Orbital to millennial scale dust activity and humidity interaction in Central Asia during the last glacial period

Haoru Wei , Yougui Song , Shugang Kang , Mingyu Zhang , Mengping Xie , Yanping Wang , Li Han , Shukhrat Shukurov , Nosir Shukurov , Fakhriddin Fayziev

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102099

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102099 DOI: 10.1016/j.gsf.2025.102099

Orbital to millennial scale dust activity and humidity interaction in Central Asia during the last glacial period

Author information +
History +
PDF

Abstract

The factors controlling dust activity and humidity in Central Asia and their relationships remain controversial, partly due to a lack of high-resolution geological records for the mid-to-late last glaciation. In this study, we established an optically stimulated luminescence chronology for the QSHA profile in the Yili Basin, a region influenced by westerlies. Grain size and trace element data were used as paleoclimatic indicators. We investigated the relationships among Central Asian dust activity, humidity, and westerlies strength on orbital to millennial scale from 37.4 ka to 11.6 ka. Our study reveals that, on orbital timescales, humidity is positively correlated with westerlies strength which controlled by precession. Dust activity is controlled by Siberian High which was regulated by Northern Hemisphere high-latitude temperature. Their responses to low-latitude and high-latitude forcing mechanisms respectively and present an opposite relationship. On millennial timescales, humidity and westerlies strength are positively correlated. During Marine Isotope Stage (MIS) 2, humidity and dust activity show synchronous fluctuations, while during MIS 3, they exhibit an inverse relationship. Westerlies strength regulated humidity, which subsequently controlled glacial activity in the Tianshan Mountains, influencing dust activity in Central Asia. Additionally, the QSHA profile recorded seven Dansgaard-Oeschger (D-O) events on millennial timescales, indicating a potential link between Central Asian dust activity and high-latitude temperature variations in the Northern Hemisphere. Our findings provide new insights into dust and humidity interaction during the last glaciation periods in Central Asia and contribute to understanding global dust and hydrological cycles.

Keywords

Central Asian loess / Orbital timescale / Millennial timescale / Dust activity / Humidity

Cite this article

Download citation ▾
Haoru Wei, Yougui Song, Shugang Kang, Mingyu Zhang, Mengping Xie, Yanping Wang, Li Han, Shukhrat Shukurov, Nosir Shukurov, Fakhriddin Fayziev. Orbital to millennial scale dust activity and humidity interaction in Central Asia during the last glacial period. Geoscience Frontiers, 2025, 16(4): 102099 DOI:10.1016/j.gsf.2025.102099

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Haoru Wei: Writing - review & editing, Writing - original draft, Visualization, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yougui Song: Writing - review & editing, Supervision, Resources, Project administration, Methodol-ogy, Funding acquisition, Conceptualization. Shugang Kang: Writ-ing - review & editing, Writing - original draft, Visualization, Methodology, Funding acquisition, Formal analysis, Data curation. Mingyu Zhang: Writing - original draft, Visualization, Software, Resources, Formal analysis. Mengping Xie: Visualization, Method-ology, Investigation, Formal analysis, Data curation. Yanping Wang: Validation, Methodology, Formal analysis. Li Han: Resources, Methodology, Funding acquisition. Shukhrat Shu-kurov: Methodology, Investigation. Nosir Shukurov: Validation, Investigation. Fahriddin Fayziey: Investigation, Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thanks to Prof. Hamid Gholami from University of Hormozgan, Iran and Prof. Rustam Orozbaev from the Institute of Geology, National Academy of Sciences of Kyrgyzstan for their con-structive suggestions and assistance in revising the manuscript. The authors also appreciate the two anonymous reviewers for their valuable comments and insightful recommendations on this paper. This study is supported by the Natural Science Foundation of China (Grant Nos. 42372220, 42172207), the Youth Innovation Promo-tion Association Chinese Academy of Sciences (Grant No. Y2022102), the Science and Technology Innovation Project of Laoshan Laboratory (Grant No. LSKJ202203300) and the Interna-tional Partnership Program of the Chinese Academy of Sciences.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102099.

References

[1]

Aizen E.M., Aizen V.B., Melack J.M., Nakamura T., Ohta T., 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol. 21, 535-556.

