Signaling and molecular networks related to development and inflammation involved in CCA initiation and progression

Antonio Cigliano , Alastair J. Strain , Massimiliano Cadamuro

Hepatoma Research ›› 2023, Vol. 9 : 15

PDF
Hepatoma Research ›› 2023, Vol. 9:15 DOI: 10.20517/2394-5079.2023.09
Review

Signaling and molecular networks related to development and inflammation involved in CCA initiation and progression

Author information +
History +
PDF

Abstract

Intrahepatic cholangiocarcinoma (iCCA) is a rare neoplasm of the bile ducts with a low survival rate, whose incidence is continuously increasing and is associated with a rich and varied tumor microenvironment (TME). Although the main mutations characterizing iCCA are known, there are several unresolved issues regarding the processes leading to the accumulation of mutations in the normal cholangiocyte. The inflammatory mediators and the molecular pathways involved in cholangiocarcinogenesis, which regulate the transition from normal to dysplastic cells, resulting in neoplastic cholangiocytes, are poorly understood. Moreover, once the tumor is established, it is unclear which effects of the interaction between the tumor and TME constituent cells, in particular cancer-associated fibroblasts (CAFs), are responsible for stimulating the malignant behavior of iCCA. In this review, we described the main mutations affecting the bile ducts leading to iCCA development as well as the putative inflammatory mediators and morphogenetic pathways involved in the establishment of the malignant transition of the bile ducts. We also described the main signaling pathways involved in TME-tumor cell interactions, with particular emphasis on the effect of CAFs in cancer. Finally, we wanted to analyze possible new therapeutic approaches aimed at modifying the composition of TME and the possible role of immunotherapy in improving the treatment of this cancer.

Keywords

Tumor microenvironment / cancer-associated fibroblasts / tumor-associated macrophages / YAP / Notch / immunotherapy / immune checkpoints

Cite this article

Download citation ▾
Antonio Cigliano, Alastair J. Strain, Massimiliano Cadamuro. Signaling and molecular networks related to development and inflammation involved in CCA initiation and progression. Hepatoma Research, 2023, 9: 15 DOI:10.20517/2394-5079.2023.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Komuta M,Vandecaveye V.Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes.Hepatology2012;55:1876-88

[2]

Welzel TM,Hsing AW,Pfeiffer RM.Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States.J Natl Cancer Inst2006;98:873-5

[3]

Shaib Y.The epidemiology of cholangiocarcinoma.Semin Liver Dis2004;24:115-25

[4]

Blechacz B,Roskams T.Clinical diagnosis and staging of cholangiocarcinoma.Nat Rev Gastroenterol Hepatol2011;8:512-22 PMCID:PMC3331791

[5]

Banales JM,Lamarca A.Cholangiocarcinoma 2020: the next horizon in mechanisms and management.Nat Rev Gastroenterol Hepatol2020;17:557-88 PMCID:PMC7447603

[6]

Gentilini A,Marra F.The role of stroma in cholangiocarcinoma: the intriguing interplay between fibroblastic component, immune cell subsets and tumor epithelium.Int J Mol Sci2018;19:2885 PMCID:PMC6213545

[7]

Fabris L,Alpini G.The tumor microenvironment in cholangiocarcinoma progression.Hepatology2021;73 Suppl 1:75-85 PMCID:PMC7714713

[8]

Brindley PJ,Ilyas SI.Cholangiocarcinoma.Nat Rev Dis Primers2021;7:65 PMCID:PMC9246479

[9]

Sia D,Villanueva A.Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes.Gastroenterology2013;144:829-40 PMCID:PMC3624083

[10]

Zou S,Zhou H.Mutational landscape of intrahepatic cholangiocarcinoma.Nat Commun2014;5:5696

[11]

Fujimoto A,Shiraishi Y.Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity.Nat Commun2015;6:6120

[12]

Montal R,Montironi C.Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma.J Hepatol2020;73:315-27 PMCID:PMC8418904

[13]

Rassi ZE, Partensky C, Scoazec JY, Henry L, Lombard-Bohas C, Maddern G. Peripheral cholangiocarcinoma: presentation, diagnosis, pathology and management.Eur J Surg Oncol1999;25:375-80

