Tumor microenvironment and immunology of cholangiocarcinoma

Massimiliano Cadamuro , Luca Fabris , Xuchen Zhang , Mario Strazzabosco

Hepatoma Research ›› 2022, Vol. 8 : 11

PDF
Hepatoma Research ›› 2022, Vol. 8:11 DOI: 10.20517/2394-5079.2021.140
Review

Tumor microenvironment and immunology of cholangiocarcinoma

Author information +
History +
PDF

Abstract

Cholangiocarcinoma (CCA), an aggressive tumor originating from both intra- and extra-hepatic biliary cells, represents an unmet need in liver oncology, as treatment remains largely unsatisfactory. A typical feature of CCA is the presence of a complex tumor microenvironment (TME) composed of neoplastic cells, a rich inflammatory infiltrate, and cancer-associated fibroblasts and desmoplastic matrix that makes it extremely chemoresistant to traditional chemotherapeutic drugs. In this review, we describe the cell populations within the TME, in particular those involved in the innate and adaptive immune response and how they interact with tumor cells and with matrix proteins. The TME is crucial for CCA to mount an immune escape response and is the battlefield where molecularly targeted therapies and immune therapy, particularly in combination, may actually prove their therapeutic value.

Keywords

Tumor reactive stroma / extracellular matrix / immunotherapy / checkpoint inhibitor / immune escape

Cite this article

Download citation ▾
Massimiliano Cadamuro, Luca Fabris, Xuchen Zhang, Mario Strazzabosco. Tumor microenvironment and immunology of cholangiocarcinoma. Hepatoma Research, 2022, 8: 11 DOI:10.20517/2394-5079.2021.140

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Razumilava N.Classification, diagnosis, and management of cholangiocarcinoma.Clin Gastroenterol Hepatol2013;11:13-21.e1; quiz e3 PMCID:PMC3596004

[2]

Razumilava N.Cholangiocarcinoma.Lancet2014;383:2168-79 PMCID:PMC4069226

[3]

Banales JM,Lamarca A.Cholangiocarcinoma 2020: the next horizon in mechanisms and management.Nat Rev Gastroenterol Hepatol2020;17:557-88 PMCID:PMC7447603

[4]

McLean L.Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States.Liver Int2006;26:1047-53

[5]

Tyson GL.Risk factors for cholangiocarcinoma.Hepatology2011;54:173-84 PMCID:PMC3125451

[6]

Choi J,Peeraphatdit T.Aspirin use and the risk of cholangiocarcinoma.Hepatology2016;64:785-96 PMCID:PMC5995727

[7]

Zhang H,Zhang H,Zeng W.HBV Infection status and the risk of cholangiocarcinoma in Asia: a meta-analysis.Biomed Res Int2016;2016:3417976 PMCID:PMC5141322

[8]

Clements O,Kim JU,Khan SA.Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis.J Hepatol2020;72:95-103

[9]

Limpaiboon T,Sripa B.Microsatellite alterations in liver fluke related cholangiocarcinoma are associated with poor prognosis.Cancer Letters2002;181:215-22

[10]

Moeini A,Bardeesy N,Llovet JM.Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma.Clin Cancer Res2016;22:291-300

[11]

Boerner T,Pak LM.Genetic determinants of outcome in intrahepatic cholangiocarcinoma.Hepatology2021;74:1429-44 PMCID:PMC8713028

[12]

Fabris L,Mertens J.The tumour microenvironment and immune milieu of cholangiocarcinoma.Liver Int2019;39 Suppl 1:63-78

[13]

Rimassa L,Aghemo A.The immune milieu of cholangiocarcinoma: from molecular pathogenesis to precision medicine.J Autoimmun2019;100:17-26

[14]

Lee JI.Role of desmoplasia in cholangiocarcinoma and hepatocellular carcinoma.J Hepatol2014;61:432-4

[15]

Cadamuro M,Brivio S.The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma.Biochim Biophys Acta Mol Basis Dis2018;1864:1435-43 PMCID:PMC6386155

[16]

Høgdall D,Andersen JB.Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma.Trends Cancer2018;4:239-55

[17]

