p53 functional loss, stemness and hepatocellular carcinoma

Claude Caron de Fromentel , Massimo Levrero

Hepatoma Research ›› 2020, Vol. 6 : 80

PDF
Hepatoma Research ›› 2020, Vol. 6:80 DOI: 10.20517/2394-5079.2020.77
Review
Review

p53 functional loss, stemness and hepatocellular carcinoma

Author information +
History +
PDF

Abstract

The tumor suppressor p53 is a key player in the control of genomic integrity and homeostasis in connection with p63 and p73, the two other members of the p53 family. Loss of functional p53 leads to the proliferation and survival of mature cells and progenitor or stem cells that accumulate genetic alterations, thus favoring tumorigenesis. p53 loss of function, observed in a wide variety of human tumor types, is frequently caused by missense mutations more frequently found in the DNA binding domain, but can also be due to the expression of a plethora of viral and cellular negative regulators. Human hepatocellular carcinoma (HCC) represents a specific situation, first because the TP53 gene mutations pattern exhibits a “hot spot” rarely found in other tumor types that is linked to Aflatoxin B1 exposure and, second, because many HCCs do not exhibit any TP53 mutation. Here, we provide an overview of the current knowledge about the inhibition of p53 functions by the N-terminal (ΔN) truncated forms of the family, and their role in the emergence and maintenance of pre-malignant cells with stem cell characteristics and in HCC development. We focus in particular on the Nanog-IGF1R-ΔNp73 axis that is associated with stem-like features in HCC cells and that may provide an attractive new therapeutic target and help to develop new biomarkers for HCC risk stratification, as well as preventive strategies.

Keywords

p53 family / p53 functional inactivation / ΔNp73 / hepatic progenitor cells / cancer stem cells / Nanog / hepatocellular carcinoma

Cite this article

Download citation ▾
Claude Caron de Fromentel, Massimo Levrero. p53 functional loss, stemness and hepatocellular carcinoma. Hepatoma Research, 2020, 6: 80 DOI:10.20517/2394-5079.2020.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ferlay J,Soerjomataram I.Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods..Int J Cancer2019;144:1941-53

[2]

Llovet JM,Pikarsky E.Hepatocellular carcinoma..Nat Rev Dis Primers2016;2:16018

[3]

Llovet JM,Sia D.Molecular therapies and precision medicine for hepatocellular carcinoma..Nat Rev Clin Oncol2018;15:599-616

[4]

Nault JC,Sangro B.Milestones in the pathogenesis and management of primary liver cancer..J Hepatol2020;72:209-14

[5]

Finn RS,Ikeda M.Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma..N Engl J Med2020;382:1894-905

[6]

Cojoc M,Muders MH.A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms..Semin Cancer Biol2015;31:16-27

[7]

Fekir K,Désert R.Retrodifferentiation of human tumor hepatocytes to stem cells leads to metabolic reprogramming and chemoresistance..Cancer Res2019;79:1869-83

[8]

Barbato L,Di Biase A.Cancer stem cells and targeting strategies..Cells2019;8:926 PMCID:PMC6721823

[9]

Philips GM,Swiderska M.Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer..PLoS One2011;6:e23943 PMCID:PMC3166282

[10]

Khosla R,Ramakrishna G.EpCAM+ liver cancer stem-like cells exhibiting autocrine wnt signaling potentially originate in cirrhotic patients..Stem Cells Transl Med2017;6:807-18 PMCID:PMC5442787

[11]

Yang W,Chen L.Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells..Cancer Res2008;68:4287-95

[12]

Malfettone A,Bertran E.Transforming growth factor-β-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma..Cancer Lett2017;392:39-50

[13]

Luo J,Wang R.The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma..Oncotarget2016;7:9525-37 PMCID:PMC4891057

[14]

Della Corte CM,Papaccio F.Implication of the Hedgehog pathway in hepatocellular carcinoma..World J Gastroenterol2017;23:4330-40 PMCID:PMC5487497

[15]

Kawai T,Ishii T.Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma..Clin Cancer Res2015;21:3081-91

[16]

Terris B,Perret C.EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma..J Hepatol2010;52:280-1

[17]

