Palynofloral and geochemical evidence for Permian-Triassic transition from Talcher Coalfield, Son-Mahanadi Basin, India: Insights into age, palaeovegetation, palaeoclimate and palaeowildfire

Srikanta Murthy , Deveshwar P. Mishra , Dieter Uhl , Anju Saxena , Vikram P. Singh , Runcie P. Mathews , Anurag Kumar , Bindhyachal Pandey

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102086

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102086 DOI: 10.1016/j.gsf.2025.102086

Palynofloral and geochemical evidence for Permian-Triassic transition from Talcher Coalfield, Son-Mahanadi Basin, India: Insights into age, palaeovegetation, palaeoclimate and palaeowildfire

Author information +
History +
PDF

Abstract

The Permian-Triassic (P/T) transition is marked by the most severe mass-extinction event of the Phanerozoic. Although much is known about this event in the marine realm, there are many open questions regarding what happened during this period to many continental biota. In the case of plants, a drastic mass-extinction event has even been negated by some authors. To add about the knowledge on continental biota in India during this crucial time period, the present study analysed the palynology, palynofacies, organic geochemistry (biomarkers), stable isotopes, and charcoal within the subsurface Gondwana deposits of the Kamthi Formation (late Permian-early Triassic) from core TTB-7 from the Tribida block, located in the Talcher Coalfield of the Mahanadi Basin, India.

The primary objectives are to validate the age of the strata, ascertain the palaeodepositional setting of the palaeomire, and propose palaeobotanical evidence regarding the occurrence of wildfires within this stratigraphic succession and changes in floral content across the P/T transition. The palynological study proposes two palynoassemblage zones, Densipollenites magnicorpus and Klausipollenites schaubergeri, suggesting a latest Permian (Lopingian) and early Triassic (Induan?) age for the studied succession, respectively. The age is also inferred based on correlation with coeval assemblages from India and other Gondwana continents. The palynoassemblages reveal the dominance of Glossopteridales and Coniferales along with Filicales, Lycopsidales, Equisetales, Cordaitales and Peltaspermales. The relatively higher values of the carbon preference index and terrigenous/aquatic ratio also suggest higher plant input. However, a bimodal n-alkane distribution pattern suggests the contribution of terrigenous and microbial sources. Although the occurrences of long-chain alkanes indicate input of higher plants, the low Pwax values (<0.26) suggest relatively less contribution. The Paqvalues (≌1) and amorphous organic matter (av. 33.24%) suggest a significant macrophyte input in the studied samples, pointing to the occurrence of moderate aquatic conditions in the basin.

Furthermore, the distribution of hopanoids and the content of degraded organic matter (av. 29.96%) reflect the bacterial degradation of organic matter. Also, the δ13C values of the studied section varied from -31.2‰ to -21.8‰. A large carbon isotopic offset of 9.4‰ across the P/T transition, Pr/Ph ratio (0.3-1.3) and shift in the distribution pattern of palynofacies components is indicating a significant change in climatic conditions. Moreover, the presence of macroscopic charcoal fragments of gymnospermous affinity with pre-charring colonization by fungi provides evidence for wildfire occurring during the Lopingian (Late Permian) in this basin.

Keywords

Glossopteridales / Palynology / Palynofacies / Bulk carbon isotope / Palaeowildfire / Biomarkers

Cite this article

Download citation ▾
Srikanta Murthy, Deveshwar P. Mishra, Dieter Uhl, Anju Saxena, Vikram P. Singh, Runcie P. Mathews, Anurag Kumar, Bindhyachal Pandey. Palynofloral and geochemical evidence for Permian-Triassic transition from Talcher Coalfield, Son-Mahanadi Basin, India: Insights into age, palaeovegetation, palaeoclimate and palaeowildfire. Geoscience Frontiers, 2025, 16(4): 102086 DOI:10.1016/j.gsf.2025.102086

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Srikanta Murthy: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Writing - original draft, Writing - review & editing. Deveshwar P. Mishra: Data curation, Formal analysis, Methodology. Dieter Uhl: Validation, Visualiza-tion, Writing - review & editing. Anju Saxena: Conceptualization, Writing - review & editing. Vikram P. Singh: Methodology, Writ-ing - review & editing. Runcie P. Mathews: Formal analysis, Methodology, Writing - review & editing. Anurag Kumar: Formal analysis, Methodology, Writing - review & editing. Bindhyachal Pandey: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are thankful to the Director (Prof. Mahesh G. Thak-kar), Birbal Sahni Institute of Palaeosciences, Lucknow for provid-ing the necessary permission and laboratory facilities to carry out this work (BSIP/RDCC/Publication no. 73/2024-25). Author (SM) expresses sincere thanks to DST (Govt. of India) project no. EEQ/2018/000303 for the financial support. SM is also thankful to the Coal Wing, Kolkata, Geological Survey of India, for providing samples under the MoU. We are also grateful to Dr. Trina Bose (Sci-entist, BSIP) and Dr. Subodh Kumar (T.O., BSIP) for their assistance in stable carbon isotope and SEM analysis, respectively. Authors are grateful to Dr. M. Santosh, Editorial Advisor, Geoscience Fron-ters for his efficient editorial support during the peer-review pro-cess and are also thankful to Dr. Sanghoon Kwon, Associate Editor, Geoscience Fronters and three reviewers (Dr. Enze Wang, Dr. Michael Brookfield and Dr. Alexander Wheeler) for their con-structive comments and valuable suggestions that helped us to improve the quality of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102086.

References

[1]

Abu Hamad A.M.B., Jasper A., Uhl D., 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: signal for atmospheric oxygen levels, taphonomic bias or lack of fuel? Int. J. Coal Geol. 96-97, 60-71.

[2]

Afonin S.A., Barinova S.S., Krassilov V.A., 2001. A bloom of Tympanicysta Balme (green algae of zygnematalean affinities) at the Permian-Triassic boundary. Geodiversitas 23, 481-487.

[3]

Aggarwal N., Patel R., Goswami S., 2022. Palaeoclimate, palaeoecology and palaeovegetation in and around Nandira Colliery, Talcher Basin, Odisha, India during Early Permian: Inferences from typical Karharbari palynofloral and palynofacies analysis. J. Geol. Soc. India 98 (9), 1244-1252.

[4]

Agrawal S., Srivastava P., Sonam, Meena N.K., Rai S.K., Bhushan R., Misra D.K., Gupta A.K., 2015. Stable (d 13 C and d15 N) isotopes and magnetic susceptibility record of late holocene climate change from a lake profile of the northeast Himalaya. J. Geol. Soc. India 86, 696-705.

[5]

Agrawal S., Verma P., Rao M.R., Garg R., Kapur V.V., Bajpai S., 2017. Lignite deposits of the Kutch Basin, western India: carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. J. Asian Earth Sci. 146, 296-303.

[6]

Algeo T.J., Hinnov L., Moser J., Maynard J.B., Elswick E., Kuwahara K., Sano H., 2010. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38, 187-190.

[7]

Anderson J.M. 1977. Biostratigraphy of the Permian and Triassic, 3. Part 3: A Review of Gondwana Permian Palynology, with Particular Reference to the Northern Karoo Basin, South Africa. Mem. Bot. Surv. South Africa. Botanical Research Institute, Department of Agricultural Technical Services, South Africa, pp. 188.

[8]

Anderson J.M., Anderson H.M., Archangelsky S., Bamford M., Chandra S., Dettmann M., Hill R., McLoughlin S., Rösler O., 1999. Patterns of Gondwana plant colonisation and diversification. J. Afr. Earth Sci. 28 (1), 145-167.

[9]

Arzadún G., Cisternas M.E., Cesaretti N.N., Tomezzoli R.N., 2017. Presence of charcoal as evidence of paleofires in the Claromecó Basin, Permian of Gondwana, Argentina: diagenetic and paleoenvironment analysis based on coal petrography studies. Geo. Res. J. 14, 121-134.