Sirica AE,Cadamuro M.Intrahepatic cholangiocarcinoma: morpho-molecular pathology, tumor reactive microenvironment, and malignant progression.Adv Cancer Res2021;149:321-87 PMCID:PMC8800451

[18]

Conway SJ,Kudo Y.The role of periostin in tissue remodeling across health and disease.Cell Mol Life Sci2014;71:1279-88 PMCID:PMC3949008

[19]

Terada T,Nakanuma Y.Normal and abnormal development of the human intrahepatic biliary system: a review.Tohoku J Exp Med1997;181:19-32

[20]

Brown LF,Van de Water L.Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces.Mol Biol Cell1992;3:1169-80 PMCID:PMC275680

[21]

Zeng J,Sun S.Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells.Oncol Lett2018;15:8681-6 PMCID:PMC5950521

[22]

Aishima S,Terashi T,Shimada M.Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma.Mod Pathol2003;16:1019-27

[23]

Sulpice L,Desille M.Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma.Hepatology2013;58:1992-2000

[24]

Liu Y,Chen R.Osteopontin promotes hepatic progenitor cell expansion and tumorigenicity via activation of β-catenin in mice.Stem Cells2015;33:3569-80

[25]

Fabris L,Cagnin S,Gores GJ.Liver matrix in benign and malignant biliary tract disease.Semin Liver Dis2020;40:282-97

[26]

Mertens JC,Christensen JD.Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma.Cancer Res2013;73:897-907 PMCID:PMC3549008

[27]

Cadamuro M,Indraccolo S.Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma.Hepatology2013;58:1042-53 PMCID:PMC3732815

[28]

Vaquero J,Fouassier L.Cancer-associated fibroblasts in cholangiocarcinoma.Curr Opin Gastroenterol2020;36:63-9

[29]

Brivio S,Strazzabosco M.Tumor reactive stroma in cholangiocarcinoma: the fuel behind cancer aggressiveness.World J Hepatol2017;9:455-68 PMCID:PMC5368623

[30]

Kuperwasser C,Wu M.Reconstruction of functionally normal and malignant human breast tissues in mice.Proc Natl Acad Sci U S A2004;101:4966-71 PMCID:PMC387357

[31]

Gascard P.Carcinoma-associated fibroblasts: orchestrating the composition of malignancy.Genes Dev2016;30:1002-19 PMCID:PMC4863733

[32]

Stacker SA,Karnezis T,Fox SB.Lymphangiogenesis and lymphatic vessel remodelling in cancer.Nat Rev Cancer2014;14:159-72

[33]

Cadamuro M,Mertens J.Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma.J Hepatol2019;70:700-9

[34]

Kim H,Koh GY.Inflammation-associated lymphangiogenesis: a double-edged sword?.J Clin Invest2014;124:936-42 PMCID:PMC3938274

[35]

Thelen A,Benckert C.Microvessel density correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma.J Gastroenterol2008;43:959-66

[36]

Thelen A,Benckert C.Tumor-associated lymphangiogenesis correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma.Ann Surg Oncol2008;15:791-9

[37]

Mantovani A,Malesci A,Allavena P.Tumour-associated macrophages as treatment targets in oncology.Nat Rev Clin Oncol2017;14:399-416 PMCID:PMC5480600

[38]

Duluc D,Tan F.Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells.Blood2007;110:4319-30

[39]

Rőszer T.Understanding the mysterious M2 macrophage through activation markers and effector mechanisms.Mediators Inflamm2015;2015:816460 PMCID:PMC4452191

[40]

Hasita H,Okabe H.Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma.Cancer Sci2010;101:1913-9

[41]

Paillet J,Pol JG.Immune contexture of cholangiocarcinoma.Curr Opin Gastroenterol2020;36:70-6

[42]

Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages.Molecules2018;24:9 PMCID:PMC6337345

[43]

Pathria P,Varner JA.Targeting tumor-associated macrophages in cancer.Trends Immunol2019;40:310-27

[44]

Loilome W,Techasen A.Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells.Tumour Biol2014;35:5357-67 PMCID:PMC4862210

[45]