Yamashita T,Budhu A.EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features..Gastroenterology2009;136:1012-24 PMCID:PMC2828822

[18]

Levrero M,Costanzo A.The p53/p63/p73 family of transcription factors: overlapping and distinct functions..J Cell Sci2000;113:1661-70

[19]

Murray-Zmijewski F,Bourdon JC.p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress..Cell Death Differ2006;13:962-72

[20]

Harms K,Chen X.The common and distinct target genes of the p53 family transcription factors..Cell Mol Life Sci2004;61:822-42

[21]

Stiewe T.The p53 family in differentiation and tumorigenesis..Nat Rev Cancer2007;7:165-8

[22]

Sauer M,Beinoraviciute-Kellner R.C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity..Nucleic Acids Res2008;36:1900-12 PMCID:PMC2330244

[23]

De Laurenzi V,Barcaroli D.Two new p73 splice variants, gamma and delta, with different transcriptional activity..J Exp Med1998;188:1763-8 PMCID:PMC2212516

[24]

De Laurenzi VD,Terrinoni A.Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta..Cell Death Differ1999;6:389-90

[25]

Courtois S,Hainaut P.p53 protein variants: structural and functional similarities with p63 and p73 isoforms..Oncogene2004;23:631-8

[26]

Costanzo A,Narcisi A.TP63 and TP73 in cancer, an unresolved “family” puzzle of complexity, redundancy and hierarchy..FEBS Lett2014;588:2590-9

[27]

Liu Y,Gu W.p53 modifications: exquisite decorations of the powerful guardian..J Mol Cell Biol2019;11:564-77 PMCID:PMC6736412

[28]

Kastenhuber ER.Putting p53 in Context..Cell2017;170:1062-78 PMCID:PMC5743327

[29]

El-Deiry WS.p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy..Cancer Res2016;76:5189-91 PMCID:PMC5028108

[30]

Sengupta S.p53: traffic cop at the crossroads of DNA repair and recombination..Nat Rev Mol Cell Biol2005;6:44-55

[31]

Aubrey BJ,Janic A,Strasser A.How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?.Cell Death Differ2018;25:104-13 PMCID:PMC5729529

[32]

Crighton D,O’Prey J.DRAM, a p53-induced modulator of autophagy, is critical for apoptosis..Cell2006;126:121-34

[33]

Jiang L,Li T.Ferroptosis as a p53-mediated activity during tumour suppression..Nature2015;520:57-62 PMCID:PMC4455927

[34]

Ho T,Lane D.How the other half lives: what p53 does when it is not being a transcription factor..Int J Mol Sci2019;21:13 PMCID:PMC6982169

[35]

Valente LJ,Michalak EM.p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa..Cell Rep2013;3:1339-45

[36]

Pitolli C,Candi E.p53-mediated tumor suppression: DNA-damage response and alternative mechanisms..Cancers (Basel)2019;11:1983 PMCID:PMC6966539

[37]

Barili V,Montanini B.Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection..Nat Commun2020;11:604 PMCID:PMC6992697

[38]

Soussi T.TP53: an oncogene in disguise..Cell Death Differ2015;22:1239-49 PMCID:PMC4495363

[39]

Parikh N,Creighton CJ.Effects of TP53 mutational status on gene expression patterns across 10 human cancer types..J Pathol2014;232:522-33 PMCID:PMC4362779

[40]

Seemann S,Olivier M,Hainaut P.The tumor suppressor gene TP53: implications for cancer management and therapy..Crit Rev Clin Lab Sci2004;41:551-83

[41]

Bouaoun L,Ardin M.TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data..Hum Mutat2016;37:865-76

[42]

Puisieux A,Groopman J.Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens..Cancer Res1991;51:6185-9

[43]

Pfeifer GP,Olivier M.Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers..Oncogene2002;21:7435-51

[44]

Aguilar F,Cerutti P.Aflatoxin B1 induces the transversion of G-->T in codon 249 of the p53 tumor suppressor gene in human hepatocytes..Proc Natl Acad Sci U S A1993;90:8586-90 PMCID:PMC47402

[45]

Olivier M,Caron de Fromentel C,Harris CC.TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer..IARC Sci Publ2004;247-70