[10]

Backhouse J., 1991. Permian palynostratigraphy of the Collie Basin, Western Australia. Rev. Palaeobot. Palynol. 67, 237-314.

[11]

Backhouse J., 1993. Palynology and correlation of Permian sediments in the Perth, Collie and Officer basins, Western Australia. Geol. Survey Western Austral. Rep. 34, 111-128.

[12]

Balme B.E., 1963. Plant microfossils from the lower Triassic of Western Australia. Palaeontology 6 (1), 12-40.

[13]

Balme B.E., 1970. Palynology of Permian and Triassic strata in the Salt Range and Surghar Range, West Pakistan. In: KummelB., TeichertC. (Stratigraphic Boundary Problems: The University Press of Kansas, Lawrence KS,Eds.), Permian and Triassic of West Pakistan. pp. 305-453.

[14]

Balme B.E., 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Rev. Palaeobot. Palynol. 87 (2-4), 81-323.

[15]

Balme B.E., Playford G., 1967. Late Permian plant microfossils from the Prince Charles Mountains, Antarctica. Rev. Micropalaeontol. 10, 179-192.

[16]

Barbolini N., Bamford M.K., Tolan S., 2016. Permo-Triassic palynology and palaeobotany of Zambia: a review. Palaeontol. Afr. 50, 18-30.

[17]

Barbolini N., Rubidge B., Bamford M.K., 2018. A new approach to biostratigraphy in the Karoo retroarc foreland system: utilising restricted-range palynomorphs and their first appearance datums for correlation. J. Afr. Earth Sci. 140, 114-133.

[18]

Barrett P.J., Elliot D.H., Lindsay J.F., 1986. The Beacon Supergroup (Devonian- Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier, Antarctica. In: TurnerM.D., SplettstoesserJ.F. (Geologyof the Transantarctic Mountains,Eds.), Antarctica, Antarctica Research Series Am, 36. Geophysics Union, pp. 339-428.

[19]

Batten D.J., Stead D.T., 2005. Palynofacies analysis and its stratigraphic application. In: KoutsoukosE.A.M. (Ed.), Applied Stratigraphy. Springer, Dordrecht, pp. 203-226.

[20]

Belcher C.M., Mander L., Rein G., Jervis F.X., Haworth M., Hesselbo S.P., Glasspool I.J., McElwain J.C., 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3, 426-429.

[21]

Benício J.R.W., Jasper A., Spiekermann R., Garavaglia L., Pires-Oliveira E.F., Machado N.T.G., Uhl D., 2019. Recurrent palaeo-wildfires in a Cisularian coal seam: a palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil. PLoS One 14 (3), e0213854.

[22]

Benton M.J., 2003. When Life Nearly Died:The Greatest Mass Extinction of All Time. Thames and Hudson, London, New York, p. 336.

[23]

Benton M.J., 2018. Hyperthermal-driven mass extinctions: killing models during the Permian-Triassic mass extinction. Phil. Trans. R. Soc. A 376, 20170076.

[24]

Benton M.J., 2023. Palaeobiology: rapid succession during mass extinction. Curr. Biol. 33 (11), R436-R440.

[25]

Benton M.J., Tverdokhlebov V.P., Surkov M.V., 2004. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97-100.

[26]

Benton M.J., Twitchett R.J., 2003. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18, 358-365.

[27]

Bernardi M., Petti F.M., Benton M.J., 2018. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction. Proc. R. Soc. B 285, 20172331.

[28]

Bharadwaj D.C., 1962. The miospore genera in the coals of Raniganj stage (Upper Permian), India. Palaeobotanist 9 (1), 68-106.

[29]

Bharadwaj D.C., Salujha S.K., 1964. Sporological study of Seam 8 in Raniganj Coalfield, Bihar (India). Part 1. Description of sporae dispersae. Palaeobotanist 12 (2), 181-215.

[30]

Bharadwaj D.C., Srivastava S.C., 1969. Some new miospores from Barakar Stage, Lower Gondwana, India. Palaeobotanist 17 (2), 220-229.

[31]

Bharadwaj D.C., Tiwari R.S., 1977. Permian-Triassic miofloras from the Raniganj Coalfield, India. Palaeobotanist 24, 26-49.

[32]

Bharadwaj D.C., Tiwari R.S., Anand-Prakash, 1979. Permo-Triassic palynostratigraphy and lithostratigraphical characteristic in Damodar Basin, India. Biol. Mem. 4, 49-82.

[33]

Bharadwaj D.C., Tiwari R.S., Kar R.K., 1974. Crescentipollenites, gen. nov. A new name for thitheto known Lunatisporites, from the Lower Gondwana. Geophytol 4 (2), 141-146.

[34]

Bhattacharya S., Ankit Y., Murthy S., Kushwaha V., 2021. Biotic response to environmental shift during the Permian-Triassic transition: assessment from organic geochemical proxies and palynomorphs in terrestrial sediments from Raniganj Sub-basin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 576, 110483.

[35]

Bhattacharya S.K., Ghosh P., Chakrabarty A., 2002. Isotopic analysis of Permo-Carboniferous Talchir sediments from East-Central India: signature of glacial melt-water lakes. Chem. Geol. 188, 261-274.

[36]

Bond W.J., Scott A.C., 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137-1150.

[37]

Bourbonniere R.A., Meyers P.A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41, 352-359.

[38]

Bowman D.M.J.S., Balch J.K., Artaxo P., Bond W.J., Carlson J.M., Cochrane M.A., D’Antonio C.M., DeFries R.S., Doyle J.C., Harrison S.P., Johnston F.H., Keeley J. E., Krawchuk M.A., Kull C.A., Marston J.B., Moritz M.A., Prentice I.C., Roos C.I., Scott A.C., Sweetnam T.W., van der Werf G.R., Pyne S.J., 2009. Fire in the Earth system. Science 324, 481-484.

[39]

Brookfield M.E., 1993. The Himalayan passive margin from Precambrian to Cretaceous times. Sediment. Geol. 84, 1-35.

[40]

Brown S.A.E., Scott A.C., Glasspool I.J., Collinson M.E., 2012. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162-190.

[41]

Cai Y.F., Zhang H., Feng Z., Shen S.Z., 2021. Intensive wildfire associated with volcanism promoted the vegetation changeover in Southwest China during the Permian-Triassic transition. Front. Earth Sci. 9, 615841.

[42]

Campbell H.J., Mortimer N., Raine J.I., 2001. Geology of the Permian Kuriwao group, Murihiku Terrane, Southland, New Zealand. N. Z. J. Geol. Geophys. 44 (4), 485-500.

[43]

Cardoso D., Mizusaki A.M.P., Guerra-Sommer M., Menegat R., Jasper A., Uhl D., 2018. Wildfires in the Triassic of Gondwana Paraná Basin. J. South Am. Earth Sci. 82, 193-206.

[44]

Cascales-Miñana B., Cleal C.J., 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195-200.

[45]

Cascales-Miñana B., Diez J.B., Gerrienne P., Cleal C.J., 2016. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist. Biol. 28, 1066-1074.

[46]

Chakraborty S.N., Das S.N., Banerjee S.P., 1967. Final report on investigation by drilling in the central part of Talcher Coalfield, Orissa. Geol. Surv. India (unpublished report).

[47]

Chakraborty U., 1989. On the geology of west-central part of Talcher Coalfield. Geol. Surv. India (unpublished report).

[48]

Clarkson M.O., Kasemann S.A., Wood R.A., Lenton T.M., Daines S.J., Richoz S., Ohnemueller F., Meixner A., Poulton S.W., Tipper E.T., 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348 (6231), 229-232.