Boulter L,Kendall TJ.WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited.J Clin Invest2015;125:1269-85 PMCID:PMC4362247

[46]

Henze AT.The impact of hypoxia on tumor-associated macrophages.J Clin Invest2016;126:3672-9 PMCID:PMC5096805

[47]

Liu S,Huang L.iNOS is associated with tumorigenicity as an independent prognosticator in human intrahepatic cholangiocarcinoma.Cancer Manag Res2019;11:8005-22 PMCID:PMC6716572

[48]

Thanee M,Techasen A.Quantitative changes in tumor-associated M2 macrophages characterize cholangiocarcinoma and their association with metastasis.Asian Pac J Cancer Prev2015;16:3043-50

[49]

Zhou M,Lu S.Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic target.EBioMedicine2021;67:103375 PMCID:PMC8134032

[50]

Chiossone L,Vienne M.Natural killer cells and other innate lymphoid cells in cancer.Nat Rev Immunol2018;18:671-88

[51]

Carnevale G,Cardinale V.Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells.Sci Rep2017;7:14419 PMCID:PMC5663931

[52]

Wendel M,Suri-Payer E.Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands.Cancer Res2008;68:8437-45

[53]

Fukuda Y,Eguchi H.Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma.Cancer Sci2020;111:323-33 PMCID:PMC7004525

[54]

Jung IH,Yoo DK.In vivo study of natural killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse model.In Vivo2018;32:771-81 PMCID:PMC6117784

[55]

Morisaki T,Kiyota A.Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro.Anticancer Res2012;32:2249-56

[56]

Melum E,Schrumpf E.Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms.Hepatology2008;47:90-6

[57]

Tsukagoshi M,Yokobori T.Overexpression of natural killer group 2 member D ligands predicts favorable prognosis in cholangiocarcinoma.Cancer Sci2016;107:116-22 PMCID:PMC4768394

[58]

Fridlender ZG.Tumor-associated neutrophils: friend or foe?.Carcinogenesis2012;33:949-55

[59]

Masucci MT,Carriero MV.Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy.Front Oncol2019;9:1146 PMCID:PMC6874146

[60]

Landskron G,Thuwajit P,Hermoso MA.Chronic inflammation and cytokines in the tumor microenvironment.J Immunol Res2014;2014:149185 PMCID:PMC4036716

[61]

Zhou SL,Zhou ZJ.CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils.Carcinogenesis2014;35:597-605

[62]

Gu FM,Shi GM.Intratumoral IL-17+ cells and neutrophils show strong prognostic significance in intrahepatic cholangiocarcinoma.Ann Surg Oncol2012;19:2506-14

[63]

Kitano Y,Yamashita YI.Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma.Br J Cancer2018;118:171-80 PMCID:PMC5785749

[64]

Zhou Z,Sun R.Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3.J Immunother Cancer2021;9:e001946 PMCID:PMC7949476

[65]

Takagi S,Ichikawa E.Dendritic cells, T-cell infiltration, and Grp94 expression in cholangiocellular carcinoma.Hum Pathol2004;35:881-6

[66]

Hu ZQ,Luo CB.Peritumoral plasmacytoid dendritic cells predict a poor prognosis for intrahepatic cholangiocarcinoma after curative resection.Cancer Cell Int2020;20:582 PMCID:PMC7716503

[67]

Panya A,Sawasdee N.Cytotoxic activity of effector T cells against cholangiocarcinoma is enhanced by self-differentiated monocyte-derived dendritic cells.Cancer Immunol Immunother2018;67:1579-88

[68]

Thepmalee C,Junking M,Yenchitsomanus PT.Inhibition of IL-10 and TGF-β receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells.Hum Vaccin Immunother2018;14:1423-31 PMCID:PMC6037468

[69]

Diggs LP,Ma C.CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma.J Hepatol2021;74:1145-54

[70]

Ma C,Greten TF.MDSCs in liver cancer: a critical tumor-promoting player and a potential therapeutic target.Cell Immunol2021;361:104295 PMCID:PMC7882059

[71]

Veglia F,Gabrilovich D.Myeloid-derived suppressor cells coming of age.Nat Immunol2018;19:108-19 PMCID:PMC5854158

