The roles of autophagy and thyroid hormone in the pathogenesis and treatment of NAFLD

Jin Zhou , Rohit A. Sinha , Paul M. Yen

Hepatoma Research ›› 2021, Vol. 7 : 72

PDF
Hepatoma Research ›› 2021, Vol. 7:72 DOI: 10.20517/2394-5079.2021.82
Review

The roles of autophagy and thyroid hormone in the pathogenesis and treatment of NAFLD

Author information +
History +
PDF

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide. It comprises simple steatosis and non-alcoholic steatohepatitis (NASH), which can further progress to cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD involves genetic, environmental, and endocrine factors, and several molecular mechanisms have been identified. In this review, we discuss the recent findings on the role of autophagy, in particular lipophagy and mitophagy, in hepatic lipid oxidation. We discuss the pre-clinical and clinical evidence suggesting that impairment of autophagy exacerbates NAFLD progression and restoration of autophagy exerts beneficial effects on NAFLD. We discuss how thyroid hormone (TH) simultaneously regulates lipophagy, mitophagy, and mitochondrial biogenesis to increase β-oxidation of fatty acids and reduce steatosis in the liver. Lastly, we discuss the recent clinical progress in using TH or thyromimetics in treating NAFLD/NASH.

Keywords

Autophagy / mitophagy / thyroid hormone / lipid oxidation / NAFLD

Cite this article

Download citation ▾
Jin Zhou, Rohit A. Sinha, Paul M. Yen. The roles of autophagy and thyroid hormone in the pathogenesis and treatment of NAFLD. Hepatoma Research, 2021, 7: 72 DOI:10.20517/2394-5079.2021.82

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chalasani N,Lavine JE.The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases.Hepatology2018;67:328-57

[2]

Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease.Diabetologia2016;59:1121-40

[3]

Younossi ZM,Abdelatif D,Henry L.Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016;64:73-84

[4]

Li J,Yeo YH.Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis.Lancet Gastroenterol Hepatol2019;4:389-98

[5]

Younossi ZM.The epidemiology of nonalcoholic steatohepatitis.Clin Liver Dis (Hoboken)2018;11:92-4 PMCID:PMC6385947

[6]

Loomba R.The global NAFLD epidemic.Nat Rev Gastroenterol Hepatol2013;10:686-90

[7]

Burra P,Germani G.NAFLD and liver transplantation: disease burden, current management and future challenges.JHEP Rep2020;2:100192 PMCID:PMC7607500

[8]

Adams LA,Tilg H.Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases.Gut2017;66:1138-53

[9]

Koo BK,Joo SK.Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis.J Hepatol2017;66:123-31

[10]

Anstee QM,Tilg H.Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease.Nat Rev Gastroenterol Hepatol2018;15:425-39

[11]

Taylor RS,Bayliss S.Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis.Gastroenterology2020;158:1611-25.e12

[12]

Eslam M,George J.International Consensus PanelMAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology2020;158:1999-2014.e1

[13]

Eslam M,Sarin SK.A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement.J Hepatol2020;73:202-9

[14]

Younossi ZM,Sanyal AJ.From NAFLD to MAFLD: implications of a premature change in terminology.Hepatology2021;73:1194-8

[15]

Singh SP,Reddy KR.Non-alcoholic fatty liver disease: not time for an obituary just yet!.J Hepatol2021;74:972-4

[16]

Lonardo A.Renaming NAFLD to MAFLD: could the LDE system assist in this transition?.J Clin Med2021;10:492 PMCID:PMC7866816

[17]

Abada A.Getting ready for building: signaling and autophagosome biogenesis.EMBO Rep2014;15:839-52 PMCID:PMC4197041

[18]

Dikic I.Mechanism and medical implications of mammalian autophagy.Nat Rev Mol Cell Biol2018;19:349-64

[19]

Gatica D,Klionsky DJ.Cargo recognition and degradation by selective autophagy.Nat Cell Biol2018;20:233-42 PMCID:PMC6028034

[20]

Nishimura T.Emerging roles of ATG proteins and membrane lipids in autophagosome formation.Cell Discov2020;6:32 PMCID:PMC7248066

[21]

Singh R,Wang Y.Autophagy regulates lipid metabolism.Nature2009;458:1131-5 PMCID:PMC2676208

[22]

Kaushik S.Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis.Nat Cell Biol2015;17:759-70 PMCID:PMC4449813

[23]

Liu R,Li J.Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets.Mol Cell2021;81:2722-2735.e9