[49]

Cotter G.de P., 1917. A revised classification of the Gondwana system. Rec. Geol. Surv. India 48 (1), 23-33.

[50]

Couper R.A., 1953. Upper Mesozoic and Cenozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Palaeontological Wellington 22, 1-77.

[51]

Crosbie Y.M., 1985. Permian palynomorphs from the Kuriwao Group, Southland, New Zealand. New Zealand Geol. Surv. Rec. 8, 109-119.

[52]

Daniel G., 2003. Microview of wood under degradation by bacteria and fungi. In: GodellB., NicholasD.D., SchultzT.P. (WoodDeterioration and Preservation.Eds.), ACS Symposium Series, pp. 34-72.

[53]

Dawit L.E., 2014. Permian and Triassic microflora assemblages from the Blue Nile Basin, central Ethiopia. J. Afr. Earth Sci. 99, 408-426.

[54]

de Jersey N.J., 1962. Triassic spores and pollen grains from the Ipswich Coalfield, 307. Geological Survey of Queensland, pp. 1-18.

[55]

de Jersey N.J., 1970. Triassic miospores from the Blackstone Formation, Aberdare Conglomerate and Raceview Formation. Geol. Surv. Queensl. Publ. 348.

[56]

Dibner A.F., 1976. Late Permian palynofloras in sediments around beaver lake (East Antarctica). The Antarctica. Reports of the Soviet Committee of Antarctic Research 15, 41-52.

[57]

El Atfy H., Havlik P., Krüger P.S., Manfroi J., Jasper A., Uhl D., 2019. Pre-Quaternary wood decay ‘caught in the act’ by fire - Examples of plant-microbe-interactions preserved in charcoal from clastic sediments. Hist. Biol. 31, 952-961.

[58]

Ercegovac M., Kostic A., 2006. Organic facies and palynofacies: nomenclature, classification and applicability for petroleum source rock evaluation. Int. J. Coal Geol. 68, 70-78.

[59]

Erwin D.H., 1990. The end-Permian mass-extinction. Annu. Rev. Ecol. Syst. 21, 69-91.

[60]

Erwin D.H., 2006. Extinction. How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton, Oxford.

[61]

Falcon R., 1975. Palynostratigraphy of the lower Karroo Sequence in the central Sebungwe Mid-Zambezi Basin, Rhodesia. Palaeontol. Afr. 18, 1-29.

[62]

Farabee M.J., Taylor E.L., Taylor T.N., 1991. Late Permian palynomorphs from the Buckley formation, central transantarctic mountains, Antarctica. Rev. Palaeobot. Palynol. 69, 353-368.

[63]

Farabee M.J., Taylor E.L., Taylor T.N., 1990. Correlation of Permian and Triassic palynomorphs assemblages from the central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol. 65, 257-265.

[64]

Feng Z., Wei H.B., Ye R.H., Sui Q., Gou X.D., Guo Y., Liu L.J., Yang S.L., 2020. Latest Permian peltasperm plant from Southwest China and its palaeo-environmental implications. Front. Earth Sci. 8, 559430.

[65]

Ficken K., Li B., Swain D., Eglinton G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 31 (7), 745-749.

[66]

Flannigan M.D., Krawchuk M.A., de Groot W.J., Wotton B.M., Gowman L.M., 2009. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483-507.

[67]

Forte G., Vallé F., Kustatscher E., 2023. Unveiling the evolution of the Kungurian (Cisuralian) flora in the paleotropics (Southern Alps, Northern Italy). Rev. Palaeobot. Palynol. 318, 104984.

[68]

Foster C.B., 1979. Permian plant microfossils of the Blair Athol Coal Measures, Baralaba Coal Measures, and basal Rewan Formation of Queensland. Geological Survey of Queensland, Publication 372, 1-244.

[69]

Foster C.B., 1982. Biostratigraphic potential of Permian spore-pollen floras from GSQ Mundubbera 5+6, Taroom Trough. Queensl. Gov. Min. J. 83 (964), 82-96.

[70]

Foster C.B., Logan G.A., Stephenson M.H., Greenwood P.F., Marshall C., 2002. A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology 26, 35-58.

[71]

Foster C.B., Logan G.A., Summons R.E., Gorter J.D., Edwards D.S., 1997. Carbon isotopes, kerogen types and the Permian-Triassic boundary in Australia: implications for exploration. APPEA J. 37 (1), 472-489.

[72]

Fröbisch J., 2013. Vertebrate diversity across the end-Permian mass extinction — Separating biological and geological signals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372, 50-61.

[73]

Gautam S., Ram-Awatar, Tewari R., Goswami S., 2016. Permian-Triassic palynofloral transition in sohagpur coalfield, South Rewa Gondwana Basin, Madhya Pradesh, India. Palaeobotanist 65 (1), 109-129.

[74]

Ghosh S., 2023. Petrography and geochemistry of siliciclastic sediments in Permo-Triassic transition from the southern Pranhita-Godavari Gondwana basin, India: Implications for palaeoclimate. J. Asian Earth Sci. X 9, 100149.

[75]

Ghosh P., Bhattacharya S.K., Shukla A.D., Shukla P.N., Bhandari N., Parthasarathy G., Kunwar A.C., 2002. Negative d 13 C excursion and anoxia at the Permo-Triassic boundary in the Tethys Sea. Curr. Sci. 83, 498-502.

[76]

Glasspool I., 2000. Megaspores from the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia. Rev. Palaeobot. Palynol. 110 (3-4), 209-227.

[77]

Glasspool I.J., Edwards D., Axe L., 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381-383.

[78]

Glasspool I.J., Gastaldo R.A., 2022. Silurian wildfire proxies and atmospheric oxygen. Geology 50, 1048-1052.

[79]

Goswami S., Das K., Sahoo M., Bal S., Pradhan S., Singh K.J., Saxena A., 2018a. Biostratigraphy and floristic evolution of coal swamp floras of a part of Talcher Basin, India: a window on a Permian temperate ecosystem. Arab. J. Geosci. 11, 524-538.

[80]

Goswami S., Saxena A., Singh K.J., Chandra S., Cleal C.J., 2018b. An appraisal of the Permian palaeobiodiversity and geology of the Ib-River Basin, eastern coastal area, India. J. Asian Earth Sci. 157, 283-301.

[81]

Goswami S., Singh K.J., Chandra S., 2006a. Palaeobotany of Gondwana Basins of Orissa, India: a bird’s eye view. J. Asian Earth Sci. 28 (4-6), 218-233.

[82]

Goswami S., Singh K.J., Chandra S., 2006b. Pteridophytes from Lower Gondwana Formations of Ib-River Coalfield, Orissa, and their diversity and distribution in the Permian of India. J. Asian Earth Sci. 28 (4-6), 234-250.

[83]

Goswami S., Singh K.J., Saxena A., Wang J., Chandra S., Gupta S., 2022. Witnessing floral evolution: a case study from Barakar formation in Lajkura colliery, Ib-river coalfield, Mahanadi Basin, India. Hist. Biol. 34 (1), 30-41.

[84]

Greb S.F., DiMichele W.A., Gastaldo R.A., 2006. Evolution and importance of wetlands in earth history. Geol. Soc. Am. Spec. Pap. 399, 1-40.

[85]

Grice K., Cao C., Love G.D., B¨ottcher M.E., Twitchett R.J., Grosjean E., Summons R. E., Turgeon S.C., Dunning W., Jin Y., 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706-709.

[86]

Hankel O., 1990. Lower Triassic spores and pollen from a borehole in the Lower Mariakani Formation (Karoo) of Kenya. Geol. Paläontol. 120 (2), 639-678.

[87]

Hankel O., 1994. Early Permian to middle Jurassic rifting and sedimentation in East Africa and Madagascar. Geol. Rundsch. 83, 703-710.

