Geodynamic record of Rodinia breakup to Gondwana formation: Insights from bulk geochemistry, whole-rock Sr-Nd isotopes, and zircon U-Pb-Hf data of Katherina Ring Complex, Sinai Peninsula, Egypt

Mohamed Faisal , Huan Li , Chao Sun , Muhammad A. Gul , Abdulgafar K. Amuda , Wenbo Sun , Jar Ullah , Ibrahim H. Khalifa , Sara Mustafa

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102082

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102082 DOI: 10.1016/j.gsf.2025.102082

Geodynamic record of Rodinia breakup to Gondwana formation: Insights from bulk geochemistry, whole-rock Sr-Nd isotopes, and zircon U-Pb-Hf data of Katherina Ring Complex, Sinai Peninsula, Egypt

Author information +
History +
PDF

Abstract

The Arabian-Nubian Shield (ANS) serves as a key geological archive, preserving the tectono-thermal evolution associated with the Rodinia breakup (~900-800 Ma) and Gondwana formation (~800-620 Ma). The Katherina Ring Complex (KRC), located in the Sinai Peninsula, Egypt (northern ANS), exemplifies continental growth through multistage magmatism and orogenesis, spanning the Tonian to Ediacaran periods (~900-530 Ma). Despite its importance, debates persist regarding the nature, age, crustal characteristics, and magma source evolution of its constituent units. Situated in the northwestern part of the KRC, the Wadi Rofaiyed Cu deposit offers an exceptional natural laboratory for investigating continental crust formation during this interval, owing to its superb exposure and preservation. This study integrates detailed fieldwork, petrographic analyses, whole-rock geochemistry, Sr-Nd isotopes, and in situ zircon U-Pb-Lu-Hf isotopic data. It aims to (i) establish a robust chronological framework for the unmetamorphosed plutonic rocks of the KRC, (ii) advance the understanding of associated geodynamic processes, and (iii) elucidate the episodic magmatism events. The findings show that Wadi Rofaiyed juvenile crust developed in four main phases: (i) a subduction-accretionary phase (~755 Ma) characterized by intense calc-alkaline magmatism, originating from the partial melting of mafic lower crust; (ii) a syn-collisional phase (~630 Ma) occurred during the collision between the Saharan metacraton and the younger ANS crust, producing I-type granitoids formed through magma mixing and crustal anatexis; (iii) a post-collisional phase characterized by intermediate I-type (~595 Ma) to felsic A-type alkaline magma (~594 Ma), originated from the partial melting of the overthickened lower crust corresponding to lithospheric delamination; and (iv) an anorogenic phase (~530 Ma) related to the final amalgamation of Greater Gondwana. Isotopic analyses across all four magmatic phases reveal low initial 87Sr/86Sr (0.702648-0.703311) and positive εHf(t) (+2.84 to +7.78) and εNd(t) (+2.61 to +5.21) values, consistent with lower crustal sources with depleted mantle-like signatures. The model ages (TDM2) for these magmatic rocks derived from zircon Hf (1.2-1.5 Ga) and whole-rock Nd isotopes (0.96-1.17 Ga) support a predominantly juvenile crustal origin. These findings underscore the multistage tectono-magmatic evolution of the northern ANS, advancing our understanding of obduction-accretion dynamics and crustal development during the Neoproterozoic.

Keywords

Arabian-Nubian Shield / Egyptian Eastern Desert / Katherina Ring Complex / Neoproterozoic crustal evolution / Sr-Nd isotopes / Zircon U-Pb-Hf dating

Cite this article

Download citation ▾
Mohamed Faisal, Huan Li, Chao Sun, Muhammad A. Gul, Abdulgafar K. Amuda, Wenbo Sun, Jar Ullah, Ibrahim H. Khalifa, Sara Mustafa. Geodynamic record of Rodinia breakup to Gondwana formation: Insights from bulk geochemistry, whole-rock Sr-Nd isotopes, and zircon U-Pb-Hf data of Katherina Ring Complex, Sinai Peninsula, Egypt. Geoscience Frontiers, 2025, 16(4): 102082 DOI:10.1016/j.gsf.2025.102082

