Extreme gradient boosting with Shapley Additive Explanations for landslide susceptibility at slope unit and hydrological response unit scales

Ananta Man Singh Pradhan , Pramit Ghimire , Suchita Shrestha , Ji-Sung Lee , Jung-Hyun Lee , Hyuck-Jin Park

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102081

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102081 DOI: 10.1016/j.gsf.2025.102081

Extreme gradient boosting with Shapley Additive Explanations for landslide susceptibility at slope unit and hydrological response unit scales

Author information +
History +
PDF

Abstract

This study provides an in-depth comparative evaluation of landslide susceptibility using two distinct spatial units: and slope units (SUs) and hydrological response units (HRUs), within Goesan County, South Korea. Leveraging the capabilities of the extreme gradient boosting (XGB) algorithm combined with Shapley Additive Explanations (SHAP), this work assesses the precision and clarity with which each unit predicts areas vulnerable to landslides. SUs focus on the geomorphological features like ridges and valleys, focusing on slope stability and landslide triggers. Conversely, HRUs are established based on a variety of hydrological factors, including land cover, soil type and slope gradients, to encapsulate the dynamic water processes of the region. The methodological framework includes the systematic gathering, preparation and analysis of data, ranging from historical landslide occurrences to topographical and environmental variables like elevation, slope angle and land curvature etc. The XGB algorithm used to construct the Landslide Susceptibility Model (LSM) was combined with SHAP for model interpretation and the results were evaluated using Random Cross-validation (RCV) to ensure accuracy and reliability. To ensure optimal model performance, the XGB algorithm's hyperparameters were tuned using Differential Evolution, considering multicollinearity-free variables. The results show that SU and HRU are effective for LSM, but their effectiveness varies depending on landscape characteristics. The XGB algorithm demonstrates strong predictive power and SHAP enhances model transparency of the influential variables involved. This work underscores the importance of selecting appropriate assessment units tailored to specific landscape characteristics for accurate LSM. The integration of advanced machine learning techniques with interpretative tools offers a robust framework for landslide susceptibility assessment, improving both predictive capabilities and model interpretability. Future research should integrate broader data sets and explore hybrid analytical models to strengthen the generalizability of these findings across varied geographical settings.

Keywords

Landslide susceptibility mapping / Hydrological response units / Slope units / Extreme gradient boosting / Hyper parameter tuning / Shapley additive explanations

Cite this article

Download citation ▾
Ananta Man Singh Pradhan, Pramit Ghimire, Suchita Shrestha, Ji-Sung Lee, Jung-Hyun Lee, Hyuck-Jin Park. Extreme gradient boosting with Shapley Additive Explanations for landslide susceptibility at slope unit and hydrological response unit scales. Geoscience Frontiers, 2025, 16(4): 102081 DOI:10.1016/j.gsf.2025.102081

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Ananta Man Singh Pradhan: Writing - original draft, Visual-ization, Validation, Methodology, Formal analysis, Conceptualiza-tion. Pramit Ghimire: Formal analysis, Data curation. Suchita Shrestha: Writing - review & editing, Methodology, Investigation. Ji-Sung Lee: Data curation. Jung-Hyun Lee: Visualization. Hyuck-Jin Park: Writing - review & editing, Supervision, Resources, Fund-ing acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2023-00222536).

Availability of data and materials

The data supporting this study's findings are available from the corresponding author, upon reasonable request.

References

[1]

Al-Najjar H.A.H., Pradhan B., Beydoun G., Sarkar R., Park H.-J., Alamri A., 2023. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Res. 123, 107-124. https://doi.org/10.1016/j.gr.2022.08.004.

[2]

Alcántara-Ayala I., 2025. Landslides in a changing world. Landslides 1-15. https://doi.org/10.1007/s10346-024-02451-1.

[3]

Allen M.P., 1997. The Problem of Multicollinearity BT-Understanding Regression Analysis. Springer US, Boston, MA, pp. 176-180. https://doi.org/10.1007/978-0-585-25657-3_37.

[4]

Alvioli M., Marchesini I., Reichenbach P., Rossi M., Ardizzone F., Fiorucci F., Guzzetti F., 2016. Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model Dev. 9, 3975-3991. https://doi.org/10.5194/gmd-9-3975-2016.