[88]

Helby R., Morgan R., Partridge A.D., 1987. A palynological zonation of the Australian Mesozoic. Assoc. Austral. Palaeontol. Memoir 4, 1-94.

[89]

Hermann E., Peter A., Hochuli P.A., Hugo Bucher H., Ghazala R., 2012. Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Rev. Palaeobot. Palynol. 169, 61-95.

[90]

Hermann E., Hochuli P.A., Bucher H., Brühwiler T., Hautmann M., Ware D., Roohi G., 2011. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res. 20 (2-3), 630-637.

[91]

Hermann E., Hochuli P.A., Bucher H., Vigran J.O., Weissert H., Bernasconi S.M., 2010. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform). Glob. Planet. Chang. 74 (3-4), 156-167.

[92]

Hochuli P.A., 2016. Interpretation of ‘‘fungal spikes” in Permian Triassic boundary sections. Glob. Planet. Chang. 144, 48-50.

[93]

Hochuli P.A., Schneebeli-Hermann E., Vigran J.O., Bucher H., Weissert H., 2010. Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Glob. Planet. Chang. 74, 144-155.

[94]

Jasper A., Guerra-Sommer M., Abu Hamad A.M.B., Bamford M., Bernardes-de-Oliveira M.E.C., Tewari R., Uhl D., 2013. The burning of Gondwana: Permian fires on the southern continent-A palaeobotanical approach. Gondwana Res. 24, 148-160.

[95]

Jasper A., Guerra-Sommer M., Uhl D., Bernardes-de-Oliveira M.E.C., Tewari R., Secchi M.I., 2012. Palaeobotanical evidence of wildfires in the Upper Permian of India: macroscopic charcoal remains from the Raniganj Formation, Damodar Valley Basin. Palaeobotanist 61, 75-82.

[96]

Jasper A., Pozzebon-Silva A., Carniere J.S., Uhl D., 2021. Palaeozoic and Mesozoic palaeo-wildfires: an overview on advances in the 21st Century. J. Palaeosci. 70, 159-171.

[97]

Jasper A., Uhl D., Agnihotri D., Tewari R., Pandita S.K., Benício J.R.W., Pires E.F., Da Rosa A.S., Bhat G.D., Pillai S.K., 2016. Evidence of wildfires in the late Permian (Changsinghian) Zewan Formation of Kashmir, India. Curr. Sci. 110, 419-423.

[98]

Jensen E.S., 1991. Evaluation of automated analysis of 15 N and total N in plant material and soil. Plant Soil. 133, 83-92.

[99]

Jha N., 2008. Permian-Triassic palynofloral transition in the Sattupalli area, Chintalapudi sub-basin, Godavari Graben, Andhra Pradesh, India. J. Palaeontol. Soc. India. 52, 159-168.

[100]

Jha N., Aggarwal N., 2012. Permian-Triassic palynostratigraphy in Mailaram area, Godavari Graben, Andhra Pradesh, India. J. Earth Syst. Sci. 121, 1257-1285.

[101]

Jha N., Chary M.B., Aggarwal N., 2012. Permian Triassic palynofloral transition in Chintalapudi area, Godavari Graben, Andhra Pradesh, India. J. Earth Syst. Sci. 121, 1287-1303.

[102]

Jones T.P., Chaloner W.G., 1991. Fossil charcoal, its recognition and palaeo-atmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 39-50.

[103]

Kammerer C.F., Viglietti P.A., Butler E., Botha J., 2023. Rapid turnover of top predators in African terrestrial faunas around the Permian-Triassic mass extinction. Curr. Biol. 33, 2283-2290.

[104]

Kar R.K., 1968. Palynology of the North Karanpura Basin, Bihar, India. 3. Raniganj exposure near Lungatoo, Hazaribagh District. Palaeobotanist 16 (3), 273-282.

[105]

Kauffmann M., Jasper A., Uhl D., Meneghini J., Osterkamp I.C., Zvirtes G., Pires E. F., 2016. Evidence for palaeo-wildfire in the Late Permian palaeotropics-charcoal from the Motuca Formation in the Parnaíba Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 122-128.

[106]

Kelber K.P., van Konijnenburg-van Cittert J.H., 1998. Equisetitesarenaceus from the Upper Triassic of Germany with evidence for reproductive strategies. Rev. Palaeobot. Palynol. 100 (1-2), 1-26.

[107]

Kemp E.M., 1973. PermianflorafromtheBeaverLakearea,PrinceCharlesMountains 1. Palynological investigation of samples. BMR Bull. Australia 126, 7-12.

[108]

Klaus W., 1960. Spores of the Karnian Stage of the eastern Alps Triassic. Yearbook of the Federal Geological Survey 5, 107-184.

[109]

Klaus W., 1963. Spores from the Southern Alpine Permian. Jahrbuch für Geologie 106, 299-363.

[110]

Korte C., Kozur H.W., 2010. Carbon-isotope stratigraphy across the Permian- Triassic boundary: a review. J. Asian Earth Sci. 39 (4), 215-235.

[111]

Kumar P., 1995. Palynofossils from Pachmarhi Formation, Satpura Basin, Madhya Pradesh. Geophytology 24 (2), 237-240.

[112]

Kumar P., 1996. Permo-Triassic palynofossils and depositional environment in Satpura Basin, Madhya Pradesh. Geophytology 25, 47-54.

[113]

Kumaran K.P.N., Maheshwari H.K., 1980. Upper Triassic sporae dispersea from the Tiki Formation. 2: Miospores from the Janar Nala section, South Rewa Gondwana Basin, India. Palaeontographica Abteilung B 173 (1), 26-84.

[114]

Kustatscher E., van Konijnenburg-van Cittert J.H., Bauer K., Butzmann R., Meller B., Fischer T.C., 2012. A new flora from the Upper Permian of Bletterbach (Dolomites, N-Italy). Rev. Palaeobot. Palynol. 182, 1-13.

[115]

Kustatscher E., van Konijnenburg-van Cittert J.H., Roghi G., 2010. Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: a case study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/ Monte Pràdella Vacca (Olang Dolomites, N-Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 290 (1-4), 71-80.

[116]

Kyle R.A., 1977. Palynostratigraphy of the Victoria Group, south Victoria Land, Antarctica. Newzealand J. Geol. Geophys. 20, 1081-1102.

[117]

Kyle R.A., Fasola A., 1978. Triassic palynology of the Beardmore Glacier area of Antarctica. Palinol. Num. Extraorad. 1, 313-319.

[118]

Kyle R.A., Schopf J.M., 1982. Permian and Triassic palynostratigraphy of the Victoria Group. Trans. Antarctic Mountains. Antarct. Geosci., 649-659

[119]

Lindstörm S., 1995. Early late Permian palynostratigraphy and palaeobiogeography of Vestfjella, Dronning Maud Land, Antarctica. Rev. Palaeobot. Palynol. 86, 157-173.

[120]

Lindström S., 1996. Late Permian palynology of Fossilryggen, Vestfjella, Dronning Maud Land, Antarctica. Palynology 20, 15-48.

[121]

Lindström S., McLoughlin S., 2007. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145 (1-2), 89-122.

[122]

Looy C.V., Twitchett R.J., Dilcher D.L., van Konijnenburg-van Cittert J.H.A., Visscher H., 2001. Life in the end-Permian dead zone. Proc. Natl. Acad. Sci. 98, 7879-7883.

[123]

Lu M., Ikejiri T., Lu Y.H., 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 571, 110321.

[124]

Mackenzie A.S., Brassell S.C., Eglinton G., Maxwell J.R., 1982. Chemical fossils: the geological fate of steroids. Science 217, 491-504.

[125]

Madler K.A., 1964. The geological distribution of spores and pollen in the German Triassic. Supplements to the Geological Yearbook 65, 1-147.