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Mohamed Faisal: Writing - original draft, Validation, Software, Methodology, Investigation, Conceptualization. Huan Li: Writing -review & editing, Supervision, Project administration, Funding acquisition. Chao Sun: Writing - review & editing, Methodology. Muhammad A. Gul: Writing - review & editing, Software, Method-ology. Abdulgafar K. Amuda: Writing - review & editing. Wenbo Sun: Writing - review & editing, Software, Methodology. Jar Ullah: Writing - review & editing, Visualization, Formal analysis. Ibrahim H. Khalifa: Supervision, Conceptualization. Sara Mustafa: Writing - review & editing, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by the National Natural Science Foun-dation of China (No. 92162103), the Natural Science Foundation of Hunan Province (No. 2022JJ30699, No. 2023JJ10064), and the Science and Technology Innovation Program of Hunan Province (No. 2021RC4055, No. 2022RC1182). We express gratitude to the Geology Department (Suez Canal University, Egypt) for providing logistical support during the fieldwork. The authors are indebted to Dr. Zhekai Zhou (Central South University, China) for assistance in laboratory analyses. The authors gratefully acknowledge Profes-sor Mathew Domeier for his thorough editorial handling of the manuscript. We also express our sincere appreciation to two reviewers (Prof. Karoly Nemeth and Prof. Mehmet Ali Ertürk) for their constructive comments and suggestions that significantly improved the quality of this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102082.

References

[1]

Abd El-Naby H.H., 2021. The Egyptian granitoids:an up-to-date synopsis. In: HamimiZ., AraiS., FowlerA.R., El-BialyM.Z. (The Geology of the Egyptian Nubian Shield.Eds.), Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-49771-2_9.

[2]

Abdel-Rahman A.-F.-M., 2024. Geochemical and isotopic constraints on the origin of rare-metal enriched alkaline A-type granites from the Nubian Shield: Role of mantle metasomatism. Can. J. Mineral. Petrol. 62 (4), 575-604. https://doi.org/10.3749/2300067.

[3]

Abu Anbar M.M., Ghoneim M.F., Hassan A.M., Pichler H., 1999. Single zircon dating, zircon typology and oxygen isotopes of alkaline granites from Egypt. In:4th International Conference on the Geology of the Arab World. Cairo University, pp. 417-434.

[4]

Abu El-Enen M.M., Whitehouse M.J., 2013. The Feiran-Solaf metamorphic complex, Sinai, Egypt: geochronological and geochemical constraints on its evolution. Precambrian Res. 239, 106-125. https://doi.org/10.1016/j.precamres.2013.10.011.

[5]

Ali K.A., Stern R.J., Manton W.I., Kimura J.I., Khamees H.A., 2009. Geochemistry, Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: New insights into the ∼750Ma crustforming event. Precambrian Res. 171 (1-4), 1-22. https://doi.org/10.1016/j.precamres.2009.03.002.

[6]

Amuda A.K., Yang X., Deng J., Faisal M., Cao J., Bute S.I., Girei M.B., Elatikpo S.M., 2021. Petrogenesis of the peralkaline Dutsen Wai and Ropp complexes in the Nigerian younger granites: implications for crucial metal enrichments. Int. Geol. Rev. 63 (16), 2057-2081. https://doi.org/10.1080/00206814.2020.1821250.

[7]

Azer M.K., 2007. Tectonic significance of Late Precambrian calc-alkaline and alkaline magmatism in Saint Katherina area, southern Sinai, Egypt. Geol. Acta 5 (3), 255-272. https://doi.org/10.1344/105.000000298.

[8]

Azer M.K., Farahat E.S., 2011. Late Neoproterozoic volcano-sedimentary successions of Wadi Rufaiyil, southern Sinai, Egypt: a case of transition from late- to post-collisional magmatism. J. Asian Earth Sci. 42 (6), 1187-1203. https://doi.org/10.1016/j.jseaes.2011.06.016.

[9]

Batchelor R.A., Bowden P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 48 (1-4), 43-55. https://doi.org/10.1016/0009-2541(85)90034-8.

[10]

Be’eri-Shlevin Y., Eyal M., Eyal Y., Whitehouse M.J., Litvinovsky B., 2012. The Sa’al volcano-sedimentary complex (Sinai, Egypt): a latest mesoproterozoic volcanic arc in the northern Arabian Nubian Shield. Geology 40 (5), 403-406. https://doi.org/10.1130/G32788.1.

[11]

Be’eri-Shlevin Y., Katzir Y., Whitehouse M., 2009. Post-collisional tectonomagmatic evolution in the northern Arabian-Nubian Shield: time constraints from ion-probe U-Pb dating of zircon. J. Geol. Soc. 166 (1), 71-85. https://doi.org/10.1144/0016-76492007-169.