[5]

Arnold J.G., Moriasi D.N., Gassman P.W., Abbaspour K.C., White M.J., Srinivasan R., Santhi C., Harmel R.D., van Griensven A., van Liew M.W., Kannan N., Jha M. K., 2012. SWAT: model use, calibration, and validation. Trans. ASABE 55, 1509-1522. https://doi.org/10.13031/2013.42259.

[6]

Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R., 1998. Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 34, 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

[7]

Ayalew L., Yamagishi H., Marui H., Kanno T., 2005. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 81, 432-445. https://doi.org/10.1016/j.enggeo.2005.08.004.

[8]

Camilo D.C., Lombardo L., Mai P.M., Dou J., Huser R., 2017. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environ. Model. Softw. 97, 145-156. https://doi.org/10.1016/J.ENVSOFT.2017.08.003.

[9]

Catani F., Casagli N., Ermini L., Righini G., Menduni G., 2005. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2, 329-342. https://doi.org/10.1007/s10346-005-0021-0.

[10]

Chen C.-W., Tung Y.-S., Chu F.-Y., Li H.-C., Chen Y.-M., 2024. Assessing landslide risks across varied land-use types in the face of climate change. Landslides, 1-15. https://doi.org/10.1007/s10346-024-02436-0.

[11]

Chen T., Guestrin C., 2016. XGBoost. In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD'16. ACM Press, New York, USA, pp. 785-794. https://doi.org/10.1145/2939672.2939785.

[12]

Dao D.V., Jaafari A., Bayat M., Mafi-Gholami D., Qi C., Moayedi H., Phong T.V., Ly H.B., Le T.T., Trinh P.T., Luu C., Quoc N.K., Thanh B.N., Pham B.T., 2020. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA 188, 104451. https://doi.org/10.1016/j.catena.2019.104451.

[13]

Daviran M., Shamekhi M., Ghezelbash R., Maghsoudi A., 2023. Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm. Int. J. Environ. Sci. Technol. 20, 259-276.

[14]

Dikshit A., Pradhan B., Matin S.S., Beydoun G., Santosh M., Park H.J., Maulud K.N. A., 2024. Artificial Intelligence: A new era for spatial modelling and interpreting climate-induced hazard assessment. Geosci. Front. 15, 101815. https://doi.org/10.1016/j.gsf.2024.101815.

[15]

Douglas-Mankin K.R., Srinivasan R., Arnold J.G., 2010. Soil and water assessment tool (SWAT) model: Current developments and applications. Trans. ASABE 53, 1423-1431.

[16]

Einstein H.H., 1988. Special lecture: landslide risk assessment procedure, Landslides. Proc. 5th symposium, Lausanne, Vol. 2.

[17]

Espindola G.M., Câmara G., Reis I.A., Bins L.S., Monteiro A.M., 2006. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 27, 3035-3040.

[18]

Fischer J.T., Kowalski J., Pudasaini S.P., 2012. Topographic curvature effects in applied avalanche modeling. Cold Reg. Sci. Technol. 74-75, 21-30. https://doi.org/10.1016/J.COLDREGIONS.2012.01.005.

[19]

Freund C.A., Clark K.E., Curran J.F., Asner G.P., Silman M.R., 2021. Landslide age, elevation and residual vegetation determine tropical montane forest canopy recovery and biomass accumulation after landslide disturbances in the Peruvian Andes. J. Ecol. 109, 3555-3571. https://doi.org/10.1111/1365-2745.13737.

[20]

Gassman P.W., Reyes M.R., Green C.H., Arnold J.G., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Trans. ASABE 50, 1211-1250.

[21]

Gutiérrez F., Soldati M., Audemard F., Ba˘lteanu D., 2010. Recent advances in landslide investigation: Issues and perspectives. Geomorphology 124, 95-101.

[22]

Guzzetti F., Carrara A., Cardinali M., Reichenbach P., 1999. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31, 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1

[23]

Guzzetti F., Galli M., Reichenbach P., Ardizzone F., Cardinali M., 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 6, 115-131. https://doi.org/10.5194/nhess-6-115-2006.

[24]

Heerdegen R.G., Beran M.A., 1982. Quantifying source areas through land surface curvature and shape. J. Hydrol. 57, 359-373. https://doi.org/10.1016/0022-1694.

[25]

( 8290155-X. Ho, C.H., Kim, H.A., Cha, Y., Do, H.S., Kim, J., Kim, J., Park, S.K., Yoo, H.-D., 2025. Recent changes in summer rainfall characteristics in Korea. J. Eur. Meteorol. Soc. 2, 100009. https://doi.org/10.1016/j.jemets.2025.100009.