[46]

Bressac B,Wands J.Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa..Nature1991;350:429-31

[47]

Gouas DA,Ortiz-Cuaran S.TP53 R249S mutation, genetic variations in HBX and risk of hepatocellular carcinoma in The Gambia..Carcinogenesis2012;33:1219-24 PMCID:PMC3388490

[48]

Marchio A,Béré A.Droplet digital PCR detects high rate of TP53 R249S mutants in cell-free DNA of middle African patients with hepatocellular carcinoma..Clin Exp Med2018;18:421-31

[49]

Hussain SP,Staib F,Harris CC.TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer..Oncogene2007;26:2166-76

[50]

Amaddeo G,Ladeiro Y.Integration of tumour and viral genomic characterizations in HBV-related hepatocellular carcinomas..Gut2015;64:820-9 PMCID:PMC4392232

[51]

Levrero M.Mechanisms of HBV-induced hepatocellular carcinoma..J Hepatol2016;64:S84-101

[52]

Brosh R.When mutants gain new powers: news from the mutant p53 field..Nat Rev Cancer2009;9:701-13

[53]

Hanel W,Xu S.Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis..Cell Death Differ2013;20:898-909 PMCID:PMC3679454

[54]

Aschauer L.Novel targets and interaction partners of mutant p53 gain-of-function..Biochem Soc Trans2016;44:460-6

[55]

Dell’Orso S,Stambolsky P.ChIP-on-chip analysis of in vivo mutant p53 binding to selected gene promoters..OMICS2011;15:305-12

[56]

Lee MK,Phang BH.Cell-type, dose, and mutation-type specificity dictate mutant p53 functions in vivo..Cancer Cell2012;22:751-64

[57]

Sabapathy K.Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others..Nat Rev Clin Oncol2018;15:13-30

[58]

Gouas DA,Hautefeuille AH.Effects of the TP53 p.R249S mutant on proliferation and clonogenic properties in human hepatocellular carcinoma cell lines: interaction with hepatitis B virus X protein..Carcinogenesis2010;31:1475-82

[59]

Ghebranious N.The mouse equivalent of the human p53ser249 mutation p53ser246 enhances aflatoxin hepatocarcinogenesis in hepatitis B surface antigen transgenic and p53 heterozygous null mice..Hepatology1998;27:967-73

[60]

Liao P,Zhou X.Mutant p53 gains its function via c-Myc activation upon CDK4 phosphorylation at serine 249 and consequent PIN1 binding..Mol Cell2017;68:1134-46.e6 PMCID:PMC6204219

[61]

Besaratinia A,Hainaut P.In vitro recapitulating of TP53 mutagenesis in hepatocellular carcinoma associated with dietary aflatoxin B1 exposure..Gastroenterology2009;137:1127-371137.e1-5 PMCID:PMC2736365

[62]

Sell S.Mouse models to study the interaction of risk factors for human liver cancer..Cancer Res2003;63:7553-62

[63]

Gearhart TL.The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication..J Virol2010;84:2675-86 PMCID:PMC2826060

[64]

Pang R,Poon RT.Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis..Gastroenterology2007;132:1088-103

[65]

Truant R,Greenblatt J,Cromlish JA.Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation..J Virol1995;69:1851-9 PMCID:PMC188796

[66]

Wang XW,Yeh H.Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3..Proc Natl Acad Sci U S A1994;91:2230-4 PMCID:PMC43344

[67]

Levine AJ.The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53..Virology2009;384:285-93

[68]

Sanz G,Peuget S.Inhibition of p53 inhibitors: progress, challenges and perspectives..J Mol Cell Biol2019;11:586-99 PMCID:PMC6735775

[69]

Kubbutat MH,Vousden KH.Regulation of p53 stability by Mdm2..Nature1997;387:299-303

[70]

Cordon-Cardo C,Drobnjak M.Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas..Cancer Res1994;54:794-9

[71]

Endo K,Ohta T.Protein expression of MDM2 and its clinicopathological relationships in human hepatocellular carcinoma..Liver2000;20:209-15

[72]

Bang S,Kurokawa M.Regulation of the p53 family proteins by the ubiquitin proteasomal pathway..Int J Mol Sci2019;21:261 PMCID:PMC6981958