[12]

Be’eri-Shlevin Y., Samuel M.D., Azer M.K., Rämö O.T., Whitehouse M.J., Moussa H. E., 2011. The Ediacaran Ferani and Rutig volcano-sedimentary successions of the northernmost Arabian-Nubian Shield (ANS): New insights from zircon U-Pb geochronology, geochemistry and O-Nd isotope ratios. Precambr. Res. 188 (1), 21-44. https://doi.org/10.1016/j.precamres.2011.04.002.

[13]

Bea F., Abu-Anbar M., Montero P., Peres P., Talavera C., 2009. The ∼844 Ma Moneiga quartz-diorites of the Sinai, Egypt: evidence for Andean-type arc or rift-related magmatism in the Arabian-Nubian Shield?. Precambr. Res. 175 (1-4), 161-168. https://doi.org/10.1016/j.precamres.2009.09.006.

[14]

Belousova E., Griffin W.L., O’Reilly S.Y., Fisher N., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143 (5), 602-622. https://doi.org/10.1007/s00410-002-0364-7.

[15]

Bentor Y.K., 1985. The crustal evolution of the Arabo-Nubian Massif with special reference to the Sinai Peninsula. Precambrian Res. 28 (1), 1-74. https://doi.org/10.1016/0301-9268(85)90074-9.

[16]

Bianchini G., Beccaluva L., Siena F., 2008. Post-collisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain. Lithos 101 (1-2), 125-140. https://doi.org/10.1016/j.lithos.2007.07.011.

[17]

Bielski M., 1982. In:Stages in the Evolution of the Arabian-Nubian Massif in Sinai. PhD. thesis, Hebrew University of Jerusalem, p. 293.

[18]

Bogdanova S.V., Pisarevsky S.A., Li Z.X., 2009. Assembly and breakup of Rodinia (some results of IGCP project 440). Stratigr. Geol. Correl. 17 (3), 259. https://doi.org/10.1134/s0869593809030022.

[19]

Bouvier A., Vervoort J.D., Patchett P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273 (1-2), 48-57. https://doi.org/10.1016/j.epsl.2008.06.010.

[20]

Castillo P.R., 2012. Adakite petrogenesis. Lithos 134-135, 304-316. https://doi.org/10.1016/j.lithos.2011.09.013.

[21]

Chappell B.W., Bryant C.J., Wyborn D., 2012. Peraluminous I-type granites. Lithos 153, 142-153. https://doi.org/10.1016/j.lithos.2012.07.008.

[22]

Collins W.J., Beams S.D., White A.J.R., Chappell B.W., 1982. Nature and origin of Atype granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 80, 189-200. https://doi.org/10.1007/BF00374895.

[23]

Condie K.C., 1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 46 (1), 95-101. https://doi.org/10.1016/S0024-4937(98)00056-5.

[24]

Davies G., Gledhill A., Hawkesworth C., 1985. Upper crustal recycling in southern Britain: evidence from Nd and Sr isotopes. Earth Planet. Sci. Lett. 75 (1), 1-12.

[25]

Drummond M.S., Defant M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archean to modern comparisons. J. Geophys. Res.: Solid Earth 95 (B13), 21503-21521. https://doi.org/10.1029/JB095iB13p21503.

[26]

Eby G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20 (7), 641-644. https://doi.org/10.1130/0091-7613(1992)020%3C0641:CSOTAT%3E2.3.CO;2.

[27]

El-Gaby S., List F.K., Tehrani R., 1988. Geology evolution and metallogenesis of the pan African Belt in Egypt. In: El GabyS., GreilingR.O. (The Pan African Belt of Northeast Africa and Adjacent Aeas.Eds.), Viewing, Berlin, pp. 17-70.

[28]

Faisal M., Yang X., Khalifa I.H., Amuda A.K., Sun C., 2020. Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: implications for petrogenesis and tectonic evolution. Precambr. Res. 344, 105751. https://doi.org/10.1016/j.precamres.2020.105751.

[29]

Farahat E.S., Azer M.K., 2011. Post-collisional magmatism in the northern ArabianNubian Shield: the geotectonic evolution of the alkaline suite at Gebel Tarbush area, south Sinai, Egypt. Geochemistry 71 (3), 247-266. https://doi.org/10.1016/j.chemer.2011.06.003.