[2]

An F., Lai Z., Liu X., Fan Q., Wei H., 2018. Abnormal Rb/Sr ratio in lacustrine sediments of Qaidam Basin, NE QinghaieTibetan Plateau: a significant role of aeolian dust input. Quat. Int. 469, 44-57.

[3]

Andersen K.K., Azuma N., Barnola J.M., Bigler M., Biscaye P., Caillon N., Chappellaz J., Clausen H.B., DahlJensen D., Fischer H., Flückiger J., Fritzsche D., Fujii Y., Goto-Azuma K., Gronvold K., Gundestrup N.S., Hansson M., Huber C., Hvidberg C.S., Johnsen S.J., Jonsell U., Jouzel J., Kipfstuhl S., Landais A., Leuenberger M., Lorrain R., Masson-Delmotte V., Miller H., Motoyama H., Narita H., Popp T., Rasmussen S.O., Raynaud D., Rothlisberger R., Ruth U., Samyn D., Schwander J., Shoji H., Siggard-Andersen M.L., Steffensen J.P., Stocker T., Sveinbjörnsdóttir A.E., Svensson A., Takata M., Tison J.L., Thorsteinsson T., Watanabe O., Wilhelms F., White J.W.C., Project N.G.I.C., 2004. High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431, 147-151.

[4]

Bartlein P.J., Anderson K.H., Anderson P.M., Edwards M.E., Mock C.J., Thompson R. S., Webb R.S., Whitlock C., 1998. Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quat. Sci. Rev. 17, 549-585.

[5]

Blaauw M., Christen J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457-474.

[6]

Blott S.J., Pye K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Processes Landforms 26, 1237-1248.

[7]

Bøtter-Jensen L., Thomsen K.J., Jain M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiat. Meas. 45, 253-257

[8]

Chen J., An Z.S., Head J., 1999. Variation of rb sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res. 51, 215-219.

[9]

Cheng H., Zhang P.Z., Spötl C., Edwards R.L., Cai Y.J., Zhang D.Z., Sang W.C., Tan M., An Z.S., 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 39, L01705.

[10]

Cheng L., Song Y., Sun H., Bradak B., Orozbaev R., Zong X., Liu H., 2020. Pronounced changes in paleo-wind direction and dust sources during MIS3b recorded in the Tacheng loess, northwest China. Quat. Int. 552, 122-134.

[11]

Dasch E.J., 1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta 33, 1521-1552.

[12]

Dietze M., Schulte P., Dietze E., 2022. Application of end-member modelling to grain-size data: constraints and limitations. Sedimentology 69, 845-863.

[13]

Duan F., An C., Wang W., Herzschuh U., Zhang M., Zhang H., Liu Y., Zhao Y., Li G., 2020. Dating of a late Quaternary loess section from the northern slope of the Tianshan Mountains (Xinjiang, China) and its paleoenvironmental signi ficance. Quat. Int. 544, 104-112.

[14]

Duller G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161-165.

[15]

Durcan J.A., King G.E., Duller G.A.T., 2015. DRAC: dose rate and age calculator for trapped charge dating. Quat. Geochronol. 28, 54-61.

[16]

Enzel Y., Amit R., Crouvi O., Porat N., 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing SinaiNegev erg. Quat. Res. 74, 121-131.

[17]

Galbraith R.F., Roberts R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quat. Geochronol. 11, 1-27.

[18]

Gong D.-Y., Mao R., Fan Y.-D., 2006. East Asian dust storm and weather disturbance: possible links to the arctic oscillation. Int. J. Climatol. 26, 1379-1396.

[19]

Gong D.Y., Ho C.H., 2002. The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol. 72, 1-9.

[20]

Huang E., Wang P., Wang Y., Yan M., Tian J., Li S., Ma W., 2020. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka. Sci. Adv. 6, eaba4823.

[21]

Isarin R.F.B., Renssen H., 1999. Reconstructing and modelling late Weichselian climates: the younger Dryas in Europe as a case study. Earth-Sci. Rev. 48, 1-38.

[22]

Jia J., Liu H., Gao F., Xia D., 2018. Variations in in the westerlies in Central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains. Palaeogeog. Palaeoclimatol. Palaeoecol. 504, 156-161.