[126]

Magohe S.P., Houben A.J., Mtelela C., Verreussel R.M., Janssen N.M., 2023. The first record of Permo-Triassic palynomorphs and palynological change across the Triassic-Jurassic transition in the onshore Ruvu Basin, Tanzania. J. Afr. Earth Sci. 207, 105070.

[127]

Mahesh S., Murthy S., Chakraborty B., Roy M.D., 2015. Fossil charcoal as Palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of South Karanpura Coalfield. Jour. Geol. Soc. India 85, 567-576.

[128]

Maheshwari H.K., 1967. Studies in the Glossopteris flora of India-29. Miospore assemblages from the Gondwana exposures along Bansloi River in Rajabal Hills. Bihar. Palaeobotanist 15 (3), 258-280.

[129]

Maheshwari H.K., Banerji J., 1975. Lower Triassic palynomorphs from the Maitur Formation, West Bengal, India. Palaeontographica Abteilung B 152 (4), 149-190.

[130]

Manfroi J., Uhl D., Guerra-Sommer M., Francischin H., Martinelli A.G., Soares M.B., Jasper A., 2015. Extending the database of Permian palaeo-wildfire on Gondwana: charcoal remains from the Rio do Rasto Formation (Paraná basin), Middle Permian, Rio Grande do Sul state, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 436, 77-84.

[131]

Mangerud G., 1994. Palynostratigraphy of the Permian and lowermost Triassic succession, Finnmark platform, Barents Sea. Rev. Palaeobot. Palynol. 82, 317-349.

[132]

Manjrekar V.D., Choudhury V., Gautam K.V.V.S., 2006. Coal. In: MahalikN.K., SahooH. K., HotaR.N., MishraB.P., NandaJ.K., PanigrahiA.B. (Geology and Mineral Resources of Orissa. Geosci.Eds.), Soc. Allied Technol. Bhubaneswar, pp. 201-226.

[133]

Manjrekar V.D., Choudhury V., Gautam K.V.V.S., 1995. Coal. In: MohantyB.K. (Geology and Mineral Resources of Orissa. Geosci.Eds.), Soc. Allied Technol. Bhubaneswar, pp. 145-169.

[134]

McElwain J.C., Punyasena S.W., 2007. Mass extinction and the plant fossil record. Trends Ecol. Evol. 22, 548-557.

[135]

McLoughlin S., Lindstörm S., Drinnan A.N., 1997. Gondwana floristic and sedimentological trends during the Permian-Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarct. Sci. 9, 281-298.

[136]

McLoughlin S., Nicoll R.S., Crowley J.L., Vajda V., Mays C., Fielding C.R., Frank T.D., Wheeler A., Bocking M., 2021. Age and paleoenvironmental significance of the Frazer Beach Member—A new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front. Earth Sci. 8, 600976.

[137]

Mendonça Filho J.G., Gonçalves P.A., 2017. Organic matter: concepts and definitions, Chapter 1. In: Suarez-RuizI., Mendonça FilhoJ.G. (Geology:Eds.), Current and Future Developments. The Role of Organic Petrology in the Exploration of Conventional and Unconventional Hydrocarbon Systems. Bentham Sci. Publ. U.A.E., pp. 1-33.

[138]

Mendonça Filho J.G., Menezes T.R., de Oliveira Mendonça J., de Oliveira A.D., da Silva T.F., Rondon N.F., da Silva F.S., 2012. Organic facies:palynofacies and organic geochemistry approaches. In: PanagiotarasD. (Ed.), Geochemistry - Earth’s System Processes. InTech, Rijeka, pp. 211-248.

[139]

Mendonça Filho J.G., Menezes T.R., Mendonça J.O., 2014. Trends in Kerogen Groups Distribution, Training Course on Dispersed Organic Matter (DOM) (unpublished study material).

[140]

Metcalfe I., Foster C.B., Afonin S.A., Nicoll R.S., Mundil R., Xiaofeng W., Lucas S.G., 2009. Stratigraphy, biostratigraphy and C-isotopes of the Permian-Triassic non-marine sequence at Dalongkou and Lucaogou, Xinjiang Province, China. J. Asian Earth Sci. 36 (6), 503-520.

[141]

Mishra D.P., Murthy S., Pandey B., Singh A.K., 2021a. Palaeobotanical evidence for Artinskian wildfire in the Talcher Coalfield, Mahanadi Basin, India. J. Palaeontol. Soc. India 66 (2), 303-314.

[142]

Mishra D.P., Singh V.P., Saxena A., Uhl D., Murthy S., Pandey B., Kumar R., 2022. Palaeoecology and depositional setting of an Early Permian (Artinskian) mire based on a multi-proxy study at the Jagannath coal mine (Talcher Coalfield), Mahanadi Basin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 601, 111124.

[143]

Mishra S., Aggarwal N., Jha N., 2018. Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, south India). Palaeobio. Palaeoenv. 98, 177-204.

[144]

Mishra S., Dutta S., Singh V.P., Kumar S., Mathews R.P., Jha N., 2021b. A new acritarch spike of Leiosphaeridiadessicata comb. Nov. Emend. From the Upper Permian and Lower Triassic sequence of India (Pranhita-Godavari Basin): its

[145]

origin and palaeoecological significance. Palaeogeogr. Palaeoclimatol. Palaeoecol.567, 110274. Mishra, S., Jha, N., 2017. Early Permian (Asselian-Sakmarian) palynoflora from the Chintalpudi area, Godavari Graben, South India and its palaeo-environmental implications. J. Palaeont. Soc. India. 62, 23-40.

[146]

Mishra S., Jha N., Stebbins A., Brookfield M., Hannigan R., 2019. Palaeo-environments, flora, and organic carbon and nitrogen isotope changes across the non-marine Permian-Triassic boundary at Wybung Head, Australia.

[147]

Palaeogeogr. Palaeoclimatol. Palaeoecol.534, 109292. Mishra, S., Singh, V.P., 2018. Palynology, palynofacies, and taphonomical studies of Kamthi Formation (Godavari Graben), southern India: implications to biostratigraphy, palaeoecology, and depositional environment. Int. J. Coal

[148]

Geol. 195, 102-124. Mueller, S., Hounslow, M.W., Kürschner, W.M., 2016. Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). J.

[149]

Geol. Soc. 173 (1), 186-202. Mukherjee, D., Ray, S., Chandra, S., Pal, S., Bandyopadhyay, S., 2012. Upper Gondwana succession of the Rewa basin, India: understanding the interrelationship of lithologic and stratigraphic variables. J. Geol. Soc. India.79, 563-575.

[150]

Mukhopadhyay G., Mukhopadhyay S.K., Roychowdhury M., Parui P.K., 2010. Stratigraphic correlation between different Gondwana Basins of India. J. Geol. Soc. India 76, 251-266.

[151]

Murthy S., Mendhe V.A., Uhl D., Mathews R.P., Mishra V.K., Gautam S., 2021. Palaeobotanical and biomarker evidence for wildfire in the early Permian (Artinskian) of the Rajmahal Basin, India. J. Palaeogeog. 10, 1-21.

[152]

Murthy S., Saxena A., Khnagar R., Pillai S.S.K., Uhl D., Singh V.P., Gupta S., Borkar N., 2023. Palynofloristics and wildfire evidence from Permian deposits of the Satpura Gondwana Basin, India: a multiproxy approach. Hist. Biol. 36 (12), 2703-2724.

[153]

Murthy S., Saxena A., Pillai S.S.K., Gupta S., 2024. Reappraisal of Permian and Early Triassic palynoflora and palynostratigraphy of Son-Mahanadi Basin and their climatic implications. In: SamantB.D., TahakreD. (Application of Palynology in Stratigraphy and Climate Studies.Eds.), Springer, Cham, pp. 39-81.

[154]

Nabbefeld B., Grice K., Twitchett R.J., Summons R.E., Hays L., B¨ottcher M.E., Asif M., 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet. Sci. Lett. 291, 84-96.