[30]

Fowler A.D., Doig R., 1983. The significance of europium anomalies in the REE spectra of granites and pegmatites, Mont Laurier, Quebec. Geochim. Cosmochim. Acta 47 (6), 1131-1137. https://doi.org/10.1016/0016-7037(83)90243-0.

[31]

Fritz H., Abdelsalam M., Ali K.A., Bingen B., Collins A.S., Fowler A.R., Ghebreab W., Hauzenberger C.A., Johnson P.R., Kusky T.M., Macey P., Muhongo S., Stern R.J., Viola G., 2013. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J. Afr. Earth Sci. 86, 65-106. https://doi.org/10.1016/j.jafrearsci.2013.06.004.

[32]

Frost C.D., Frost B.R., 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin. J. Petrol. 52 (1), 39-53. https://doi.org/10.1093/petrology/egq070.

[33]

Goldstein S.L., O’Nions R.K., Hamilton P.J., 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 70 (2), 221-236. https://doi.org/10.1016/0012-821X(84)90007-4.

[34]

Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterbergh E., O’Reilly S.Y., Shee S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64 (1), 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9.

[35]

Grimes C.B., John B.E., Kelemen P., Mazdab F., Wooden J., Cheadle M.J., Hanghøj K., Schwartz J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35 (7), 643-646. https://doi.org/10.1130/G23603A.1.

[36]

Halverson G., Porter S., Shields G., 2020. Chapter 17 - the Tonian and Cryogenian periods. In: GradsteinF.M., OggJ.G., SchmitzM.D., OggG.M. (GeologicTime Scale 2020.Eds.), Elsevier, pp. 495-519. https://doi.org/10.1016/B978-0-12-824360-2.00017-6.

[37]

Hargrove U.S., Stern R.J., Kimura J.I., Manton W.I., Johnson P.R., 2006. How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and preNeoproterozoic inherited zircon in the Bi’r Umq suture zone, Saudi Arabia. Earth Planet. Sci. Lett. 252 (3), 308-326. https://doi.org/10.1016/j.epsl.2006.10.002.

[38]

Hassan M., Stüwe K., Abu-Alam T.S., Klötzli U., Tiepolo M., 2016. Time constraints on deformation of the Ajjaj branch of one of the largest Proterozoic shear zones on Earth: the Najd Fault System. Gondwana Res. 34, 346-362. https://doi.org/10.1016/j.gr.2015.04.009.

[39]

Johnson P.R., Andresen A., Collins A.S., Fowler A.R., Fritz H., Ghebreab W., Kusky T., Stern R.J., 2011. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J. Afr. Earth Sci. 61 (3), 167-232. https://doi.org/10.1016/j.jafrearsci.2011.07.003.

[40]

Johnson P.R., Woldehaimanot B., 2003. Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geol. Soc. Lond. Spec. Publ. 206 (1), 289-325. https://doi.org/10.1144/GSL.SP.2003.206.01.15.

[41]

Kay R.W., Kay S.M., 1993. Delamination and delamination magmatism. Tectonophysics 219 (1-3), 177-189. https://doi.org/10.1016/0040-1951(93)90295-U.

[42]

Khalifa I.H., 1997. In: Geological and Geochemical Prospecting for Assessment of Base Metals Potentials in Wadi Kid and El Sheikh Awad Area Localities, South Sinai, Egypt. Ph.D. thesis, Suez Canal University, p. 281.

[43]

Khalifa I.H., Hegazi A.M., Faisal M., 2016. Geological setting for porphyry copper deposits in calc-alkaline rocks: Wadi Rofaiyed area, Sinai, Egypt. Arab. J. Geosci. 9, 1-22. https://doi.org/10.1007/s12517-016-2389-7.

[44]

King P.L., White A.J.R., Chappell B.W., Allen C.M., 1997. Characterization and origin of aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 38 (3), 371-391. https://doi.org/10.1093/petroj/38.3.371.

[45]

Klein E.M., 2003. Geochemistry of the Igneous Oceanic Crust. In: TurekianK.K., HollandH.D. (Treatiseon Geochemistry. Elsevierp.Eds.),433-463.

[46]

Kröner A., 1984. Late Precambrian plate tectonics and orogeny:a need to redefine the term Pan-African. In: KlerkxJ., MichotJ. (AfricanGeology.Eds.), Tervuren Musee. ‘R. l’Afrique Centrale, Belgium, pp. 23-28.