[14]

Stavraka C,Ross P.Combined hepatocellular cholangiocarcinoma (cHCC-CC): an update of genetics, molecular biology, and therapeutic interventions.J Hepatocell Carcinoma2019;6:11-21 PMCID:PMC6312394

[15]

Rimola J,Reig M.Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma.Hepatology2009;50:791-8

[16]

Tao L,He X,Qu Q.Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma.The American Surgeon2010;76:1210-3

[17]

Li Y,Chen J.Diagnostic value of serum biomarkers for intrahepatic cholangiocarcinoma.J Coll Physicians Surg Pak2019;29:962-6

[18]

Wang XY,Wang Z.Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities.Theranostics2022;12:260-76 PMCID:PMC8690927

[19]

Lee SH,Karpinets T.Genomic profiling of multifocal intrahepatic cholangiocarcinoma reveals intraindividual concordance of genetic alterations.Carcinogenesis2021;42:436-41 PMCID:PMC8052956

[20]

Moeini A,Bardeesy N,Llovet JM.Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma.Clin Cancer Res2016;22:291-300

[21]

Nakamura H,Totoki Y.Genomic spectra of biliary tract cancer.Nat Genet2015;47:1003-10

[22]

Farshidfar F,Gingras MC,Shih J.Integrative genomic analysis of cholangiocarcinoma identifies distinct idh-mutant molecular profiles.Cell Rep2017;19:2878-2880 PMCID:PMC5493145

[23]

Martin-Serrano MA,Torres-Martin M.Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications.Gut2023;72:736-48

[24]

Jusakul A,Yong CH.Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma.Cancer Discov2017;7:1116-35 PMCID:PMC5628134

[25]

Moeini A,Zhang Z.Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity.J Hepatol2017;66:952-61

[26]

Cannito S,Cappon A,Strazzabosco M.Fibroinflammatory liver injuries as preneoplastic condition in cholangiopathies.Int J Mol Sci2018;19:3875 PMCID:PMC6321547

[27]

Sarcognato S,Fassan M.Benign biliary neoplasms and biliary tumor precursors.Pathologica2021;113:147-57 PMCID:PMC8299320

[28]

Nakanuma Y,Sugino T,Fukumura Y.Pathologies of precursor lesions of biliary tract carcinoma.Cancers (Basel)2022;14:5358 PMCID:PMC9654669

[29]

Spirlì C,Duner E.Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes.Gastroenterology2003;124:737-53

[30]

Cadamuro M,Strazzabosco M.Unveiling the role of tumor reactive stroma in cholangiocarcinoma: an opportunity for new therapeutic strategies.Transl Gastrointest Cancer2013;2:130-44 PMCID:PMC5627657

[31]

Guicciardi ME,Krishnan A.Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice.J Hepatol2018;69:676-86 PMCID:PMC6098983

[32]

Locatelli L,Spirlì C.Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis.Hepatology2016;63:965-82

[33]

Binatti E,Barisani D.The role of macrophages in liver fibrosis: new therapeutic opportunities.Int J Mol Sci2022;23:6649 PMCID:PMC9224467

[34]

Thanan R,Pinlaor S.Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis.Free Radic Biol Med2013;65:1464-72

[35]

Carpino G,Folseraas T.Neoplastic transformation of the peribiliary stem cell niche in cholangiocarcinoma arisen in primary sclerosing cholangitis.Hepatology2019;69:622-38

[36]

Wu HJ.Role of cancer stem cells in cholangiocarcinoma and therapeutic implications.Int J Mol Sci2019;20:4154 PMCID:PMC6747544

[37]

Jaiswal M,Burgart LJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Available from: https://aacrjournals.org/cancerres/article/60/1/184/506230/Inflammatory-Cytokines-Induce-DNA-damage-and [Last accessed on 24 Apr 2023]

[38]

Jaiswal M,Shapiro RA,Gores GJ.Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes.Gastroenterology2001;120:190-9

[39]

Jongthawin J,Techasen A.PGE2 signaling and its biosynthesis-related enzymes in cholangiocarcinoma progression.Tumour Biol2014;35:8051-64