[155]

Nowak H., Schneebeli-Hermann E., Kustatscher E., 2019. No mass extinction for land plants at the Permian-Triassic transition. Nat. Commun. 10, 2-8.

[156]

Ourisson G., Albrecht P., 1992. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth? Acc. Chem. Res. 25 (9), 398-402.

[157]

Ouyang S., Norris G., 1999. Earliest Triassic (Induan) spores and pollen from the Junggar Basin, Xinjiang, northwestern China. Rev. Palaeobot. Palynol. 106 (1-2), 1-56.

[158]

Pacton M., Gorin G.E., Vasconcelos C., 2011. Amorphous organic matter- experimental data on formation and the role of microbes. Rev. Palaeobot. Palynol. 166, 253-267.

[159]

Pal P.K., Ghosh A.K., 1997. Megafloral zonation of Permian-Triassic sequence in the Kamthi Formation, Talcher Coalfield, Orissa. Palaeobotanist 46, 81-87.

[160]

Patel R., Goswami S., Aggarwal N., Mathews R.P., 2021a. Lower Gondwana megafora, palynofora, and biomarkers from Jagannath Colliery, Talcher Basin, Odisha, India, and its biostratigraphic significance. Geol. J. 57, 986-1004.

[161]

Patel R., Goswami S., Aggarwal N., Mathews R.P., 2021b. Palaeoforistics of lower Gondwana exposure in Hingula area, Talcher Basin, Odisha, India: an inclusive study on biomarkers, megaforal and palynoforal assemblages. Hist. Biol. 34 (9), 1877-1893.

[162]

Patel R., Goswami S., Sahoo M., Pillai S., Aggarwal N., Mathews R.P., Swain R.R., Saxena A., Singh K.J., 2021c. Biodiversity of a Permian temperate forest: a case study from Ustali area, Ib River Basin, Odisha, India. Geol. J. 56, 903-933.

[163]

Payne J.L., Clapham M.E., 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40 (1), 89-111.

[164]

Peng Y., Zhang S., Yu T., Fengqing Y., Gao Y., Shi G.R., 2005. High-resolution terrestrial Permian-Triassic eventostratigraphic boundary in western Guizhou and eastern Yunnan, southwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 215, 285-295.

[165]

Peters K.E., Moldowan J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossil in Petroleum and Ancient Sediments. Prentice Hall, London, p. 363.

[166]

Peters K.E., Walters C.C., Moldowan J.M., 2005. The Biomarker Guide. Biomarkers and Isotopes in Petroleum systems and Earth History (II). University Press, Cambridge, pp. 475-1155.

[167]

Philippe M., 2011. How many species of Araucarioxylon? Comptes Rendus-Palevol 10 (2-3), 201-208.

[168]

Playford G., 1965. Plant microfossils from Triassic sediments near Poatina, Tasmania. J. Geol. Soc. Australia 12, 173-210.

[169]

Playford G., 1990. Proterozoic and Paleozoic palynology of Antarctica:A review. In: TaylorT.N., TaylorE.L. (Antarctic Paleobiology:Eds.), Its Role in the Reconstruction of Gondwana. Springer-Verlag, New York, pp. 51-70.

[170]

Playford G., Dino R., 2000. Palynostratigraphy of the Upper Palaeozoic strata (Tapajós Group) Amazonas Basin, Brazil: Part 2. Palaeontographica 255B, 87-145.

[171]

Playford G., Dino R., 2005. Carboniferous and Permian Palynostratigraphy. In: KoutsoukosE.A.M. (Ed.), Applied Stratigraphy. Springer, Dordrecht, pp. 101-121.

[172]

Prasad B., Pundir B.S., 2017. Gondwana biostratigraphy of the Purnea Basin (eastern Bihar, India), and its correlation with Rajmahal and Bengal Gondwana basins. J. Geol. Soc. India. 90 (4), 405-427.

[173]

Preston C.M., Schmidt M.W.I., 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397-420.

[174]

Prevec R., Labandeira C.C., Neveling J., Gastaldo R.A., Looy C.V., Bamford M.K., 2009. Portrait of a Gondwanan ecosystem: A new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454-493.

[175]

Raine J.I., Mildenhall D.C.,Kennedy E.M., 2011. New Zealand fossil spores and pollen: an illustrated catalogue. 4th edition. GNS Science Miscellaneous Series No. 4.

[176]

Raja Rao C.S., 1982. Coalfields of India, II. Coal resources of Tamilnadu, Andhra Pradesh, Orissa and Maharashtra. Bull. Geol. Surv. India Ser. A 45, 1-101.

[177]

Ram-Awatar, Tewari, R., Agnihotri, D., Chatterjee, S., Pillai, S.K., Meena, K.L., 2014. Late Permian and Triassic palynomorphs from the Allan Hills, central Transantarctic Mountains, South Victoria Land, Antarctica. Curr. Sci. 106, 988-996.

[178]

Rampino M.R., Eshet Y., 2018. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geosci. Front. 9, 147-154.

[179]

Rana V., Tiwari R.S., 1980. Palynological succession in Permian-Triassic sediments in bore-hole RNM-3, East Raniganj coalfield, West Bengal. Geophytology 10 (1), 124-180.

[180]

Rees P.M., 2002. Land-plant diversity and the end-Permian mass extinction. Geology 30, 827-830.

[181]

Retallack G.J., Smith R.M.H., Ward P.D., 2003. Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. Geol. Soc. Am. Bull. 115, 1133-1152.

[182]

Robinson P.L., 1971. Second symposium on Gondwana stratigraphy and palaeontology, South Africa, 1970. J. Geol. Soc. 127 (2), 189-191.

[183]

Rothman D.H., Fournier G.P., French K.L., Alm E.J., Boyle E.A., Cao C., Summons R. E., 2014. Methanogenic burst in the end-Permian carbon cycle. Proc. Natl. Acad. Sci. 111, 5462-5467.

[184]

Roychowdhury M., 2019. Mahanadi Valley Basin structure and tectonics. In: AcharyyaS.K., (Ed.), Developments in Structural Geology and Tectonics 4. Geol. Surv. India, pp. 95-102.

[185]

Sarkar A., Yoshioka H., Ebihara M., Naraoka H., 2003. Geochemical and organic carbon isotope studies across the continental Permo-Triassic boundary of Raniganj Basin, eastern India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 191, 1-14.

[186]

Sastry M.V.A., Acharya S.C., Shah S.C., Satsangi P.P., Ghosh S.C., Raha P.K., Singh G., Ghosh R.N., 1977. Stratigraphy lexicon of Gondwana formations of India. Geol. Surv. India—Misc. Publ. 36, 1-170.

[187]

Saxena A., Cleal C.J., Singh K.J., 2025. The Permian-Triassic boundary in peninsular India and the extinction of the Glossopteridales. Gondwana Res. 137, 318-330.

[188]

Saxena A., Singh K.J., Cleal C.J., Chandra S., Goswami S., Shabbar H., 2019a. Development of the Glossopteris flora and its end Permian demise in the Tatapani-RamkolaCoalfeld, Son-Mahanadi Basin, India. Geol. J. 54 (4), 2472-2494.

[189]

Saxena A., Singh K.J., Murthy S., Prakash A., Singh P.K., 2019b. Early Permian floral diversity deduced from the Barakar formation of Singrauli Coalfield, Son-Mahanadi Basin, India. J. Palaeontol. Soc. India 64 (2), 169-183.

[190]

Schneebeli-Hermann E., Hochuli P.A., Bucher H., Goudemand N., Brühwiler T., Galfetti T., 2012. Palynology of the Early Triassic succession of Tulong, South Tibet —evidence for early recovery of gymnosperms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 339-341, 12-24.