[47]

Kröner A., Stern R.J., 2005. In:Africa Pan-African Orogeny, Encyclopedia of Geology. Elsevier, Oxford, pp. 1-12. https://doi.org/10.1016/b0-12-369396-9/00431-7.

[48]

Liégeois J.-P., Stern R.J., 2010. Sr-Nd isotopes and geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern Desert, Egypt: no evidence for pre-Neoproterozoic crust. J. Afr. Earth Sci. 57 (1), 31-40. https://doi.org/10.1016/j.jafrearsci.2009.07.006.

[49]

Loizenbauer J., Wallbrecher E., Fritz H., Neumayr P., Khudeir A.A., Kloetzli U., 2001. Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex: implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res. 110 (1-4), 357-383. https://doi.org/10.1016/S0301-9268(01)00176-0.

[50]

Lundmark A.M., Andresen A., Hassan M.A., Augland L.E., Boghdady G.Y., 2012. Repeated magmatic pulses in the East African Orogen in the Eastern Desert, Egypt: an old idea supported by new evidence. Gondwana Res. 22 (1), 227-237. https://doi.org/10.1016/j.gr.2011.08.017.

[51]

Maniar P.D., Piccoli P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101 (5), 635-643. https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO;2.

[52]

Merdith A.S., Williams S.E., Collins A.S., Tetley M.G., Mulder J.A., Blades M.L., Young A., Armistead S.E., Cannon J., Zahirovic S., Müller R.D., 2021. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci. Rev. 214, 103477. https://doi.org/10.1016/j.earscirev.2020.103477.

[53]

Mohamed F.H., El-Sayed M.M., 2008. Post-orogenic and anorogenic A-type fluoritebearing granitoids, Eastern Desert, Egypt: petrogenetic and geotectonic implications. Geochemistry 68 (4), 431-450. https://doi.org/10.1016/j.chemer.2007.01.001.

[54]

Monsef H.-A.-E., Khalifa I.H., Faisal M., 2015. Mapping of hydrothermal alteration zones associated with potential sulfide mineralization using the spectral linear unmixing technique and WorldView II images at Wadi Rofaiyed, South Sinai, Egypt. Arab. J. Geosci. 8 (11), 9285-9300. https://doi.org/10.1007/s12517-015-1909-1.

[55]

Moreno J.A., Montero P., Abu Anbar M., Molina J.F., Scarrow J.H., Talavera C., Cambeses A., Bea F., 2012. SHRIMP U-Pb zircon dating of the Katerina Ring Complex: insights into the temporal sequence of Ediacaran calc-alkaline to peralkaline magmatism in southern Sinai, Egypt. Gondwana Res. 21 (4), 887-900. https://doi.org/10.1016/j.gr.2011.08.010.

[56]

Nardi L.V.S., Bonin B., 1991. Post-orogenic and non-orogenic alkaline granite associations: the Saibro intrusive suite, southern Brazil—a case study. Chem. Geol. 92 (1-3), 197-211. https://doi.org/10.1016/0009-2541(91)90056-W.

[57]

Othman D.B., Polvé M., Allègre C.J., 1984. Nd-Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. Nature 307(5951), 510-515.

[58]

Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100 (1-4), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016.

[59]

Pearce J.A., Harris N.B., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25 (4), 956-983. https://doi.org/10.1093/petrology/25.4.956.

[60]

Phyo A.P., Li H., Hu X.-J., Ghaderi M., Myint A.Z., Faisal M., 2025a. Geology, geochemistry, and zircon U-Pb geochronology of the Nanthila and Pedet granites in the Myeik Sn-W district, Tanintharyi region, southern Myanmar. Ore Geol. Rev. 178, 106488. https://doi.org/10.1016/j.oregeorev.2025.106488.

[61]

Phyo A.P., Li H., Myint A.Z., Hu X.-J., Faisal M., 2025b. Geochronology and petrogenesis of late triassic-early jurassic LCT pegmatites from the YamonKazat area, southern Myanmar: implications for magmatic evolution. Ore Geol. Rev. 181, 106633. https://doi.org/10.1016/j.oregeorev.2025.106633.

[62]

Qian X., Feng Q., Wang Y., Chonglakmani C., Monjai D., 2016. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: carboniferous back-arc setting in northwest Laos. Lithos 245, 60-75. https://doi.org/10.1016/j.lithos.2015.07.019.