[40]

Jain D,Abdul-Karim FW,Robert ME.Evidence for the neoplastic transformation of von-meyenburg complexes.Am J Surg Pathol2000;24:1131-9

[41]

Bhalla A,Chen S,Lin J.Histopathological evidence of neoplastic progression of von meyenburg complex to intrahepatic cholangiocarcinoma.Hum Pathol2017;67:217-24

[42]

Jain D,Finkelstein S.Molecular evidence for the neoplastic potential of hepatic von-meyenburg complexes.Appl Immunohistochem Mol Morphol2010;18:166-71

[43]

Pocaterra A,Romani P.F-actin dynamics regulates mammalian organ growth and cell fate maintenance.J Hepatol2019;71:130-42

[44]

Heng BC,Aubel D.Role of YAP/TAZ in cell lineage fate determination and related signaling pathways.Front Cell Dev Biol2020;8:735 PMCID:PMC7406690

[45]

Boopathy GTK.Role of hippo pathway-YAP/TAZ signaling in angiogenesis.Front Cell Dev Biol2019;7:49 PMCID:PMC6468149

[46]

Xie Z,Yang G.The role of the hippo pathway in the pathogenesis of inflammatory bowel disease.Cell Death Dis2021;12:79 PMCID:PMC7804279

[47]

Cobbaut M,Bruno L.Dysfunctional mechanotransduction through the YAP/TAZ/hippo pathway as a feature of chronic disease.Cells2020;9:151 PMCID:PMC7016982

[48]

Zanconato F,Piccolo S.YAP/TAZ at the roots of cancer.Cancer Cell2016;29:783-803 PMCID:PMC6186419

[49]

Piccolo S,Contessotto P.YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches.Nat Cancer2023;4:9-26

[50]

Ko S,Molina L,Monga SP.YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Hepatobiliary Cancers: Translational Advances and Molecular Medicine. Elsevier; 2022. pp. 283-317. PMCID:PMC9972177

[51]

Cigliano A,Ribback S.The hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease.J Exp Clin Cancer Res2022;41:192 PMCID:PMC9164528

[52]

Tóth M,Thiess L.Co-expression of YAP and TAZ associates with chromosomal instability in human cholangiocarcinoma.BMC Cancer2021;21:1079 PMCID:PMC8496054

[53]

Bai H,Xu Y.Yes-associated protein regulates the hepatic response after bile duct ligation.Hepatology2012;56:1097-107

[54]

Fabris L,Fiorotto R.Dysregulation of the scribble/YAP/β-catenin axis sustains the fibroinflammatory response in a PKHD1(-/-) mouse model of congenital hepatic fibrosis.FASEB J2022;36:e22364

[55]

Jiang L,Edwards G.Increased YAP activation is associated with hepatic cyst epithelial cell proliferation in ARPKD/CHF.Gene Expr2017;17:313-26 PMCID:PMC5705408

[56]

Zheng Y,Yu XX.Osteopontin promotes metastasis of intrahepatic cholangiocarcinoma through recruiting MAPK1 and mediating Ser675 phosphorylation of β-Catenin.Cell Death Dis2018;9:179 PMCID:PMC5833342

[57]

Azzolin L,Soligo S.YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.Cell2014;158:157-70

[58]

Spirli C,Morell CM.Protein kinase a-dependent pSer(675) -β-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis.Hepatology2013;58:1713-23 PMCID:PMC3800498

[59]

Fan B,Calvisi DF.Cholangiocarcinomas can originate from hepatocytes in mice.J Clin Invest2012;122:2911-5 PMCID:PMC3408746

[60]

Wang J,Xu Z.Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.Oncogene2018;37:3229-42 PMCID:PMC6002343

[61]

Wang J,Peters M.Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis.J Hepatol2019;71:742-52 PMCID:PMC6773530

[62]

Ma W,Zhang J.The histone methyltransferase g9a promotes cholangiocarcinogenesis through regulation of the hippo pathway kinase LATS2 and YAP signaling pathway.Hepatology2020;72:1283-97 PMCID:PMC7384937