[23]

Kang S., Wang X., Lu Y., Liu W., Song Y., Wang N., 2015. A high-resolution quartz OSL chronology of the Talede loess over the past ∼30 ka and its implications for dust accumulation in the Ili Basin, Central Asia. Quat. Geochronol. 30, 181-187.

[24]

Kang S., Wang X., Wang N., Song Y., Liu W., Wang D., Peng J., 2022. Siberian high modulated suborbital-scale dust accumulation changes over the past 30 ka in the eastern Yili Basin, Central Asia. Paleocean. Palaeoclimatol. 37, e2021PA004360.

[25]

Kang S.G., Du J.H., Wang N., Dong J.B., Wang D., Wang X.L., Qiang X.K., Song Y.G., 2020a. Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon. Geology 48, 1043-1047.

[26]

Kang S.G., Wang X.L., Roberts H.M., Duller G.A.T., Song Y.G., Liu W.G., Zhang R., Liu X.X., Lan J.H., 2020b. Increasing effective moisture during the holocene in the semiarid regions of the Yili Basin, Central Asia: evidence from loess sections. Quat. Sci. Rev. 246, 106553.

[27]

Kutzbach J.E., Wright H.E., 1985. Simulation of the climate of 18,000 years BP: results for the north American/North Atlantic/European sector and comparison with the geologic record of North America. Quat. Sci. Rev. 4, 147-187.

[28]

Laskar J., Robutel P., Joutel F., Gastineau M., Correia A.C.M., Levrard B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261-285.

[29]

Lehmkuhl F., Haselein F., 2000. Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (Western China and Western Mongolia). Quat. Int. 65-66, 121-145.

[30]

Li X., Liu X., Qiu L., An Z., Yin Z.-Y., 2013. Transient simulation of orbital-scale precipitation variation in monsoonal East Asia and arid central Asia during the last 150 ka. J. Geophys. Res. Atmos. 118, 7481-7488.

[31]

Li Y., Han L., Li X., 2024. Positive correlation between dust activity and humidity in arid Central Asia during the Holocene. Quat. Sci. Rev. 324, 108442.

[32]

Li Y., Song Y., Fitzsimmons K.E., Chang H., Orozbaev R., Li X., 2018. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 14, 271-286.

[33]

Li Y., Song Y., Kaskaoutis D.G., Zan J., Orozbaev R., Tan L., Chen X., 2021. Aeolian dust dynamics in the Fergana Valley, Central Asia, since ∼30 ka inferred from loess deposits. Geosci. Front. 12, 101180.

[34]

Li Y., Song Y., Orozbaev R., Dong J., Li X., Zhou J., 2020. Moisture evolution in Central Asia since 26 ka: insights from a Kyrgyz loess section, Western Tian Shan. Quat. Sci. Rev. 249, 106604.

[35]

Li Y., Song Y., Yin Q., Han L., Wang Y., 2019a. Orbital and millennial northern midlatitude westerlies over the last glacial period. Clim. Dyn. 53, 3315-3324.

[36]

Li Y., Song Y.G., Chen X.L., Shi Z.G., Kaskaoutis D.G., Gholami H., Li Y.D., 2023. Late Pleistocene dynamics of dust emissions related to westerlies revealed by quantifying loess provenance changes in North Tian Shan, Central Asia. Catena 227, 107101.

[37]

Li Y., Song Y.G., Fitzsimmons K.E., Dave A.K., Liu Y.M., Zong X.L., Sun H.Y., Liu H. F., Orozbaev R., 2022a. Investigating potential links between fine-grained components in loess and westerly airflow: evidence from east and Central Asia. Front. Earth Sci. 10, 901629.

[38]

Li Y., Song Y.G., Qiang M.R., Miao Y.F., Zeng M.X., 2019b. Atmospheric dust variations in the Ili Basin, Northwest China, during the last glacial period as revealed by a high mountain loess-paleosol sequence. J. Geophys. Res. Atmos. 124, 8449-8466.

[39]

Li Y.D., Li Y., Song Y.G., Wei H.R., Wang Y.P., Shukurov N., 2022b. Effective moisture evolution since the last glacial maximum revealed by a loess record from the westerlies-dominated Ili Basin, NW China. Atmosphere 13, 1931.