[24]

Garcia-Macia M,Leslie J.A mammalian target of rapamycin-perilipin 3 (mTORC1-Plin3) pathway is essential to activate lipophagy and protects against hepatosteatosis.Hepatology2021;

[25]

Schwerbel K,Krahmer N.Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation.J Hepatol2020;73:771-82 PMCID:PMC7957830

[26]

Byun S,Kim YC.Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase.Nat Commun2020;11:807 PMCID:PMC7010817

[27]

Sinha RA,Zhou J.Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.J Clin Invest2012;122:2428-38 PMCID:PMC3386813

[28]

Lee JM,Xiao R.Nutrient-sensing nuclear receptors coordinate autophagy.Nature2014;516:112-5 PMCID:PMC4267857

[29]

Seok S,Choi SE.Transcriptional regulation of autophagy by an FXR-CREB axis.Nature2014;516:108-11 PMCID:PMC4257899

[30]

Farah BL,Wu Y.β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver.PLoS One2014;9:e98155 PMCID:PMC4064960

[31]

Yoo J,Ahn KJ,Hwang YC.Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy.Metabolism2021;120:154798

[32]

Waskowicz LR,Landau DJ.Bezafibrate induces autophagy and improves hepatic lipid metabolism in glycogen storage disease type Ia.Hum Mol Genet2019;28:143-54 PMCID:PMC6298237

[33]

Zhou J,Lim A.A liver-specific thyromimetic, VK2809, decreases hepatosteatosis in glycogen storage disease type Ia.Thyroid2019;29:1158-67 PMCID:PMC6707038

[34]

Yavarow ZA,Waskowicz LR.Fenofibrate rapidly decreases hepatic lipid and glycogen storage in neonatal mice with glycogen storage disease type Ia.Hum Mol Genet2020;29:286-94 PMCID:PMC7003036

[35]

Zhou J,Sinha RA.Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance.PLoS One2014;9:e87161 PMCID:PMC3906112

[36]

Sinha RA,Singh BK.Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice.Hepatology2014;59:1366-80

[37]

Ashrafi G.The pathways of mitophagy for quality control and clearance of mitochondria.Cell Death Differ2013;20:31-42 PMCID:PMC3524633

[38]

Vringer E.Mitochondria and Inflammation: cell death heats up.Front Cell Dev Biol2019;7:100 PMCID:PMC6610339

[39]

Chen G,Kepp O.Mitophagy: an emerging role in aging and age-associated diseases.Front Cell Dev Biol2020;8:200 PMCID:PMC7113588

[40]

Narendra DP,Tanaka A.PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.PLoS Biol2010;8:e1000298 PMCID:PMC2811155

[41]

Kondapalli C,Zhang N.PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65.Open Biol2012;2:120080 PMCID:PMC3376738

[42]

Aerts L,De Strooper B.PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402.J Biol Chem2015;290:2798-811 PMCID:PMC4317039

[43]

Bakula D.MitophAging: mitophagy in aging and disease.Front Cell Dev Biol2020;8:239 PMCID:PMC7179682

[44]

Liu L,Chen G.Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells.Nat Cell Biol2012;14:177-85

[45]

Chen G,Feng D.A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy.Mol Cell2014;54:362-77

[46]

Wu W,Hu Z.ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy.EMBO Rep2014;15:566-75 PMCID:PMC4210082

[47]

González-Rodríguez A,Agra N.Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD.Cell Death Dis2014;5:e1179 PMCID:PMC4001315

[48]

Tanaka S,Tatsumi T.Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice.Hepatology2016;64:1994-2014

[49]

Fukuo Y,Sonoue H.Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease.Hepatol Res2014;44:1026-36

[50]

Zhang H,Khambu B.Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply.Autophagy2018;14:1779-95 PMCID:PMC6135624

[51]

Settembre C,Mansueto G.TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.Nat Cell Biol2013;15:647-58 PMCID:PMC3699877

[52]

Komatsu M,Ueno T.Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice.J Cell Biol2005;169:425-34 PMCID:PMC2171928

[53]

Xiong X,DePinho RA.The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism.J Biol Chem2012;287:39107-14 PMCID:PMC3493951

[54]

Liu K,Ilyas G.Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.Autophagy2015;11:271-84 PMCID:PMC4502775

[55]

Yamada T,Adachi Y.Mitochondrial stasis reveals p62-mediated ubiquitination in Parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease.Cell Metab2018;28:588-604.e5 PMCID:PMC6170673