[26]

Hoang N.-D., 2024. Predicting tensile strength of steel fiber-reinforced concrete based on a novel differential evolution-optimized extreme gradient boosting machine. Neural Comput. Appl. 36, 22653-22676.

[27]

Iverson R.M., 2000. Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897-1910. https://doi.org/10.1029/2000WR900090.

[28]

Kainthura P., Sharma N., 2022. Hybrid machine learning approach for landslide prediction, Uttarakhand, India. Sci. Rep. 12, 20101.

[29]

Kanungo D.P., Arora M.K., Sarkar S., Gupta R.P., 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 85, 347-366. https://doi.org/10.1016/j.enggeo.2006.03.004.

[30]

Kaur R., Gupta V., Chaudhary B.S., 2024. Landslide susceptibility mapping and sensitivity analysis using various machine learning models: a case study of Beas valley, Indian Himalaya. Bull. Eng. Geol. Environ. 83, 228.

[31]

Khan U., Tuteja N.K., Sharma A., Lucas S., Murphy B., Jenkins B., 2016. Applicability of Hydrologic Response Units in low topographic relief catchments and evaluation using high resolution aerial photograph analysis. Environ. Model. Softw. 81, 56-71.

[32]

Kumar P., 2024. Social and Economic Impact in the Landslide Prone Zones and Related Policies. In: ChatterjeeU., LalmalsawmzauvaK., BiswasB., PalS.C. (Landslidesin the Himalayan Region.Eds.), Disaster Risk Reduction. Springer, Singapore, pp. 499-529. https://doi.org/10.1007/978-981-97-4680-4_22.

[33]

Leavesley G.H., Lichty R.W., Troutman B.M., Saindon L.G., 1983. Precipitation-Runoff Modeling System; User's Manual, Water-Resources Investigations Report. U.S. Geological Survey, Water Resources Division, Reston, VA. https://doi.org/10.3133/WRI834238.

[34]

Lee J.S., Pradhan A.M.S., Song C.H., Kim Y.T., 2024. Lithological terrain-based rainfall thresholds for possible initiation of shallow landslides in South Korea. Stoch. Environ. Res. Risk Assess. 38, 175-191. https://doi.org/10.1007/S00477-023-02568-0/METRICS

[35]

Li M., Tian H., 2025. Insights from optimized non-landslide sampling and SHAP explainability for landslide susceptibility prediction. Appl. Sci. 15, 1163.

[36]

Liu B., Guo H., Li J., Ke X., He X., 2024. Application and interpretability of ensemble learning for landslide susceptibility mapping along the Three Gorges Reservoir area, China. Nat. Hazards 120, 4601-4632.

[37]

Liu S.M., Chen J.-H., Liu Z., 2023. An empirical study of dynamic selection and random under-sampling for the class imbalance problem. Expert Syst. Appl. 221, 119703.

[38]

Lombardo L., Mai P.M., 2018. Presenting logistic regression-based landslide susceptibility results. Eng. Geol. 244, 14-24. https://doi.org/10.1016/J.ENGGEO.2018.07.019.

[39]

Lundberg S.M., Lee S.I., 2017. A unified approach to interpreting model predictions. 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA. Ma, S., Shao, X., Xu, C., 2025. Landslide inventory and distribution patterns in Lhasa area, Tibet Plateau. Nat. Hazards 121, 5849-5871. https://doi.org/10.1007/s11069-024-07031-z

[40]

Merghadi A., Yunus A.P., Dou J., Whiteley J., ThaiPham B., Bui D.T., Avtar R., Abderrahmane B., 2020. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 207, 103225.

[41]

Moghaddam D.D., Rahmati O., Panahi M., Tiefenbacher J., Darabi H., Haghizadeh A., Haghighi A.T., Nalivan O.A., Tien Bui D., 2020. The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. CATENA 187, 104421. https://doi.org/10.1016/j.catena.2019.104421.

[42]

Neitsch S.L., 2005. Soil and water assessment tool. User's Man. Version 2005, p. 476.

[43]

Pei Y., Qiu H., Zhu Y., Wang J., Yang D., Tang B., Wang F., Cao M., 2023. Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides 20,1115-1133.