[73]

Huang X,Cheng C.Expression of Pirh2, a p27(Kip1) ubiquitin ligase, in hepatocellular carcinoma: correlation with p27(Kip1) and cell proliferation..Hum Pathol2011;42:507-15

[74]

Lee YH,Song HT.Definition of ubiquitination modulator COP1 as a novel therapeutic target in human hepatocellular carcinoma..Cancer Res2010;70:8264-9 PMCID:PMC2970744

[75]

Leng RP,Ma W.Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation..Cell2003;112:779-91

[76]

Dornan D,Shimizu H.The ubiquitin ligase COP1 is a critical negative regulator of p53..Nature2004;429:86-92

[77]

Shen J,Shao X.The E3 ligase RING1 targets p53 for degradation and promotes cancer cell proliferation and survival..Cancer Res2018;78:359-71

[78]

Pan Y,Yang X.CUL4A facilitates hepatocarcinogenesis by promoting cell cycle progression and epithelial-mesenchymal transition..Sci Rep2015;5:17006 PMCID:PMC4655319

[79]

Zhu K,Li J.Ring1 promotes the transformation of hepatic progenitor cells into cancer stem cells through the Wnt/β-catenin signaling pathway..J Cell Biochem2019;Online ahead of print

[80]

Gao J,Cimmino L.The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis..Elife2015;4:e07539 PMCID:PMC4721963

[81]

Surget S,Bourdon JC.Uncovering the role of p53 splice variants in human malignancy: a clinical perspective..Onco Targets Ther2013;7:57-68 PMCID:PMC3872270

[82]

Davison TS,Kaghad M.p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53..J Biol Chem1999;274:18709-14

[83]

Irwin M,Phillips AC.Role for the p53 homologue p73 in E2F-1-induced apoptosis..Nature2000;407:645-8

[84]

Seelan RS,van der Stoop P.The human p73 promoter: characterization and identification of functional E2F binding sites..Neoplasia2002;4:195-203 PMCID:PMC1531693

[85]

Stiewe T.Role of the p53-homologue p73 in E2F1-induced apoptosis..Nat Genet2000;26:464-9

[86]

Costanzo A,Pediconi N.DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes..Molecular Cell2002;9:175-86

[87]

Pediconi N,Costanzo A.Differential regulation of E2F1 apoptotic target genes in response to DNA damage..Nat Cell Biol2003;5:552-8

[88]

Pediconi N,Vossio S.hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage..Mol Cell Biol2009;29:1989-98 PMCID:PMC2663319

[89]

Marabese M,Rainelli C,Broggini M.DNA damage induces transcriptional activation of p73 by removing C-EBPalpha repression on E2F1..Nucleic Acids Res2003;31:6624-32 PMCID:PMC275563

[90]

Fontemaggi G,Strano S.The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation..Mol Cell Biol2001;21:8461-70 PMCID:PMC100009

[91]

Wu S,Kataoka K.Yin Yang 1 induces transcriptional activity of p73 through cooperation with E2F1..Biochem Biophys Res Commun2008;365:75-81

[92]

Grob TJ,Maisse C.Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53..Cell Death Differ2001;8:1213-23

[93]

Vossio S,Pediconi N.DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest..Oncogene2002;21:3796-803

[94]

Kartasheva NN,Lenz-Stöppler C,Dobbelstein M.p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop..Oncogene2002;21:4715-27

[95]

Nakagawa T,Ozaki T.Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter..Mol Cell Biol2002;22:2575-85 PMCID:PMC133713

[96]

Lunghi P,Mazzera L.The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting..Clin Cancer Res2009;15:6495-502

[97]

Irwin MS,Marin MC.Chemosensitivity linked to p73 function..Cancer Cell2003;3:403-10

[98]

Leong CO,DeYoung MP,Ellisen LW.The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers..J Clin Invest2007;117:1370-80 PMCID:PMC1849987

[99]

Ishimoto O,Enjo K.Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73..Cancer Res2002;62:636-41

[100]

Petrenko O,Moll UM.deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo..Mol Cell Biol2003;23:5540-55 PMCID:PMC166317