[40]

Lisiecki L.E., Raymo M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleocean. Palaeoclimatol. 20, 522-533.

[41]

Lu H.Y., An Z.S., 1998. Pretreated methods on loess-palaeosol samples granulometry. Chin. Sci. Bull. 43, 237-240.

[42]

Murray A.S., Wintle A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57-73.

[43]

Nottebaum V., Stauch G., Hartmann K., Zhang J., Lehmkuhl F., 2015. Unmixed loess grain size populations along the northern Qilian Shan (China): relationships between geomorphologic, sedimentologic and climatic controls. Quat. Int. 372, 151-166.

[44]

Park C.-S., Hwang S., Yoon S.-O., Choi J., 2014. Grain size partitioning in loesspaleosol sequence on the west coast of South Korea using the Weibull function. Catena 121, 307-320.

[45]

Paterson G.A., Heslop D., 2015. New methods for unmixing sediment grain size data. Geochem. Geophy. Geosy. 16, 4494-4506.

[46]

Prescott J.R., Hutton J.T., 1988. Cosmic ray and gamma ray dosimetry for TL and ESR. Internat. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 14, 223-227.

[47]

Prescott J.R., Hutton J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 23, 497-500.

[48]

Prins M.A., Vriend M., Nugteren G., Vandenberghe J., Lu H., Zheng H., Weltje G.J., 2007. Late Quaternary aeolian dust input variability on the Chinese loess Plateau: inferences from unmixing of loess grain-size records. Quat. Sci. Rev. 26, 230-242.

[49]

Pye K., Vriend M., Nugteren G., Vandenberghe J., Lu H., Zheng H., Weltje G.J., 1995. The nature, origin and accumulation of loess. Quat. Sci. Rev. 14, 653-667.

[50]

Pye K., Zhou L.P., 1989. Late Pleistocene and Holocene aeolian dust deposition in North China and the Northwest Pacific Ocean. Palaeogeog. Palaeoclimatol. Palaeoecol. 73, 11-23.

[51]

Rea D.K., Hovan S.A., 2010. Grain size distribution and depositional processes of the mineral component of abyssal sediments: lessons from the North Pacific. Paleoceanography 10, 251-258.

[52]

Rea D.K., Leinen M., Janecek T.R., 1985. Geologic approach to the long-term history of atmospheric circulation. Science 227, 721-725.

[53]

Rees-Jones J., 1995. Optical Dating Of Selected British Archaeological Sediments. Ph. D. thesis, University of Oxford.

[54]

Shao Y., Wyrwoll K.H., Chappell A., Huang J., Lin Z., McTainsh G.H., Mikami M., Tanaka T.Y., Wang X., Yoon S., 2011. Dust cycle: an emerging core theme in Earth system science. Aeolian Res. 2, 181-204.

[55]

Shi J., Yan Q., Jiang D., Min J., Jiang Y., 2016. Precipitation variation over eastern China and arid central Asia during the past millennium and its possible mechanism: perspectives from PMIP 3 experiments. J. Geophys. Res. Atmos. 121, 11989-12004.

[56]

Smalley I., O'Hara-Dhand K., Wint J., Machalett B., Jary Z., Jefferson I., 2009. Rivers and loess: the significance of long river transportation in the complex eventsequence approach to loess deposit formation. Quat. Int. 198, 7-18.

[57]

Song Y., Li Y., Cheng L., Zong X., Kang S., Ghafarpour A., Li X., Sun H., Fu X., Dong J., Mamadjanov Y., Orozbaev R., Shukurov N., Gholami H., Shukurov S., Xie M., 2021. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeog. Palaeoclimatol. Palaeoecol. 567, 110279.

[58]

Song Y., Wei H., Xie M., Kang S., Zong X., Shukurov N., Shukurov S., Li Y., Li Y., Zhang M., 2024. New insights into Holocene dust activity in eastern Uzbekistan. Global Planet. Change 243, 104633.

[59]

Sun D., Su R., Bloemendal J., Lu H., 2008. Grain-size and accumulation rate records from late Cenozoic aeolian sequences in northern China: implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeog. Palaeoclimatol. Palaeoecol. 264, 39-53.

