

[93]

Hallin J,Hargis L.The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients.Cancer Discov2020;10:54-71 PMCID:PMC6954325

[94]

Jänne PA,Gadgeel SM.Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation.N Engl J Med2022;387:120-31

[95]

Hallin J,Calinisan A.Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor.Nat Med2022;28:2171-82

[96]

Wang X,Blake JF.Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor.J Med Chem2022;65:3123-33

[97]

Awad MM,Rybkin II.Acquired resistance to KRASG12C inhibition in cancer.N Engl J Med2021;384:2382-93 PMCID:PMC8864540

[98]

Koga T,Fujino T.KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, sotorasib and adagrasib, and overcoming strategies: insights from in vitro experiments.J Thorac Oncol2021;16:1321-32

[99]

Zhao Y,Xue JY.Diverse alterations associated with resistance to KRASG12C inhibition.Nature2021;599:679-83 PMCID:PMC8887821

[100]

Dai X,Yin Q.Acetylation-dependent regulation of BRAF oncogenic function.Cell Rep2022;38:110250 PMCID:PMC8813213

[101]

Davies H,Cox C.Mutations of the BRAF gene in human cancer.Nature2002;417:949-54

[102]

Flaherty KT,Kim KB.Inhibition of mutated, activated BRAF in metastatic melanoma.N Engl J Med2010;363:809-19 PMCID:PMC3724529

[103]

Goeppert B,Renner M.BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma.Mod Pathol2014;27:1028-34

[104]

Li W,Yin F.BRAF mutation in Chinese biliary tract cancer patients.J Clin Oncol2020;38:e16678

[105]

Tannapfel A,Benicke M.Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma.Gut2003;52:706-12 PMCID:PMC1773624

[106]

Tomczak A,Dill MT.Precision oncology for intrahepatic cholangiocarcinoma in clinical practice.Br J Cancer2022;127:1701-8 PMCID:PMC9390961

[107]

Hyman DM,Subbiah V.Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations.N Engl J Med2015;373:726-36 PMCID:PMC4971773

[108]

Subbiah V,Élez E.Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial.Lancet Oncol2020;21:1234-43

[109]

Wen PY,van den Bent M.Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial.Lancet Oncol2022;23:53-64

[110]

Salama AKS,Macrae ER.Dabrafenib and trametinib in patients with tumors with BRAFV600E mutations: results of the NCI-MATCH trial subprotocol H.J Clin Oncol2020;38:3895-904 PMCID:PMC7676884

[111]

Zhang H,Wang Q.ErbB receptors: from oncogenes to targeted cancer therapies.J Clin Invest2007;117:2051-8 PMCID:PMC1934579

[112]

Galdy S,McNamara MG.HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target?.Cancer Metastasis Rev2017;36:141-57 PMCID:PMC5385197

[113]

Li M,Li X.Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway.Nat Genet2014;46:872-6

[114]

Moeini A,Bardeesy N,Llovet JM.Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma.Clin Cancer Res2016;22:291-300

[115]

Nakazawa K,Suzuki S,Takeda Y.Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers.J Pathol2005;206:356-65

[116]

Sirica AE.Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma.World J Gastroenterol2008;14:7033-58 PMCID:PMC2776834

[117]

Terada T,Sirica AE.Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis.Hum Pathol1998;29:175-80

[118]

Ukita Y,Terada T.Gene amplification and mRNA and protein overexpression of c-erbB-2 (HER-2/neu) in human intrahepatic cholangiocarcinoma as detected by fluorescence in situ hybridization, in situ hybridization, and immunohistochemistry.J Hepatol2002;36:780-5

[119]

Yoshikawa D,Iwasaki M.Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma.Br J Cancer2008;98:418-25 PMCID:PMC2361442

[120]

Junttila TT,Parsons K.Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941.Cancer Cell2009;15:429-40

[121]

Lamarca A,McNamara MG.Molecular targeted therapies: Ready for "prime time" in biliary tract cancer.J Hepatol2020;73:170-85