[101]

Beitzinger M,Oswald C.p73 poses a barrier to malignant transformation by limiting anchorage-independent growth..EMBO J2008;27:792-803 PMCID:PMC2265751

[102]

Tannapfel A,Mise N.Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73..Carcinogenesis2008;29:211-8

[103]

Botti E,Moretti F.Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas..Proc Natl Acad Sci U S A2011;108:13710-5 PMCID:PMC3158164

[104]

Marinari B,Botti E.The tumor suppressor activity of IKKalpha in stratified epithelia is exerted in part via the TGF-beta antiproliferative pathway..Proc Natl Acad Sci U S A2008;105:17091-6 PMCID:PMC2579383

[105]

Ramsey MR,Ory B.FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma..J Clin Invest2013;123:3525-38 PMCID:PMC3726171

[106]

Koster MI,Mills AA,Roop DR.p63 is the molecular switch for initiation of an epithelial stratification program..Genes Dev2004;18:126-31 PMCID:PMC324418

[107]

De Laurenzi V,Barcaroli D.Induction of neuronal differentiation by p73 in a neuroblastoma cell line..J Biol Chem2000;275:15226-31

[108]

Yang A,Bronson R.p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours..Nature2000;404:99-103

[109]

Yang A,Sun D.p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development..Nature1999;398:714-8

[110]

Donehower LA,Slagle BL.Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours..Nature1992;356:215-21

[111]

Jacks T,Williams BO.Tumor spectrum analysis in p53-mutant mice..Current Biology1994;4:1-7

[112]

Flores ER,Miller JB.Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family..Cancer Cell2005;7:363-73

[113]

Guo X,Papazoglu C.TAp63 induces senescence and suppresses tumorigenesis in vivo..Nat Cell Biol2009;11:1451-7 PMCID:PMC2920298

[114]

Tomasini R,Wilhelm M.TAp73 knockout shows genomic instability with infertility and tumor suppressor functions..Genes Dev2008;22:2677-91 PMCID:PMC2559903

[115]

Lin T,Saito S.p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression..Nat Cell Biol2005;7:165-71

[116]

Meletis K,Hede SM.p53 suppresses the self-renewal of adult neural stem cells..Development2006;133:363-9

[117]

Liu Y,Miyata Y.p53 regulates hematopoietic stem cell quiescence..Cell Stem Cell2009;4:37-48 PMCID:PMC2839936

[118]

Kim J,Kirak O.Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors..Stem Cells2011;29:992-1000 PMCID:PMC3409465

[119]

Yi L,Hu W,Levine AJ.Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation..Cancer Res2012;72:5635-45

[120]

Tovy A,McCarthy R.p53 is essential for DNA methylation homeostasis in naïve embryonic stem cells, and its loss promotes clonal heterogeneity..Genes Dev2017;31:959-72 PMCID:PMC5495125

[121]

Lane DP.Cancer. p53, guardian of the genome..Nature1992;358:15-6

[122]

Menendez S,Izpisua Belmonte JC.p53: guardian of reprogramming..Cell Cycle2010;9:3887-91

[123]

Sarig R,Brosh R.Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells..J Exp Med2010;207:2127-40 PMCID:PMC2947075

[124]

Mizuno H,Wahl GM.Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures..Proc Natl Acad Sci U S A2010;107:22745-50 PMCID:PMC3012457

[125]

Lee TI,Boyer LA.Control of developmental regulators by Polycomb in human embryonic stem cells..Cell2006;125:301-13 PMCID:PMC3773330

[126]

Boyer LA,Zeitlinger J.Polycomb complexes repress developmental regulators in murine embryonic stem cells..Nature2006;441:349-53

[127]

Di Fiore R,Drago-Ferrante R.Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells..Bone2014;60:198-212

[128]

Arsic N,Lagerqvist EL.The p53 isoform Δ133p53β promotes cancer stem cell potential..Stem Cell Reports2015;4:531-40 PMCID:PMC4400643

[129]

Senoo M,Crum CP.p63 is essential for the proliferative potential of stem cells in stratified epithelia..Cell2007;129:523-36

[130]