[63]

Zhang Y,Cui G.β-Catenin sustains and is required for YES-associated protein oncogenic activity in cholangiocarcinoma.Gastroenterology2022;163:481-94 PMCID:PMC9329198

[64]

Hu S,Tao J.NOTCH-YAP1/TEAD-DNMT1 axis drives hepatocyte reprogramming into intrahepatic cholangiocarcinoma.Gastroenterology2022;163:449-65 PMCID:PMC9329208

[65]

Zong Y,Xu J.Notch signaling controls liver development by regulating biliary differentiation.Development2009;136:1727-39 PMCID:PMC2673761

[66]

Fabris L,Spirli C.Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases.Nat Rev Gastroenterol Hepatol2019;16:497-511 PMCID:PMC6661007

[67]

Morell CM,Meroni M.Notch signaling and progenitor/ductular reaction in steatohepatitis.PLoS One2017;12:e0187384 PMCID:PMC5687773

[68]

Fiorotto R,Morell CM.Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice.J Hepatol2013;59:124-30 PMCID:PMC3777645

[69]

Morell CM,Fabris L.Notch signalling beyond liver development: emerging concepts in liver repair and oncogenesis.Clin Res Hepatol Gastroenterol2013;37:447-54

[70]

Zender S,Wuestefeld T.A critical role for notch signaling in the formation of cholangiocellular carcinomas.Cancer Cell2013;23:784-95

[71]

Guo J,Xiang M.Notch1 drives the formation and proliferation of intrahepatic cholangiocarcinoma.Curr Med Sci2019;39:929-37

[72]

Sirica AE.Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting.Hepatology2014;59:2397-402 PMCID:PMC3975806

[73]

Seehawer M,D'Artista L.Necroptosis microenvironment directs lineage commitment in liver cancer.Nature2018;562:69-75 PMCID:PMC8111790

[74]

Job S,Dos Santos A.Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma.Hepatology2020;72:965-81 PMCID:PMC7589418

[75]

Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma.Oncol Rep2009;21

[76]

Kalluri R.The biology and function of fibroblasts in cancer.Nat Rev Cancer2016;16:582-98

[77]

LeBleu VS.A peek into cancer-associated fibroblasts: origins, functions and translational impact.Dis Model Mech2018;11 PMCID:PMC5963854

[78]

Itou RA,Hirota S.Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma.Hum Pathol2019;83:77-89

[79]

Anderberg C.On the origin of cancer-associated fibroblasts.Cell Cycle2009;8:1461-2

[80]

Cadamuro M,Indraccolo S.Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma.Hepatology2013;58:1042-53 PMCID:PMC3732815

[81]

Nurmik M,Rodriguez F,Letellier E.In search of definitions: cancer-associated fibroblasts and their markers.Int J Cancer2020;146:895-905 PMCID:PMC6972582

[82]

Zhang M,Wan L.Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma.J Hepatol2020;73:1118-30

[83]

Affo S,Brundu F.Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations.Cancer Cell2021;39:866-882.e11 PMCID:PMC8241235

[84]

Sirica AE,Dumur CI.Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma.Curr Opin Gastroenterol2011;27:276-84

[85]

Brivio S,Strazzabosco M.Tumor reactive stroma in cholangiocarcinoma: the fuel behind cancer aggressiveness.World J Hepatol2017;9:455-68 PMCID:PMC5368623

[86]

Manzanares ,Campbell DJ.Transforming growth factors α and β are essential for modeling cholangiocarcinoma desmoplasia and progression in a three-dimensional organotypic culture model.Am J Pathol2017;187:1068-92 PMCID:PMC5417049

[87]

Ling H,Hempel D.Transforming growth factor β neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats.PLoS One2013;8:e54499 PMCID:PMC3547926

[88]

Gentilini A,Galastri S.Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma.J Hepatol2012;57:813-20

[89]

Qin X,Li G,Liu Z.Downregulation of tumor-derived exosomal miR-34c induces cancer-associated fibroblast activation to promote cholangiocarcinoma progress.Cancer Cell Int2021;21:373

[90]