[191]

Schneebeli-Hermann E., Kürschner W.M., Kerp H., Bomfleur B., Hochuli P.A., Bucher H., Ware D., Roohi G., 2015. Vegetation history across the Permian- Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Res. 27, 911-924.

[192]

Schwarze F.W.M.R., 2007. Wood decay under the microscope. Fung. Biol. Rev. 21, 133-170.

[193]

Schweingruber F.H., Börner A., Schulze, E-D., 2006. Atlas of Woody Plantstems Evolution, Structure, and Environmental Modifications. Springer-Verlag, Berlin.

[194]

Scott A.C., 2000. The pre-quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281-329.

[195]

Scott A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 11-39.

[196]

Scott A.C., Bowman D.M.J.S., Bond W.J., Pyne S.J., Alexander M.E., 2014. Fire on Earth: An Introduction. Wiley Blackwell, Chichester, p. 434.

[197]

Scott A.C., Chaloner W.G., Belcher C.M., 2016. The interaction of fire and mankind: introduction. Philos. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 371, 20150162.

[198]

Scott A.C., Glasspool I.J., 2007. Observations and experiments on the origin and formation of inertinite group macerals. Int. J. Coal Geol. 70, 53-66.

[199]

Scott A.C., Stea R., 2002. Fire sweep across the Mid-cretaceous landscape of Nova Scotia. Geoscientist 12 (1), 3-6.

[200]

Seilacher A., 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrb. Geol. Paläontol. Monatsh. 1970, 34-39.

[201]

Shen J., Feng Q., Algeo T.J., Li C., Planavsky N.J., Zhou L., Zhang M., 2016. Two pulses of oceanic environmental disturbance during the Permian-Triassic boundary crisis. Earth Planet. Sci. Lett. 443, 139-152.

[202]

Shen J., Schoepfer S.D., Feng Q.L., Zhou L., Yu J.X., Song H.Y., Wei H.Y., Algeo T.J., 2015. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth Sci. Rev. 149, 136-162.

[203]

Shen W., Sun Y., Lin Y., Liu D., Chai P., 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochim. Cosmochim. Acta. 75, 1992-2006.

[204]

Shivanna M., Murthy S., Gautam S., Souza P.A., Kavali P.S., Bernardes deOliveira M.E.C., Ram Awatar C.M., 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: further contribution to global fossil charcoal database. Palaeoworld 26 (4), 638-649.

[205]

Singh A.P., Kim Y.S., Singh T., 2016. Bacterial degradation of wood. In: KimY.S., FunadaR., SinghA.P. (SecondaryXylem Biology.Eds.), Academic Press, Cambridge, pp. 169-190.

[206]

Singh K.J., Goswami S., Chandra S., 2006. The genus Glossopteris from lower Gondwana formations of Ib-River Coalfield, Orissa, India. J. Palaeontol. Soc. India 51 (2), 81-107.

[207]

Singh K.J., Goswami S., Chandra S., 2007. Occurrence of cordaitales from lower Gondwana sediments of Ib-River Coalfield, Orissa, India: an Indian scenario. J. Asian Earth Sci. 29 (5-6), 666-684.

[208]

Singh V., Tiwari R.S., 1982. Patterns of miofloras through Permo-Triassic transition in borehole RAD-2, East Raniganj Coalfield West Bengal. Geophytology 12 (2), 181-186.

[209]

Sinninghe Damsté J.S., Van Duin A.C.T., Hollander D., Kohnen M.E.L., De Leeuw J. W., 1995. Early diagenesis of bacteriohopanepolyol derivatives: formation of fossil homohopanoids. Geochim. Cosmochim. Acta 59 (24), 5141-5157.

[210]

Spina A., Cirilli S., Utting J., Jansonius J., 2015. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporoniteschalastus. Rev. Palaeobot. Palynol. 218, 3-14.

[211]

Srivastava S.C., Bhattacharyya A.P., 1996. Permian-Triassic palynofloral succession in subsurface from Bazargaon. Nagpur District, Maharashtra. Palaeobotanist 43, 10-15.

[212]

Srivastava S.C., Jha N., 1990. Permian-Triassic palynofloral transition in Godavari Graben, Andhra Pradesh. Palaeobotanist 38, 92-97.

[213]

Srivastava S.C., Jha N., 1995. Palynostratigraphy and correlations of Permian-Triassic sediments in Budharam area, Godavari Graben, India. J. Geol. Soc. India 46, 647-653.

[214]

Steiner M.B., Eshet Y., Rampino M.R., Schwindt D.M., 2003. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 405-414.

[215]

Subramanian K.S., 1962. Progress report on the geological mapping of the Talcher Coalfield, Orissa. Geol. Surv. India (Unpublished Report).

[216]

Sun Y.Z., Zhao C.L., Püttmann W., Kalkreuth W., Qin S.J., 2017. Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin. Geol. Soc. Am. 9, 595-608.

[217]

Tewari R., Pandita S.K., McLoughlin S., Agnihotri D., Pillai S.S., Singh V., Kumar K., Bhat G.D., 2015. The Permian-Triassic palynological transition in the Guryul Ravine section, Kashmir, India: implications for Tethyan-Gondwanan correlations. Earth-Sci. Rev. 149, 53-66.

[218]

Tiwari R.S., Singh V., 1986. Palynological evidence for Permo-Triassic boundary in Raniganj Coalfield, Damodar Basin, India. Bull. Geol. Min. Metall. Soc. India 54, 256-264.

[219]

Tiwari R.S., 1965. New miospore genera in the coals of Barakar Stage (lower Gondwana) of India. Palaeobotanist 12, 250-259.

[220]

Tiwari R.S., 1973. Scheuringipollenites, a new name for the Gondwana sporomorphs so far assigned to Sulcatisporites Leschik. Senckenbergiana Lethaea 54 (1), 105-117.

[221]

Tiwari R.S., 1997. Palynological changes at Permian-Triassic transition in Tethyan sequence of Himalaya in Spiti Valley, Himachal Pradesh and Niti region, Uttar Pradesh, India. Gondwana Geol. Mag. 12, 1-14.

[222]

Tiwari R.S., Rana V., 1980. Sporae dispersae of some Lower and Middle Triassic sediments from Damodar Basin, India. Palaeobotanist 27 (2), 190-220.

[223]

Tiwari R.S., Singh V., 1983. Miofloral transition at Raniganj-Panchet boundary in eastern Raniganj Coalfield and its implication on Permo-Triassic time boundary. Geophytology 13, 227-234.

[224]

Tiwari R.S., Singh V., Kumar S., Singh I.B., 1984. Palynological studies of the Tethyan sequence in Malla Johar area, Kumaon Himalaya, India. Palaeobotanist 32, 341-367.

[225]

Tiwari R.S., Singh V., Kumar S., Singh I.B., Singh S.K., 1980. Gondwana plant microfossils from the Tethyan sediments, Malla Johar Area, Uttar Pradesh. J. Palaeontol. Soc. India 23 (24), 39-42.

[226]

Tiwari R.S., Srivastava S.C., Tripathi A., Vijaya, 1989. Morphographic study of Permian palynomorphs-Callumispora, Parasaccites, Cruscisaccites and Faunipollenites. Palaeobotanist 37 (2), 215-266.

[227]

Tiwari R.S., Tripathi A., 1988. Palynological zones and their climatic inference in the coal-bearing Gondwana of peninsular India. Palaeobotanist 36, 87-101.

[228]

Tiwari R.S., Tripathi A., 1992. Marker assemblage zones of spore and pollen species through Gondwana Palaeozoic-Mesozoic sequence in India. Palaeobotanist 40, 194-236.

[229]

Tiwari R.S., Vijaya, 1995. Differential morphographic identity of Gondwanic palynomorphs. Palaeobotanist 44, 52-115.