Chakrabarti R,Hwang J.ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling..Nat Cell Biol2014;16:1004-151-13 PMCID:PMC4183725

[131]

Memmi EM,Giacobbe A.p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling..Proc Natl Acad Sci U S A2015;112:3499-504 PMCID:PMC4372004

[132]

Liu S,Mantle ID.Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells..Cancer Res2006;66:6063-71 PMCID:PMC4386278

[133]

Siddique HR.Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences..Stem Cells2012;30:372-8

[134]

Meier C,Joost S,Pützer BM.p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p Control..Cancer Res2016;76:197-205

[135]

Niemantsverdriet M,Chiu RK.ΔNp73 enhances promoter activity of TGF-β induced genes..PLoS One2012;7:e50815 PMCID:PMC3517593

[136]

Alexandrova EM,Nemajerova A.ΔNp63 regulates select routes of reprogramming via multiple mechanisms..Cell Death Differ2013;20:1698-708 PMCID:PMC3824590

[137]

Martin-Lopez M,Fuertes-Alvarez S.p73 is required for appropriate BMP-induced mesenchymal-to-epithelial transition during somatic cell reprogramming..Cell Death Dis2017;8:e3034 PMCID:PMC5636977

[138]

Lin Y,Yang Z,Lin T.DNp73 improves generation efficiency of human induced pluripotent stem cells..BMC Cell Biol2012;13:9 PMCID:PMC3348002

[139]

Ramalho FS,Della Porta L.Comparative immunohistochemical expression of p63 in human cholangiocarcinoma and hepatocellular carcinoma..J Gastroenterol Hepatol2006;21:1276-80

[140]

Petitjean A,Shi H.The expression of TA and DeltaNp63 are regulated by different mechanisms in liver cells..Oncogene2005;24:512-9

[141]

Lanza M,Papoutsaki M.Cross-talks in the p53 family: deltaNp63 is an anti-apoptotic target for deltaNp73alpha and p53 gain-of-function mutants..Cell Cycle2006;5:1996-2004

[142]

Ruptier C,Ansieau S.TP63 P2 promoter functional analysis identifies β-catenin as a key regulator of ΔNp63 expression..Oncogene2011;30:4656-65

[143]

Petitjean A,Tribollet V.Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with ΔNp73..Carcinogenesis2008;29:273-81

[144]

Stiewe T,Peter M.Quantitative TP73 transcript analysis in hepatocellular carcinomas..Clin Cancer Res2004;10:626-33

[145]

Castillo J,Latasa MU.Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors..Gastroenterology2009;137:1805-15.e1-4

[146]

Müller M,Sayan AE.TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma..Cell Death Differ2005;12:1564-77

[147]

Schuster A,De Laurenzi V.ΔNp73β is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria..Cell Cycle2010;9:2629-39

[148]

Zhao L,Xu Z.The anticancer effects of cinobufagin on hepatocellular carcinoma Huh-7 cells are associated with activation of the p73 signaling pathway..Mol Med Rep2019;19:4119-28 PMCID:PMC6471725

[149]

Yoon MK,Lee MS.Structure and apoptotic function of p73..BMB Rep2015;48:81-90 PMCID:PMC4352617

[150]

González R,Rufini A.Role of p63 and p73 isoforms on the cell death in patients with hepatocellular carcinoma submitted to orthotopic liver transplantation..PLoS One2017;12:e0174326 PMCID:PMC5369777

[151]

Gifu P,Bian L.DeltaNp73 isoforms are involved in the immature phenotype of liver cancer cells..J Hepatol2017;66:S646

[152]

Akita H,Durkin ME.MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism..Cancer Res2014;74:5903-13 PMCID:PMC4199878

[153]

Li H,Septer S.Deregulation of Hippo kinase signalling in human hepatic malignancies..Liver Int2012;32:38-47 PMCID:PMC4175712

[154]

Tschaharganeh DF,Calvisi DF.p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer..Cell2014;158:579-92 PMCID:PMC4221237

[155]

Brunt E,Clavien PA.cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation..Hepatology2018;68:113-26 PMCID:PMC6340292

[156]

Machida K.Existence of cancer stem cells in hepatocellular carcinoma: myth or reality?.Hepatol Int2017;11:143-7 PMCID:PMC5759320