Guest RV,Dwyer BJ.Notch3 drives development and progression of cholangiocarcinoma.Proc Natl Acad Sci U S A2016;113:12250-5 PMCID:PMC5086988

[91]

El Khatib M,Palagani V.Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma.Hepatology2013;57:1035-45

[92]

Fingas CD,Werneburg NW.Myofibroblast-derived PDGF-BB promotes hedgehog survival signaling in cholangiocarcinoma cells.Hepatology2011;54:2076-88 PMCID:PMC3230714

[93]

Ziani L,Thiery J.Alteration of the antitumor immune response by cancer-associated fibroblasts.Front Immunol2018;9:414 PMCID:PMC5837994

[94]

Zeng J,Sun S.Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells.Oncol Lett2018;15:8681-6

[95]

Hasita H,Okabe H.Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma.Cancer Sci2010;101:1913-9

[96]

Cadamuro M,Mertens J.Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma.J Hepatol2019;70:700-9

[97]

Roy S,Banerjee P.Tumor lymphatic interactions induce CXCR2-CXCL5 axis and alter cellular metabolism and lymphangiogenic pathways to promote cholangiocarcinoma.Cells2021;10:3093 PMCID:PMC8623887

[98]

Xu Y,Yao Y.A circular rna, cholangiocarcinoma-associated circular rna 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers.Hepatology2021;73:1419-35

[99]

Louis C,Coulouarn C.Emerging roles of circular RNAs in liver cancer.JHEP Rep2022;4:100413 PMCID:PMC8749337

[100]

Yang X,Shi Y.Fap promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling.Cancer Res2016;76:4124-35

[101]

Clapéron A,Aoudjehane L.Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor.Hepatology2013;58:2001-11

[102]

Gentilini A,Caligiuri A.Extracellular signal-regulated kinase 5 regulates the malignant phenotype of cholangiocarcinoma cells.Hepatology2021;74:2007-20

[103]

Lobe C,Arbelaiz A.Zinc finger e-box binding homeobox 1 promotes cholangiocarcinoma progression through tumor dedifferentiation and tumor-stroma paracrine signaling.Hepatology2021;74:3194-212

[104]

Dwyer BJ,Gogoi-Tiwari J.TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression.J Hepatol2021;74:860-72

[105]

Sahai E,Cukierman E.A framework for advancing our understanding of cancer-associated fibroblasts.Nat Rev Cancer2020;20:174-86 PMCID:PMC7046529

[106]

Gaggioli C,Hidalgo-Carcedo C.Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells.Nat Cell Biol2007;9:1392-400

[107]

Mohammadi H.Mechanisms and impact of altered tumour mechanics.Nat Cell Biol2018;20:766-74

[108]

Fabris L,Mertens J.The tumour microenvironment and immune milieu of cholangiocarcinoma.Liver Int2019;39 Suppl 1:63-78

[109]

Astin JW,Kadir S.Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells.Nat Cell Biol2010;12:1194-204

[110]

Calon A,Palomo-Ponce S.Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.Cancer Cell2012;22:571-84 PMCID:PMC3512565

[111]

Madsen CD,Venning FA.Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis.EMBO Rep2015;16:1394-408

[112]

Malanchi I,Susanto E.Interactions between cancer stem cells and their niche govern metastatic colonization.Nature2011;481:85-9

[113]

Oskarsson T,Zhang XH.Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs.Nat Med2011;17:867-74 PMCID:PMC4020577

[114]

Utispan K,Thuwajit P.Periostin activates integrin α5β1 through a PI3K/AKT-dependent pathway in invasion of cholangiocarcinoma.Int J Oncol2012;41:1110-8

[115]

Chang L,Di Biagio D.The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ.Nature2018;563:265-9 PMCID:PMC7612964

[116]

Paszek MJ,Johnson KR.Tensional homeostasis and the malignant phenotype.Cancer Cell2005;8:241-54

[117]

Provenzano PP,Chang AE,Von Hoff DD.Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma.Cancer Cell2012;21:418-29 PMCID:PMC3371414

[118]