[72]

Xu X,Wang M.Circulating myeloid-derived suppressor cells in patients with pancreatic cancer.Hepatobiliary Pancreat Dis Int2016;15:099-105

[73]

Ruffolo LI,Kuhlers PC.GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity.Gut2021; PMCID:PMC8857285

[74]

Zhang Q,Duan Y.Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma.Cancer Discov2021;11:1248-67 PMCID:PMC8102309

[75]

Loeuillard E,Buckarma E.Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma.J Clin Invest2020;130:5380-96 PMCID:PMC7524481

[76]

Goeppert B,Zucknick M.Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer.Br J Cancer2013;109:2665-74 PMCID:PMC3833207

[77]

Kasper HU,Stippel DL,Gillessen A.Liver tumor infiltrating lymphocytes: comparison of hepatocellular and cholangiolar carcinoma.World J Gastroenterol2009;15:5053-7 PMCID:PMC2768884

[78]

Vigano L,Franceschini B.Tumor-infiltrating lymphocytes and macrophages in intrahepatic cholangiocellular carcinoma. Impact on prognosis after complete surgery.J Gastrointest Surg2019;23:2216-24

[79]

Yugawa K,Yoshizumi T.Prognostic impact of tumor microvessels in intrahepatic cholangiocarcinoma: association with tumor-infiltrating lymphocytes.Mod Pathol2021;34:798-807

[80]

Huang YH,Huang QS.Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma.J Hepatol2021;74:838-49

[81]

Miyazaki K,Imura S.Preoperative lymphocyte/C-reactive protein ratio and its correlation with CD8+ tumor-infiltrating lymphocytes as a predictor of prognosis after resection of intrahepatic cholangiocarcinoma.Surg Today2021;51:1985-95

[82]

Xu F,Zhu Y.Immune checkpoint therapy in liver cancer.J Exp Clin Cancer Res2018;37:110 PMCID:PMC5975687

[83]

He X.Immune checkpoint signaling and cancer immunotherapy.Cell Res2020;30:660-9 PMCID:PMC7395714

[84]

Gok Yavuz B,Lee SS.Current landscape and future directions of biomarkers for immunotherapy in hepatocellular carcinoma.J Hepatocell Carcinoma2021;8:1195-207 PMCID:PMC8478438

[85]

Shek D,Carlino MS.Immune-checkpoint inhibitors for metastatic colorectal cancer: a systematic review of clinical outcomes.Cancers (Basel)2021;13:4345 PMCID:PMC8430485

[86]

Xiong W,Du H.Current status of immune checkpoint inhibitor immunotherapy for lung cancer.Front Oncol2021;11:704336 PMCID:PMC8416501

[87]

Jalalvand M,Rezaei N.Immune checkpoint inhibitors: review of the existing evidence and challenges in breast cancer.Immunotherapy2021;13:587-603

[88]

Zeng FL.Application of immune checkpoint inhibitors in the treatment of cholangiocarcinoma.Technol Cancer Res Treat2021;20:15330338211039952 PMCID:PMC8450549

[89]

Xu G,Li Y.The clinicopathological and prognostic value of PD-L1 expression in cholangiocarcinoma: a meta-analysis.Front Oncol2019;9:897 PMCID:PMC6759577

[90]

Xie Q,Zheng S.Prognostic and clinicopathological significance of PD-L1 in patients with cholangiocarcinoma: a meta-analysis.Dis Markers2020;2020:1817931 PMCID:PMC7381947

[91]

Tian L,Ma L.PD-1/PD-L1 expression profiles within intrahepatic cholangiocarcinoma predict clinical outcome.World J Surg Oncol2020;18:303 PMCID:PMC7686719

[92]

Ma K,Dong D,Geng Q.PD-L1 and PD-1 expression correlate with prognosis in extrahepatic cholangiocarcinoma.Oncol Lett2017;14:250-6 PMCID:PMC5494943

[93]

Lim YJ,Kim K.Clinical implications of cytotoxic T lymphocyte antigen-4 expression on tumor cells and tumor-infiltrating lymphocytes in extrahepatic bile duct cancer patients undergoing surgery plus adjuvant chemoradiotherapy.Target Oncol2017;12:211-8