[157]

Mishra L,Murray J.Liver stem cells and hepatocellular carcinoma..Hepatology2009;49:318-29 PMCID:PMC2726720

[158]

Yamashita T.Cancer stem cells in the development of liver cancer..J Clin Invest2013;123:1911-8 PMCID:PMC3635728

[159]

Wu Y,Zhang X.Cancer stem cells: a potential breakthrough in HCC-targeted therapy..Front Pharmacol2020;11:198 PMCID:PMC7068598

[160]

Li XF,Xiang DM.Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance..Hepatology2017;66:1934-51

[161]

Dubois-Pot-Schneider H,Coulouarn C.Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells..Hepatology2014;60:2077-90

[162]

Belloni L,Guerrieri F.Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model..Sci Rep2018;8:13638 PMCID:PMC6134080

[163]

Pediconi N,Lupacchini L.EZH2, JMJD3, and UTX epigenetically regulate hepatic plasticity inducing retro-differentiation and proliferation of liver cells..Cell Death Dis2019;10:518 PMCID:PMC6614397

[164]

Li M,Dubois W.Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells..Mol Cell2012;46:30-42 PMCID:PMC3327774

[165]

Young RA.Control of the embryonic stem cell state..Cell2011;144:940-54 PMCID:PMC3099475

[166]

Yin X,Zhang BH.Coexpression of stemness factors Oct4 and Nanog predict liver resection..Ann Surg Oncol2012;19:2877-87

[167]

Zhao X,Sun D.Slug promotes hepatocellular cancer cell progression by increasing sox2 and nanog expression..Oncol Rep2015;33:149-56

[168]

Liang C,Ge H.Prognostic and clinicopathological value of Nanog in hepatocellular carcinoma: a meta-analysis..Clin Chim Acta2018;477:24-31

[169]

Chen CL,Punj V.NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism..Cell Metab2016;23:206-19 PMCID:PMC4715587

[170]

Shan J,Liu L.Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma..Hepatology2012;56:1004-14

[171]

Choi YJ,Ho JJ.miR-34 miRNAs provide a barrier for somatic cell reprogramming..Nat Cell Biol2011;13:1353-60 PMCID:PMC3541684

[172]

He L,Lim LP.A microRNA component of the p53 tumour suppressor network..Nature2007;447:1130-4 PMCID:PMC4590999

[173]

Marchenko ND,Moll UM.Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling..J Biol Chem2000;275:16202-12

[174]

Blandino G,Sacconi A.Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease..Semin Cell Dev Biol2020;98:105-17

[175]

Comel A,Capaci V.The cytoplasmic side of p53’s oncosuppressive activities..FEBS Lett2014;588:2600-9

[176]

Liu K,Kim JY.Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells..Mol Cell2017;68:281-92.e5 PMCID:PMC5687282

[177]

Liu K,Ou JJ.Autophagy and mitophagy in hepatocarcinogenesis..Mol Cell Oncol2018;5:e1405142 PMCID:PMC5821411

[178]

Ungewitter E.Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs..Genes Dev2010;24:2408-19 PMCID:PMC2964751

[179]

Voeltzel T,Zylbersztejn F.A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on stem-like human cell properties and patient outcome..Cell Death Dis2018;9:1011 PMCID:PMC6160490

[180]

Siddique HR,Chen CL.NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by a NANOG-dependent mechanism in liver cancer..Hepatology2015;62:1466-79 PMCID:PMC4618247

[181]

Shi H,Hautefeuille A.In vitro and in vivo cytotoxic effects of PRIMA-1 on hepatocellular carcinoma cells expressing mutant p53ser249..Carcinogenesis2008;29:1428-34

[182]

Bykov VJN,Bianchi J.Targeting mutant p53 for efficient cancer therapy..Nat Rev Cancer2018;18:89-102

[183]

Hientz K,Bhakta-Guha D.The role of p53 in cancer drug resistance and targeted chemotherapy..Oncotarget2017;8:8921-46 PMCID:PMC5352454

[184]

Testoni B,Guerrieri F.p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor..Oncogene2011;30:2670-8 PMCID:PMC3114186

PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

/