[56]

Ahn SB,Jun DW,Shin KJ.Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease.Dig Dis Sci2014;59:2975-82

[57]

Kim YS,Han CY.Liver X receptor alpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating autophagy-related 4B cysteine peptidase and Rab-8B, reducing mitochondrial fuel oxidation.Hepatology2021;73:1307-26

[58]

Nguyen TTP,Lee YG.SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice.Mol Cell2021;81:3820-32.e7

[59]

Lee DH,Ahn J.Mir214-3p and Hnf4a/Hnf4α reciprocally regulate Ulk1 expression and autophagy in nonalcoholic hepatic steatosis.Autophagy2021;17:2415-31 PMCID:PMC8496708

[60]

He A,Tan M.Acetyl-CoA derived from hepatic peroxisomal β-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation.Mol Cell2020;79:30-42.e4 PMCID:PMC7335356

[61]

Zhang Z,Li M.The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB.Autophagy2021;17:1841-55 PMCID:PMC8386593

[62]

Park HS,Park JH.TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation.Autophagy2021;17:2549-64 PMCID:PMC8496541

[63]

Wu X,Sanz-Garcia C.MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis.J Hepatol2020;73:616-27 PMCID:PMC7438259

[64]

Liu K,Liang X.Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy.Autophagy2021;1-17

[65]

Braun D.Thyroid hormone transport and transporters.Vitam Horm2018;106:19-44

[66]

DeMartino GN.Thyroid hormones control lysosomal enzyme activities in liver and skeletal muscle.Proc Natl Acad Sci U S A1978;75:1369-73 PMCID:PMC411473

[67]

Peeters RP. Metabolism of thyroid hormone. Endotext. South Dartmouth (MA); 2000.

[68]

Anyetei-Anum CS,Allison LA.Thyroid hormone receptor localization in target tissues.J Endocrinol2018;237:R19-34 PMCID:PMC5843491

[69]

Feng X,Meltzer P.Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray.Mol Endocrinol2000;14:947-55

[70]

Sinha RA,Yen PM.Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism.Trends Endocrinol Metab2014;25:538-45

[71]

Sinha RA,Yen PM.Direct effects of thyroid hormones on hepatic lipid metabolism.Nat Rev Endocrinol2018;14:259-69 PMCID:PMC6013028

[72]

Sinha RA,Singh BK.Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists.Thyroid2019;29:1173-91 PMCID:PMC6850905

[73]

Coates PM,Finegold DN.Effect of thyroid hormones on human mononuclear leukocyte lysosomal acid lipase activity.J Clin Endocrinol Metab1982;54:559-62

[74]

Sinha RA,Zhou J.Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling.Autophagy2015;11:1341-57 PMCID:PMC4590606

[75]

Singh BK,Tripathi M.Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function.Sci Signal2018;11:eaam5855

[76]

Kim J,Viollet B.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat Cell Biol2011;13:132-41 PMCID:PMC3987946

[77]

Egan DF,Mihaylova MM.Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy.Science2011;331:456-61 PMCID:PMC3030664

[78]

Tian W,Chen Y.Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy.FEBS Lett2015;589:1847-54

[79]

Lesmana R,Singh BK.Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle.Endocrinology2016;157:23-38

[80]

Chen W.Mediator-dependent nuclear receptor function.Semin Cell Dev Biol2011;22:749-58 PMCID:PMC3207035

[81]

Zhou J,Ho JP.MED1 mediator subunit is a key regulator of hepatic autophagy and lipid metabolism.Autophagy2021;1-19

[82]

Yuan CX,Fondell JD,Roeder RG.The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion.Proc Natl Acad Sci U S A1998;95:7939-44 PMCID:PMC20908

[83]

Tseng YH,Liao CJ.Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism.Autophagy2014;10:20-31 PMCID:PMC4389877

[84]

Iannucci LF,Senese R.Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet.Sci Rep2017;7:2023 PMCID:PMC5435676

[85]

Swanson KV,Ting JP.The NLRP3 inflammasome: molecular activation and regulation to therapeutics.Nat Rev Immunol2019;19:477-89 PMCID:PMC7807242

[86]

Hafner-Bratkovič I.Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation.Curr Opin Immunol2018;52:8-17

[87]

Mridha AR,Robertson AAB.NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice.J Hepatol2017;66:1037-46 PMCID:PMC6536116

[88]