Jain RK,Stylianopoulos T.The role of mechanical forces in tumor growth and therapy.Annu Rev Biomed Eng2014;16:321-46 PMCID:PMC4109025

[119]

Kaur A,Douglass SM.Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell Motility.Cancer Discov2019;9:64-81 PMCID:PMC6328333

[120]

Javle M,Kelley RK.Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study.Lancet Gastroenterol Hepatol2021;6:803-15

[121]

Lowery MA,Burris HA.Phase I study of AG-120, an IDH1 mutant enzyme inhibitor: results from the cholangiocarcinoma dose escalation and expansion cohorts.JCO2017;35:4015-4015

[122]

Abou-Alfa GK,Javle MM.Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study.Lancet Oncol2020;21:796-807 PMCID:PMC7523268

[123]

Rizzo A.First-line chemotherapy in advanced biliary tract cancer ten years after the abc-02 trial: “and yet it moves!.Cancer Treat Res Commun2021;27:100335

[124]

Mertens JC,Christensen JD.Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma.Cancer Res2013;73:897-907 PMCID:PMC3549008

[125]

Yecies D,Deng J.Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1.Blood2010;115:3304-13 PMCID:PMC2858493

[126]

Tauriello DVF,Stork D.TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis.Nature2018;554:538-43

[127]

Mariathasan S,Nickles D.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.Nature2018;554:544-8

[128]

Yoo C,Choi HJ.Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer.J Immunother Cancer2020;8:e000564 PMCID:PMC7254161

[129]

Sherman MH,Engle DD.Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy.Cell2014;159:80-93 PMCID:PMC4177038

[130]

Hah N,Yu RT,Evans RM.Targeting transcriptional and epigenetic reprogramming in stromal cells in fibrosis and cancer.Cold Spring Harb Symp Quant Biol2015;80:249-55

[131]

Anderberg C,Fredriksson L.Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts.Cancer Res2009;69:369-78 PMCID:PMC2613547

[132]

Richeldi L,Raghu G.INPULSIS trial investigatorsefficacy and safety of nintedanib in idiopathic pulmonary fibrosis.N Engl J Med2014;370:2071-82

[133]

Akcora B, Storm G, Prakash J, Bansal R. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl(4)-induced liver fibrogenesis mouse model.Sci Rep2017;7:44545 PMCID:PMC5349608

[134]

Yamanaka T,hoshino K.New therapy for intrahepatic cholangiocarcinoma targeted to cancer associated fibroblasts.Annals of Oncology2019;30:v20

[135]

Colyn L,Latasa MU.New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.J Exp Clin Cancer Res2022;41:183 PMCID:PMC9134609

[136]

Thongchot S,Ferraresi A.Cancer-associated fibroblast-derived IL-6 determines unfavorable prognosis in cholangiocarcinoma by affecting autophagy-associated chemoresponse.Cancers2021;13:2134 PMCID:PMC8124468

[137]

Lin Y,Chen Y.CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase.Hepatology2022;75:28-42

[138]

Aoki S,Klein S.Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma.Gut2022;71:185-93 PMCID:PMC8666816

[139]

Valle JW,Lopes A.Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial.Lancet Oncol2015;16:967-78 PMCID:PMC4648082

[140]

Goyal L,Duda DG.Chemotherapy and antiangiogenics in biliary tract cancer.Lancet Oncol2015;16:882-3

[141]

Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy.Nat Rev Cancer2012;12:252-64 PMCID:PMC4856023

[142]

Elvevi A,Scaravaglio M.Clinical treatment of cholangiocarcinoma: an updated comprehensive review.Ann Hepatol2022;27:100737

[143]

Cai Z,Xu Z.A pan-cancer study of PD-1 and CTLA-4 as therapeutic targets.Transl Cancer Res2021;10:3993-4001 PMCID:PMC8797719

[144]

Lu JC,Sun QM.Distinct PD-L1/PD1 profiles and clinical implications in intrahepatic cholangiocarcinoma patients with different risk factors.Theranostics2019;9:4678-87 PMCID:PMC6643449

[145]

Czink E,Goeppert B.Successful immune checkpoint blockade in a patient with advanced stage microsatellite-unstable biliary tract cancer.Cold Spring Harb Mol Case Stud2017;3:a001974 PMCID:PMC5593153