[63]

Rollinson H.R., 1993. In: Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London, p. 384.

[64]

Rudnick R.L., 1995. Making continental-crust. Nature 378 (6557), 571-578. https://doi.org/10.1038/378571a0.

[65]

Rudnick R.L., Gao S., 2003. Composition of the continental crust. In: HollandH.D., TurekianK.K. (Treatiseon Geochemistry.Eds.), Pergamon, Oxford, p. 659. https://doi.org/10.1016/B0-08-043751-6/03016-4.

[66]

Samuel M.D., Be’eri-Shlevin Y., Azer M.K., Whitehouse M.J., Moussa H.E., 2011. Provenance of conglomerate clasts from the volcano-sedimentary sequence at Wadi Rutig in southern Sinai, Egypt as revealed by SIMS U-Pb dating of zircon. Gondwana Res. 20 (2-3), 450-464.

[67]

Stern R.J., 1994. Arc assembly and continental collision in the neoproterozoic EastAfrican Orogen - implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 22 (1), 319-351. https://doi.org/10.1146/annurev.ea.22.050194.001535.

[68]

Stern R.J., Hedge C.E., 1985. Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am. J. Sci. 285 (2), 97-127. https://doi.org/10.2475/ajs.285.2.97.

[69]

Sun C., Yang X., Cao J., Hou Q., Tang J., Shi J., Zhou Q., Faisal M., 2021. Petrogenesis of the 130 Ma Taolin granitic intrusion: Implications for the tectonic setting and diversity of Early Cretaceous felsic rocks in the Sulu orogenic belt, eastern China. J. Asian Earth Sci. 213, 104768. https://doi.org/10.1016/j.jseaes.2021.104768.

[70]

Thieblemont D., Tegyey M., 1994. Geochemical discrimination of differentiated magmatic rocks attesting for the variable origin and tectonic setting of calcalkaline magmas. Comptes Rendus De L Academie Des Sciences Serie II 319 (1), 87-94.

[71]

Vernon R.H., 1984. Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment. Nature 309 (5967), 438-439. https://doi.org/10.1038/309438a0.

[72]

Wang J., Long X., 2024. Early Paleoproterozoic TTG gneisses and potassic granitoids in the southern Trans-North China Orogen: Key constraints on the tectonic setting during the tectono-magmatic lull and the initiation of plate tectonics. Earth-Sci. Rev. 250, 104713. https://doi.org/10.1016/j.earscirev.2024.104713.

[73]

Whalen J.B., Currie K.L., Chappell B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95 (4), 407-419. https://doi.org/10.1007/BF00402202.

[74]

Willis K.M., Stern R.J., Clauer N., 1988. Age and geochemistry of Late Precambrian sediments of the Hammamat Series from the Northeastern Desert of Egypt. Precambrian Res. 42 (1-2), 173-187. https://doi.org/10.1016/0301-9268(88)90016-2.

[75]

Wilson M., Bianchini G., 1999. Tertiary-Quaternary magmatism within the Mediterranean and surrounding regions. Geol. Soc. Lond. Spec. Publ. 156 (1), 141-168.

[76]

Woodhead J., Eggins S., Gamble J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 114 (4), 491-504. https://doi.org/10.1016/0012-821X(93)90078-N.

[77]

Xie Y.-H., Schwartz J.J., Li X.-W., Cai K., Thomas B., Li H., Wang F.-Y., Zhang X.-B., Mo X.-X., Dong G.-C., 2024. Revisiting the genesis of the adakite-like granitoids in collisional zones: water-fluxed melting of intermediate to felsic rocks with dilution by low Sr/Y phases. Am. Mineral. 109 (4), 709-728. https://doi.org/10.2138/am-2022-8873.

[78]

Zhao J.-L., Wu B., Zhang X., Chen W.-F., Ma X.-X., 2021. Petrogenesis of Early Paleozoic adakitic granitoids in the eastern Qilian Block, northwest China: implications for the South Qilian Ocean subduction. Mineral. Petrol. 115 (6), 687-708. https://doi.org/10.1007/s00710-021-00762-y.

[79]

Zindler A., Hart S., 1986. Chemical geodynamics. In: Annual review of earth and planetary sciences. Volume 14 (A87-13190 03-46). Palo Alto, CA, Annual Reviews, Inc., p. 493-571.

AI Summary AI Mindmap
PDF

406

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/