[230]

Tiwari R.S., Vijaya, Mamgain V.D., Misra R.S., 1996. Palynological studies on a Late Palaeozoic-Mesozoic Tethyan sequence in the Niti area of the central Himalaya, Uttar Pradesh, India. Rev. Palaeobot. Palynol. 94, 169-196.

[231]

Toigo M., 1991. Palynobiostratigraphy of the southern Brazilian Neopaleozoic Gondwana sequence. Int. Gondwana Symp. 7 (1991), 503-515.

[232]

Traverse A., 1988. Plant evolution dances to a different beat: plant and animal evolutionary mechanisms compared. Hist. Biol. 1 (4), 277-301.

[233]

Traverse A., 2007. Paleopalynology (28). Springer Science and Business Media.

[234]

Tripathi A., Vijaya, Murthy S., Chakarborty B., Das D.K., 2012. Stratigraphic status of coal horizon in Tatapani-Ramkola Coalfield, Chhattisgarh, India. J. Earth Syst. Sci. 121 (2), 537-557.

[235]

Tripathi A., 1996. Early, Late Triassic palynoassemblages from subsurface Supra-Barakar sequence in Talcher Coalfield, Orissa, India. Geophytology 26 (1), 109-118.

[236]

Tripathi A., 2001. Palynological expression about Permian-Triassic transition in the Talcher Coalfield, Orissa, India. Palaeobotanist 50, 247-253.

[237]

Tyson R.V., 1989. Late Jurassic palynofacies trends, Piper and Kimmeridge Clay Formations, UK onshore and offshore. In: BattenD.J., KeenM.C. (NorthwestEuropean Micropalaeontology and Palynology.Eds.), British Micro-palaeontological Society, Series Ellis and Horwood, Chichester, pp. 135-172.

[238]

Tyson R.V., 1995. Sedimentary Organic Matter. Chapman and Hall, Londons, pp. 1-615.

[239]

Uhl D., Hamad A.A., Kerp H., Bandel K., 2007. Evidence for palaeo-wildfire in the Late Permian palaeotropics-charcoalified wood from the Um Irna Formation of Jordan. Rev. Palaeobot. Palynol. 144 (3-4), 221-230.

[240]

Uhl D., Jasper A., Schindler T., Wuttke M., 2010. First evidence of palaeo-wildfire in the early middle Triassic (early Anisian) Voltzia sandstone fossil-Lagerstätte-the oldest post-Permian macroscopic evidence of wildfire discovered so far. Palaios 25, 837-842.

[241]

Uhl D., Jasper A., Solorzano Kraemer M.M., Wilde V., 2019. Charred biota from an Early Cretaceous fissure fill in the Sauerland (Rüthen-Kallenhardt, Northrhine-Westphalia, W-Germany) and their palaeoenvironmental implications. Neues Jahrb. Geol. Paläontol., Abh. Publisher 293(1), 83-105.

[242]

Uhl D., Kerp H., 2003. Wildfires in the late Palaeozoic of Central Europe-the Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 1-15.

[243]

Uhl D., Lausberg S., Noll R., Stapf K.R.G., 2004. Wildfires in the Late Palaeozoic of Central Europe-An overview of the Rotliegend (Upper Carboniferous-Lower Permian) of the Saar-Nahe Basin (SW Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 23-35.

[244]

Uhl D., Wuttke M., Jasper A., 2020. Woody charcoal with traces of pre-charring decay from the Late Oligocene (Chattian) of Norken (Westerwald, Rhineland-Palatinate, W-Germany). Acta Palaeobot. 60, 43-50.

[245]

Utting J., 1979. Pollen and spore assemblages from the Upper Permian of the North Luangwa Valley, Zambia. IV Int. Palynol. Conf. Lucknow 2, 165-174.

[246]

Vajda V., McLoughlin S., Mays C., Frank T.D., Fielding C.R., Tevyaw A., Lehsten V., Bocking M., Nicoll R.S., 2020. End-Permian (252 Ma) deforestation, wildfires and flooding-An ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875.

[247]

Venkatachala B.S., Rawat M.S., 1978. Early Triassic palynoflora from the subsurface of Purnea, Bihar, India. J. Palynol. 14, 59-70.

[248]

Vijaya, 1989. Evolutionary pattern of striations and taeniae in the India Gondwana saccate pollen. Palaeobotanist 38, 83-91.

[249]

Vijaya, 1995. Revision of the Late Permian-Triassic pollen genus Playfordiaspora Maheshwari and Banerji 1975. Palaeobotanist 43 (1), 54-67.

[250]

Vijaya, Murthy, S., Chakraborty, B., Roy, J.S., 2012. Palynological dating of a subsurface coal bearing horizon in East Bokaro Coalfield, Damodar Basin, Jharkhand, India. Palaeontogr. Abt. B 288 (1), 41-63.

[251]

Vijaya, Tiwari, R.S., 1987. Role of spore pollen species in identification of Permo-Triassic boundary in Raniganj Coalfield, West Bengal. Palaeobotanist 35, 242-248.

[252]

Visscher H., 1966. Palaeobotany of the Mesophytic 3. Plant microfossils from the Upper Bunter of Hengelo. Netherlands Acta Botanica Neerlandica 15, 316-375.

[253]

Visscher H., Brinkhuis H., Dilcher D.L., Elsik W.C., Eshet Y., Looy C.V., Rampino M. R., Traverse A., 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl. Acad. Sci. 93, 2155-2158.

[254]

Visscher H., Sephton M.A., Looy C.V., 2011. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883-886.

[255]

Ward P.D., Botha J., Buick R., De Kock M.O., Erwin D.H., Garrison G.H., Kirschvink J.L., Smith R., 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307, 709-714.

[256]

Wheeler A., Van de Wetering N., Esterle J.S., Götz A.E., 2020. Palaeoenvironmental changes recorded in the palynology and palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld 29 (2), 439-452.

[257]

Worku T., Astin T.R., 1992. The Karoo sediments (Late Paleozoic to Early Jurassic) of the Ogaden Basin, Ethiopia. Sediment. Geol. 76 (1-2), 7-21.

[258]

Wright R.P., Askin R.A., 1987. The Permian-Triassic boundary in the southern Morondava Basin of Madagascar as defined by plant microfossils. American Geophysical Union. Geophys. Monogr. 41, 157-166.

[259]

Yan M., Wan M., He X., Hou X., Wang J., 2016. First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 394-408.

[260]

Yan Z., Shao L., Glasspool I.J., Wang J., Wang X., Wan H., 2019. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. Int. J. Coal Geol. 207, 75-83.

[261]

Zhang G., Zhang X., Hu D., Li D., Algeo T.J., Farquhar J., Henderson C.M., Qin L., Shen M., Shen D., Schoepfer S.D., Chen K., Shen Y., 2017. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc. Natl. Acad. Sci. 114, 1806-1810.

[262]

Zhang H., Cao C., Liu X., Mu L., Zheng Q., Liu F., Xiang L., Liu L., Shen S., 2016. The terrestrial end-Permian mass extinction in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108-124.

[263]

Zhang Y.X., Zeng L., Li Z.W., Wang C.S., Zhang K.J., Yang W.G., Guo T.L., 2015. Late Permian-Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau: evidence from U-Pb ages, trace elements, and Hf isotopes of detrital zircons. Int. Geol. Rev. 57 (2), 159-181.

[264]

Zheng Y., Zhou W., Meyers P.A., Xie S., 2007. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China. Org. Geochem. 38 (11), 1927-1940.

[265]

Ziegler A.M., Hulver M.L., Rowley D.B., 1997. Permian world topography and climate. In: MartiniI.P. (Ed.), Late Glacial and Post-Glacial Environmental Changes — Quaternary, Carboniferous-Permian and Proterozoic. Oxford University Press, New York, pp. 111-146.

AI Summary AI Mindmap
PDF

636

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/