[44]

Pourghasemi H.R., Pradhan B., Gokceoglu C., 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 63, 965-996.

[45]

Pradhan A.M.S., Kim Y.T., 2021. An artificial intelligence-based approach to predicting seismic hillslope stability under extreme rainfall events in the vicinity of Wolsong nuclear power plant, South Korea. Bull. Eng. Geol. Environ. 80, 3629-3646. https://doi.org/10.1007/s10064-021-02138-0.

[46]

Pradhan A.M.S., Kim Y.T., 2016. Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. CATENA 140, 125-139.

[47]

Pradhan B., Dikshit A., Lee S., Kim H., 2023. An explainable AI (XAI) model for landslide susceptibility modeling. Appl. Soft Comput. 142, 110324. Radbrunch, D.H., 1970. Map showing relative amounts of landslides in California.https://www.usgs.gov/.

[48]

Regmi A.D., Devkota K.C., Yoshida K., Pradhan B., Pourghasemi H.R., Kumamoto T., Akgun A., 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 7, 725-742.

[49]

Robinson A.H., Kimerling A., 1969. Elements of cartography. Soil Sci. 90, 147.

[50]

Sarkar N., Devoto S., Vandelli V., Rossi S., Soldati M., Rizzo A., 2024. Rock-fall runout simulation using a QGIS plugin along north-west coast of Malta (Mediterranean Sea). Nat. Hazards 120, 14553-14570.

[51]

Segoni S., Rosi A., Rossi G., Catani F., Casagli N., 2014. Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems. Nat. Hazards Earth Syst. Sci 14, 2637-2648. https://doi.org/10.5194/nhess-14-2637-2014.

[52]

Shrestha S., Kang T.S., Choi J.C., 2018. Assessment of co-seismic landslide susceptibility using LR and ANCOVA in Barpak region, Nepal. J. Earth Syst. Sci. 127, 1-17. https://doi.org/10.1007/S12040-018-0936-1/METRICS.

[53]

Storn R., Price K., 1997. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341-359. https://doi.org/10.1023/A:1008202821328.

[54]

Sun D., Wang J., Wen H., Ding Y., Mi C., 2024. Landslide susceptibility mapping (LSM) based on different boosting and hyperparameter optimization algorithms: A case of Wanzhou District, China. J. Rock Mech. Geotech. Eng. 16, 3221-3232.

[55]

Tanyas H., Rossi M., Alvioli M., van Westen C.J., Marchesini I., 2019. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 327, 126-146. https://doi.org/10.1016/J.GEOMORPH.2018.10.022.

[56]

Tarolli P., Sofia G., 2016. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255, 140-161.

[57]

Titti G., Napoli G.N., Conoscenti C., Lombardo L., 2022. Cloud-based interactive susceptibility modeling of gully erosion in Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 115, 103089. https://doi.org/10.1016/J.JAG.2022.

[58]

103089. Van Westen, C.J., Rengers, N., Soeters, R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Nat. Hazards 30, 399-419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e.

[59]

Wei L.W., Huang C.M., Chen H., Lee C.T., Chi C.C., Chiu C.L., 2018. Adopting the I 3-R 24 rainfall index and landslide susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides. Hazards Earth Syst. Sci. 18, 1717-1733. https://doi.org/10.5194/nhess-18-1717-2018.

[60]

Westen C.J.V., Castellanos E., Kuriakose S.L., 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 102, 112-131.

[61]

Wongvorachan T., He S., Bulut O., 2023. A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining. Information 14, 54.

[62]

Xiao L., Zhang Y., Peng G., 2018. Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway. Sensors (Switzerland) 18, 4436. https://doi.org/10.3390/s18124436.

[63]

Yu C., Chen J., 2020. Application of a GIS-based slope unit method for landslide susceptibility mapping in Helong City: Comparative assessment of ICM, AHP, and RF model. Symmetry 12 (11), 1848. https://doi.org/10.3390/SYM12111848.

[64]

Zhang W., Montgomery D.R., 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour. Res. 30, 1019-1028. https://doi.org/10.1029/93WR03553.

[65]

Zou Q., Cui P., Jing H., Yu L., Li ShuSong L.S., 2019. Regional risk assessment of debris flows in China-an HRU-based approach. Geomorphology 340, 84-102. https://doi.org/10.1016/j.geomorph.2019.04.027.

AI Summary AI Mindmap
PDF

590

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/