[122]

Tsurutani J,Krop I.Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors.Cancer Discov2020;10:688-701 PMCID:PMC8292921

[123]

Lee J,Chang HM.Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study.Lancet Oncol2012;13:181-8

[124]

Pant S,Harding JJ.A phase IIb, open-label, single-arm study of zanidatamab (ZW25) monotherapy in subjects with advanced or metastatic HER2-amplified biliary tract cancers.J Clin Oncol2021;39:TPS352

[125]

Elimova E,Burris Iii HA.Zanidatamab + chemotherapy as first-line treatment for HER2-expressing metastatic gastroesophageal adenocarcinoma (mGEA).J Clin Oncol2023;41:347

[126]

Ohba A,Ueno M.Multicenter phase II trial of trastuzumab deruxtecan for HER2-positive unresectable or recurrent biliary tract cancer: HERB trial.Future Oncol2022;18:2351-60

[127]

Ohba A,Kawamoto Y.Circulating tumor DNA (ctDNA) analyses in patients with HER2-positive biliary tract cancer (BTC) treated with trastuzumab deruxtecan (T-DXd): exploratory results from the HERB trial.J Clin Oncol2023;41:4097

[128]

Amatu A,Bencardino K,Tosi F.Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer.Ann Oncol2019;30:viii5-viii15 PMCID:PMC6859819

[129]

Drilon A,Kummar S.Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children.N Engl J Med2018;378:731-9 PMCID:PMC5857389

[130]

Hong DS,Kummar S.Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials.Lancet Oncol2020;21:531-40 PMCID:PMC7497841

[131]

Gu TL,Huang F.Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.PLoS One2011;6:e15640 PMCID:PMC3017127

[132]

Doebele RC,Paz-Ares L.trial investigatorsEntrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials.Lancet Oncol2020;21:271-82 PMCID:PMC7461630

[133]

Ionov Y,Malkhosyan S,Perucho M.Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis.Nature1993;363:558-61

[134]

Blake C,Wu A.Stepwise deletions of polyA sequences in mismatch repair-deficient colorectal cancers.Am J Pathol2001;158:1867-70.

[135]

Thibodeau SN,Schaid D.Microsatellite instability in cancer of the proximal colon.Science1993;260:816-9

[136]

Naganuma A,Murakami T.Microsatellite instability-high intrahepatic cholangiocarcinoma with portal vein tumor thrombosis successfully treated with pembrolizumab.Intern Med2020;59:2261-7 PMCID:PMC7578609

[137]

Marabelle A,Ascierto PA.Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study.J Clin Oncol2020;38:1-10 PMCID:PMC8184060

[138]

Bochar DA,Beniya H.BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer.Cell2000;102:257-65

[139]

Hartman AR.BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair.Nat Genet2002;32:180-4

[140]

Hughes-Davies L,Ruas M.EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer.Cell2003;115:523-35

[141]

Paull TT,Bowers B,Gellert M.Direct DNA binding by Brca1.Proc Natl Acad Sci USA2001;98:6086-91 PMCID:PMC33426

[142]

Xu B,Kastan MB.Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation.Mol Cell Biol2001;21:3445-50 PMCID:PMC100266

[143]

Golan T,Kelley RK.Overall survival and clinical characteristics of BRCA-Associated cholangiocarcinoma: a multicenter retrospective study.Oncologist2017;22:804-10 PMCID:PMC5507643

[144]

Montal R,Montironi C.Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma.J Hepatol2020;73:315-27 PMCID:PMC8418904

[145]

Spizzo G,Xiu J.Molecular profile of BRCA-mutated biliary tract cancers.ESMO Open2020;5:e000682 PMCID:PMC7312328

[146]

Cheng Y,Qin SK.Treatment with olaparib monotherapy for BRCA2-mutated refractory intrahepatic cholangiocarcinoma: a case report.Onco Targets Ther2018;11:5957-62 PMCID:PMC6151096

[147]