[60]

Sun D.H., Bloemendal J., Rea D.K., An Z.S., Vandenberghe J., Lu H.Y., Su R.X., Liu T. S., 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55, 325-340.

[61]

Sun D.H., Bloemendal J., Rea D.K., Vandenberghe J., Jiang F.C., An Z.S., Su R.X., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 152, 263-277.

[62]

Sun H., Song Y., Chen X., Cheng L., Liu H., 2020. Holocene dust deposition in the Ili Basin and its implications for climate variations in westerlies-dominated Central Asia. Palaeogeog. Palaeoclimatol. Palaeoecol. 550, 109731.

[63]

Sun Y., Wang X., Liu Q., Clemens S.C., 2010. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 289, 171-179.

[64]

Tsoar H., Pye K., 2006. Dust transport and the question of desert loess formation. Sedimentology 34, 139-153.

[65]

Ujvari G., Kok J.F., Varga G., Kovacs J., 2016. The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Sci. Rev. 154, 247-278.

[66]

Ujvári G., Varga A., Raucsik B., Kovács J., 2014. The Paks loess-paleosol sequence: a record of chemical weathering and provenance for the last 800 ka in the midCarpathian Basin. Quat. Int. 319, 22-37.

[67]

Vandenberghe J., 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Sci. Rev. 121, 18-30. Varis, O., 2014. Curb vast water use in central Asia. Nature 514, 27-29.

[68]

Wang L., Jia J., Zhao H., Liu H., Duan Y., Xie H., Zhang D.D., Chen F., 2019. Optical dating of Holocene paleosol development and climate changes in the Yili Basin, arid central Asia. Holocene 29, 1068-1077.

[69]

Wang P., 2006. Orbital forcing of the low-latitude processes. Quat. Sci. 26, 694-701.

[70]

Weltje G.J., 1997. End-member modeling of compositional data: Numericalstatistical algorithms for solving the explicit mixing problem. Math. Geol. 29, 503-549.

[71]

Wintle A.G., Murray A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 41, 369-391.

[72]

Yan Q., Owen L.A., Wang H., Zhang Z., 2018. Climate constraints on glaciation over high-mountain Asia during the last glacial maximum. Geophys. Res. Lett. 45, 9024-9033.

[73]

Yin Q.Z., Berger A., 2012. Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Clim. Dyn. 38, 709-724.

[74]

Zhang B., Zhang Z., Meng X.Q., Liu J.D., Xia T.F., Guo B.Y., Zhou B.Q., Ji J.F., 2023a. Holocene synchronous evolution of precipitation and soil moisture as evidenced by paleosol deposits in the Ili Basin, Central Asia. Palaeogeog. Palaeoclimatol. Palaeoecol. 615, 111466.

[75]

Zhang Z., Zheng Z., Meng X., Lai Z., Hou Y., Ji J., 2023b. Gradually increasing precipitation since 20 ka as evidenced by loess dolomite abundance in the Ili Basin, Central Asia. Catena 232, 107420.

[76]

Zhao J., Qiu J., Harbor J.M., Ji H., Caffee M.W., Guo W., Zheng H., 2023. Timing and extent of late Quaternary glaciations on Karlik Mountain, eastern Tianshan range, China. Quat. Sci. Rev. 306, 108038.

[77]

Zhao S., Peterse F.E.C., Lei Y., Huang M., Yang H., Xie S., 2024. Decreased westerly moisture transport leads to abrupt vegetation change in northern Central Asia during late MIS3: evidence from Zeketai Loess Ili Basin. Palaeogeog. Palaeoclimatol. Palaeoecol. 635, 111945.

[78]

Zhong Y., Liu Y., Yang H., Yin Q., Wilson D.J., Lu Z., Jaccard S.L., Struve T., Clift P. D., Kaboth-Bahr S., Larrasoana J.C., Bahr A., Gong X., Zhao D., Zhang Y., Xia W., Liu Q., 2024. Orbital controls on North Pacific dust flux during the late Quaternary. Geophys. Res. Lett. 51, e2023GL106631.

AI Summary AI Mindmap
PDF

442

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/