[94]

Joyce JA.T cell exclusion, immune privilege, and the tumor microenvironment.Science2015;348:74-80

[95]

Schmidt A,Krammer PH.Molecular mechanisms of treg-mediated T cell suppression.Front Immunol2012;3:51 PMCID:PMC3341960

[96]

Vivier E,Blaise D,Brossay L.Targeting natural killer cells and natural killer T cells in cancer.Nat Rev Immunol2012;12:239-52 PMCID:PMC5161343

[97]

Ghidini M,Carotenuto P.Characterisation of the immune-related transcriptome in resected biliary tract cancers.Eur J Cancer2017;86:158-65 PMCID:PMC5699791

[98]

Le DT,Smith KN.Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science2017;357:409-13 PMCID:PMC5576142

[99]

Kim RD,Alese OB.A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer.JAMA Oncol2020;6:888-94 PMCID:PMC7193528

[100]

Klein O,Nagrial A.Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a phase 2 nonrandomized clinical trial.JAMA Oncol2020;6:1405-9 PMCID:PMC7393585

[101]

Lin J,Long J.Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma.Hepatobiliary Surg Nutr2020;9:414-24 PMCID:PMC7423565

[102]

Arkenau HT,Calvo E.Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase I trial (JVDF).Oncologist2018;23:1407-e136 PMCID:PMC6292555

[103]

Job S,Dos Santos A.Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma.Hepatology2020;72:965-81 PMCID:PMC7589418

[104]

Yamamoto K,Kawaoka T.MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer.Anticancer Res2005;25:3575-9

[105]

Lepisto AJ,Zeh H.A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors.Cancer Ther2008;6:955-64 PMCID:PMC2614325

[106]

Kaida M,Soeda A.Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer.J Immunother2011;34:92-9

[107]

Higuchi R,Hatori T,Imai K.Intrahepatic cholangiocarcinoma with lymph node metastasis successfully treated by immunotherapy with CD3-activated T cells and dendritic cells after surgery: report of a case.Surg Today2006;36:559-62

[108]

Tran E,Gros A.Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science2014;344:641-5 PMCID:PMC6686185

[109]

Feng KC,Liu Y.Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma.J Hematol Oncol2017;10:4 PMCID:PMC5217546

[110]

Guo Y,Liu Y.Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers.Clin Cancer Res2018;24:1277-86

[111]

Feng K,Guo Y.Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers.Protein Cell2018;9:838-47 PMCID:PMC6160389

[112]

Sangsuwannukul T,Sujjitjoon J.Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells.Int Immunopharmacol2020;89:107069

[113]

Supimon K,Sujjitjoon J.Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma.Sci Rep2021;11:6276 PMCID:PMC7973425

[114]

Phanthaphol N,Suwanchiwasiri K.Chimeric antigen receptor T cells targeting integrin αvβ6 expressed on cholangiocarcinoma cells.Front Oncol2021;11:657868 PMCID:PMC7982884

[115]

Cillo U,Donadon M.Surgery for cholangiocarcinoma.Liver Int2019;39 Suppl 1:143-55 PMCID:PMC6563077

[116]

Sia D,Villanueva A.Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes.Gastroenterology2013;144:829-40 PMCID:PMC3624083

[117]

Moeini A,Zhang Z.Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity.J Hepatol2017;66:952-61

[118]

Montal R,Montironi C.Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma.J Hepatol2020;73:315-27 PMCID:PMC8418904

[119]

Affo S,Brundu F.Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations.Cancer Cell2021;39:866-882.e11 PMCID:PMC8241235

[120]

Su M,Xie XL.Development of a prognostic signature based on single-cell RNA sequencing data of immune cells in intrahepatic cholangiocarcinoma.Front Genet2020;11:615680 PMCID:PMC7890365

[121]

Zhang M,Wan L.Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma.J Hepatol2020;73:1118-30

[122]

Carpino G,Melandro F.Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure.Clin Proteomics2019;16:37 PMCID:PMC6821022

PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

/