Li W,Fu X.Olaparib effectively treats local recurrence of extrahepatic cholangiocarcinoma in a patient harboring a BRCA2-inactivating mutation: a case report.Ann Transl Med2021;9:1487 PMCID:PMC8506765

[148]

Xiong F,Wang Q.Olaparib and pembrolizumab treatment for BRCA1-mutated and PD-L1-positive intrahepatic cholangiocarcinoma recurrence and metastasis: a case report.Onco Targets Ther2020;13:6385-91 PMCID:PMC7342556

[149]

Aubrey BJ,Kelly GL.Tumor-suppressor functions of the TP53 pathway.Cold Spring Harb Perspect Med2016;6:a026062 PMCID:PMC4852799

[150]

Sicklick JK,Shimabukuro K.Genomics of gallbladder cancer: the case for biomarker-driven clinical trial design.Cancer Metastasis Rev2016;35:263-75 PMCID:PMC4912391

[151]

Chirravuri-Venkata R,Nimmakayala RK.MUC16 and TP53 family co-regulate tumor-stromal heterogeneity in pancreatic adenocarcinoma.Front Oncol2023;13:1073820.

[152]

Hao F,Zhong D.TP53 mutation mapping in advanced non-small cell lung cancer: a real-world retrospective cohort study.Curr Oncol2022;29:7411-9 PMCID:PMC9599964

[153]

Mody K,El-Refai SM.Clinical, genomic, and transcriptomic data profiling of biliary tract cancer reveals subtype-specific immune signatures.JCO Precis Oncol2022;6:e2100510 PMCID:PMC9200391

[154]

Jiao Y,Anders RA.Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas.Nat Genet2013;45:1470-3 PMCID:PMC4013720

[155]

Sasaki M,Sato Y.Loss of ARID1A expression presents a novel pathway of carcinogenesis in biliary carcinomas.Am J Clin Pathol2016;145:815-25

[156]

Zhao S,Wu W.ARID1A variations in cholangiocarcinoma: clinical significances and molecular mechanisms.Front Oncol2021;11:693295 PMCID:PMC8267411

[157]

Rizzo A,Ricci AD.Molecular profile and prognostic value of BAP1 mutations in intrahepatic cholangiocarcinoma: a genomic database analysis.J Pers Med2022;12:1247 PMCID:PMC9410256

[158]

Chen XX,Cheng JW.BAP1 acts as a tumor suppressor in intrahepatic cholangiocarcinoma by modulating the ERK1/2 and JNK/c-Jun pathways.Cell Death Dis2018;9:1036 PMCID:PMC6179995

[159]

Han A,Aplin AE.Roles of the BAP1 tumor suppressor in cell metabolism.Cancer Res2021;81:2807-14 PMCID:PMC8178170

[160]

Yan XQ,Zhang BX,Zhang WG.Inactivation of Smad4 is a prognostic factor in intrahepatic cholangiocarcinoma.Chin Med J2013;126:3039-43

[161]

Zhao M,Deng CX.The role of TGF-β/SMAD4 signaling in cancer.Int J Biol Sci2018;14:111-23 PMCID:PMC5821033

[162]

Nakamura H,Totoki Y.Genomic spectra of biliary tract cancer.Nat Genet2015;47:1003-10

[163]

Arsenijevic T,Raspé E,Roger PP.CDK4/6 inhibitors in pancreatobiliary cancers: opportunities and challenges.Cancers2023;15:968 PMCID:PMC9913743

[164]

Song H,Jiang X.Mutation spectrum associated with metastasis of advanced cholangiocarcinoma.J Int Med Res2022;50:3000605221102080 PMCID:PMC9218467

[165]

Seo J,Lee SR,Song J.Post-translational regulation of ARF: perspective in cancer.Biomolecules2020;10:1143 PMCID:PMC7465197

[166]

Tannapfel A,Benicke M.Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma.J Pathol2002;197:624-31

[167]

Cho SY,Kim YH.Refining classification of cholangiocarcinoma subtypes via proteogenomic integration reveals new therapeutic prospects.Gastroenterology2023;164:1293-309