Zhong Z,Sanchez-Lopez E.NF-κB restricts inflammasome activation via elimination of damaged mitochondria.Cell2016;164:896-910 PMCID:PMC4769378

[89]

Biasizzo M.Interplay between NLRP3 inflammasome and autophagy.Front Immunol2020;11:591803 PMCID:PMC7583715

[90]

Vargas R.Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: role of AMP-activated protein kinase.Immunol Lett2017;184:92-7

[91]

der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells.J Endocrinol2017;232:R67-81

[92]

De Luca R,Lin HY.Thyroid hormones interaction with immune response, inflammation and non-thyroidal illness syndrome.Front Cell Dev Biol2020;8:614030 PMCID:PMC7859329

[93]

Forini F,Kusmic C.Integrative analysis of differentially expressed genes and miRNAs predicts complex T3-mediated protective circuits in a rat model of cardiac ischemia reperfusion.Sci Rep2018;8:13870 PMCID:PMC6138681

[94]

Chen Y,Xia M,Zhang Y.Instant membrane resealing in nlrp3 inflammmasome activation of endothelial cells.Front Biosci (Landmark Ed)2016;21:635-50 PMCID:PMC5507337

[95]

Wang Y,Yang W,Xue S.MiR-31 Downregulation protects against cardiac ischemia/reperfusion injury by targeting protein kinase C epsilon (PKCε) directly.Cell Physiol Biochem2015;36:179-90

[96]

de Castro AL,Ortiz VD.Thyroid hormones decrease the proinflammatory TLR4/NF-κβ pathway and improve functional parameters of the left ventricle of infarcted rats.Mol Cell Endocrinol2018;461:132-42

[97]

Furuya F,Tamura S.The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities.Sci Rep2017;7:43960 PMCID:PMC5341020

[98]

Pagadala MR,Dasarathy S,Lopez R.Prevalence of hypothyroidism in nonalcoholic fatty liver disease.Dig Dis Sci2012;57:528-34 PMCID:PMC3922233

[99]

Kim D,Joo SK,Kim JH.Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis.Clin Gastroenterol Hepatol2018;16:123-31.e1

[100]

Chung GE,Kim W.Non-alcoholic fatty liver disease across the spectrum of hypothyroidism.J Hepatol2012;57:150-6

[101]

Bano A,Plompen EP.Thyroid function and the risk of nonalcoholic fatty liver disease: the rotterdam study.J Clin Endocrinol Metab2016;101:3204-11

[102]

Bohinc BN,Xie G.Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism.Endocrinology2014;155:4591-601 PMCID:PMC4256825

[103]

Bruinstroop E,Cao Y.Low-dose levothyroxine reduces intrahepatic lipid content in patients with type 2 diabetes mellitus and NAFLD.J Clin Endocrinol Metab2018;103:2698-706

[104]

Bruinstroop E,Tripathi M.Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD progression.Mol Metab2021;53:101266 PMCID:PMC8237360

[105]

Tahara K,Namisaki T.Thyroid-stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease.JGH Open2020;4:400-4 PMCID:PMC7273701

[106]

Manka P,Best J.Low free triiodothyronine is associated with advanced fibrosis in patients at high risk for nonalcoholic steatohepatitis.Dig Dis Sci2019;64:2351-8

[107]

Yu G,Wang R.Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function.Nat Med2018;24:39-49 PMCID:PMC5760280

[108]

Alonso-Merino E,Ruíz-Llorente L.Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses.Proc Natl Acad Sci U S A2016;113:E3451-60 PMCID:PMC4914168

[109]

Harrison SA,Guy CD.Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.Lancet2019;394:2012-24

[110]

Erion MD,Ito BR.Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index.Proc Natl Acad Sci U S A2007;104:15490-5 PMCID:PMC1978486

[111]

Fujitaki JM,Ito BR.Preclinical pharmacokinetics of a HepDirect prodrug of a novel phosphonate-containing thyroid hormone receptor agonist.Drug Metab Dispos2008;36:2393-403

[112]

Cable EE,Stebbins JW.Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist.Hepatology2009;49:407-17

[113]

Loomba R,Mohseni R.LBP-20-VK2809, a Novel Liver-Directed Thyroid Receptor Beta Agonist, Significantly Reduces Liver Fat with Both Low and High Doses in Patients with Non-Alcoholic Fatty Liver Disease: A Phase 2 Randomized, Placebo-Controlled Trial.J Hepatol2019;70:e150-1

PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

/