[146]

Mody K,Saul M.Patterns and genomic correlates of PD-L1 expression in patients with biliary tract cancers.J Gastrointest Oncol2019;10:1099-109 PMCID:PMC6955012

[147]

Spizzo G,Xiu J.Molecular profile of BRCA-mutated biliary tract cancers.ESMO Open2020;5:e000682

[148]

Ricci AD,Brandi G.The DNA damage repair (DDR) pathway in biliary tract cancer (BTC): a new Pandora’s box?.ESMO Open2020;5:e001042 PMCID:PMC7526276

[149]

Kelley RK,Gores GJ.Systemic therapies for intrahepatic cholangiocarcinoma.J Hepatol2020;72:353-63

[150]

Rizzo A,Brandi G.Durvalumab: an investigational anti-PD-L1 antibody for the treatment of biliary tract cancer.Expert Opin Investig Drugs2021;30:343-50

[151]

Ott PA,Piha-Paul SA.T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028.J Clin Oncol2019;37:318-27

[152]

Ueno M,Nagrial A.Pembrolizumab for advanced biliary adenocarcinoma: Results from the multicohort, phase II KEYNOTE-158 study.Annals of Oncology2018;29:viii210

[153]

Merters J.Integrating cytotoxic, targeted and immune therapies for cholangiocarcinoma.J Hepatol2023;78:652-7

[154]

Oh D,Qin S.A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1.JCO2022;40:378-378

[155]

Finn RS,Furuse J.Abstract CT283: KEYNOTE-966: a randomized, double-blind, placebo-controlled, phase 3 study of pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract carcinoma.Cancer Research2020;80:CT283-CT283

[156]

Vogel A,Kelley R.P-99 pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract cancer: phase 3 KEYNOTE-966 trial in progress.Annals of Oncology2020;31:S122

[157]

Valle J,Furuse J.78TiP KEYNOTE-966 trial in progress: Pembrolizumab plus gemcitabine and cisplatin for advanced biliary tract cancer.Annals of Oncology2020;31:S270-1

[158]

Sahai V,Beg MS.A randomized phase 2 trial of nivolumab, gemcitabine, and cisplatin or nivolumab and ipilimumab in previously untreated advanced biliary cancer: BilT-01.Cancer2022;128:3523-30 PMCID:PMC9540241

[159]

Roy S,Chakraborty S.Inflammation and progression of cholangiocarcinoma: role of angiogenic and lymphangiogenic mechanisms.Front Med (Lausanne)2019;6:293 PMCID:PMC6930194

[160]

Hack SP,Mulla S.IMbrave 151: a randomized phase II trial of atezolizumab combined with bevacizumab and chemotherapy in patients with advanced biliary tract cancer.Ther Adv Med Oncol2021;13:17588359211036544 PMCID:PMC8326820

[161]

Lowery MA,Chou JF.Binimetinib plus gemcitabine and cisplatin phase I/II trial in patients with advanced biliary cancers.Clin Cancer Res2019;25:937-45 PMCID:PMC6615467

[162]

Kim JW,Kim JW.Enhanced antitumor effect of binimetinib in combination with capecitabine for biliary tract cancer patients with mutations in the RAS/RAF/MEK/ERK pathway: phase Ib study.Br J Cancer2019;121:332-9 PMCID:PMC6738070

[163]

Viscardi G,Massari F,Mollica V.Comparative assessment of early mortality risk upon immune checkpoint inhibitors alone or in combination with other agents across solid malignancies: a systematic review and meta-analysis. Eur J Cancer 2022;177:175–185.

[164]

Jiao Y,Anders RA.Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas.Nat Genet2013;45:1470-3 PMCID:PMC4013720

[165]

Chong DQ.The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets.Oncotarget2016;7:46750-67 PMCID:PMC5216834

[166]

Kipp BR,Kerr SE.Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.Hum Pathol2012;43:1552-8

[167]

Simbolo M,Ruzzenente A.Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups.Oncotarget2014;5:2839-52 PMCID:PMC4058049

PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

/