[168]

Silvestri M,Nichetti F.Comprehensive transcriptomic analysis to identify biological and clinical differences in cholangiocarcinoma.Cancer Med2023;12:10156-68 PMCID:PMC10166943

[169]

Bramel ER.Novel insights into molecular and immune subtypes of biliary tract cancers.Adv Cancer Res2022;156:167-99

[170]

Bagante F,Conci S.Patterns of gene mutations in bile duct cancers: is it time to overcome the anatomical classification?.HPB2019;21:1648-55

[171]

Jusakul A,Yong CH.Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma.Cancer Discov2017;7:1116-35 PMCID:PMC5628134

[172]

Nepal C,Oliveira DVNP.Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma.Hepatology2018;68:949-63 PMCID:PMC6599967

[173]

Wang XY,Wang Z.Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities.Theranostics2022;12:260-76 PMCID:PMC8690927

[174]

Job S,Dos Santos A.Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma.Hepatology2020;72:965-81 PMCID:PMC7589418

[175]

Lin J,Sang C.Multimodule characterization of immune subgroups in intrahepatic cholangiocarcinoma reveals distinct therapeutic vulnerabilities.J Immunother Cancer2022;10:e004892 PMCID:PMC9310257

[176]

Kortlever RM,Wilson CH.Myc cooperates with ras by programming inflammation and immune suppression.Cell2017;171:1301-1315.e14 PMCID:PMC5720393

[177]

Liao W,Boutin AT.KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer.Cancer Cell2019;35:559-572.e7 PMCID:PMC6467776

[178]

Wellenstein MD.Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape.Immunity2018;48:399-416

[179]

Charoentong P,Angelova M.Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep2017;18:248-62

[180]

Lin Y,Dong L.Geospatial immune heterogeneity reflects the diverse tumor-immune interactions in intrahepatic cholangiocarcinoma.Cancer Discov2022;12:2350-71

[181]

Wu MJ,Dubrot J.Mutant IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma.Cancer Discov2022;12:812-35 PMCID:PMC8904298

[182]

Benson AB,Abbott DE.Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology.J Natl Compr Canc Netw2021;19:541-65

[183]

Vogel A,Edeline J.ESMO Guidelines CommitteeBiliary tract cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up.Ann Oncol2023;34:127-40

[184]

Bartley AN,Ventura CB.HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the college of american pathologists, american society for clinical pathology, and american society of clinical oncology.Am J Clin Pathol2016;146:647-69 PMCID:PMC6272805

[185]

Cheah PL,Looi LM.Screening for microsatellite instability in colorectal carcinoma: Practical utility of immunohistochemistry and PCR with fragment analysis in a diagnostic histopathology setting.Malays J Pathol2019;41:91-100

[186]

Saborowski A,Vogel A.FGFR inhibitors in cholangiocarcinoma: what's now and what's next?.Ther Adv Med Oncol2020;12:1758835920953293 PMCID:PMC7498964

[187]

Cheng DT,Zehir A.Memorial Sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology.J Mol Diagn2015;17:251-64 PMCID:PMC5808190

[188]

Tsongalis GJ,de Abreu FB.Routine use of the ion torrent AmpliSeq™ cancer hotspot panel for identification of clinically actionable somatic mutations.Clin Chem Lab Med2014;52:707-14

[189]

Ettrich TJ,Dolnik A.Genotyping of circulating tumor DNA in cholangiocarcinoma reveals diagnostic and prognostic information.Sci Rep2019;9:13261 PMCID:PMC6744511

[190]

Ma L,Khatib SA.Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.J Hepatol2021;75:1397-408 PMCID:PMC8604764

[191]

Ma L,Zhao Y.Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer.Cancer Cell2019;36:418-430.e6 PMCID:PMC6801104

[192]

Bar-Ephraim YE,Clevers H.Organoids in immunological research.Nat Rev Immunol2020;20:279-93

PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

/