In situ Rb-Sr insights in the cooling history of the Petermann Orogeny, Central Australia

Alejandra Bedoya , Stijn Glorie , Martin Hand , Christopher L. Kirkland , Alexander T. De Vries Van Leeuwen

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102080

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102080 DOI: 10.1016/j.gsf.2025.102080

In situ Rb-Sr insights in the cooling history of the Petermann Orogeny, Central Australia

Author information +
History +
PDF

Abstract

The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia, which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Amadeus Basin. Several studies have investigated the metamorphic and deformational evolution of the Petermann Orogen; however, the spatiotemporal variation of the deformation and cooling history is yet to be fully understood. In situ muscovite and biotite Rb-Sr geochronology, in combination with Ti-in-quartz thermometry is applied to map the spatiotemporal deformation and cooling patterns of the northern part of the Petermann Orogen. Interpreted muscovite Rb-Sr growth ages obtained from samples in the Petermann Nappe Complex (PNC), range between c. 598 Ma and 565 Ma, which correlate with the timing of deformation during the 600-520 Ma Petermann Orogeny. Interpreted muscovite and biotite cooling ages are younger in the east of the PNC (c. 556-541 Ma) and broadly correlate with the regional pattern of crustal heat production, suggesting that the geothermal gradient had a significant control on the timing and duration of cooling. Biotite Rb-Sr cooling ages between c. 555 Ma and 497 Ma for the orogenic core show no correlation with high heat production areas, however, differences in exhumed crustal levels across the Petermann Orogen are observed: high-P granulite facies rocks in the orogenic core vs middle-upper crustal rocks in the PNC, indicating that at least part of the spatiotemporal variation of cooling ages can be attributed to differential exhumation during the Petermann Orogeny. Hence, crustal heat production and differential exhumation were likely the main controlling factors on the duration and variation of cooling rates in the Petermann Orogen.

Keywords

Rb-Sr / LA-ICP-MS/MS / Heat production / Cooling / Petermann Orogen

Cite this article

Download citation ▾
Alejandra Bedoya, Stijn Glorie, Martin Hand, Christopher L. Kirkland, Alexander T. De Vries Van Leeuwen. In situ Rb-Sr insights in the cooling history of the Petermann Orogeny, Central Australia. Geoscience Frontiers, 2025, 16(4): 102080 DOI:10.1016/j.gsf.2025.102080

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Alejandra Bedoya: Writing - review & editing, Writing - orig-inal draft, Visualization, Investigation, Formal analysis, Conceptu-alization. Stijn Glorie: Writing - review & editing, Writing -original draft, Validation, Supervision, Methodology, Funding acquisition, Conceptualization. Martin Hand: Writing - review & editing, Validation, Supervision, Conceptualization. Christopher L. Kirkland: Writing - review & editing, Supervision, Funding acquisition. Alexander T. De Vries Van Leeuwen: Writing - review & editing, Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Stijn Glorie is an Associate Editor for this journal and was not involved in the editorial review or the decision to publish this article.

Acknowledgements

This work has been supported by the Mineral Exploration Coop-erative Research Centre whose activities are funded by the Aus-tralian Government's Cooperative Research Centre Program. This is MinEx CRC Document 2025/06. Sarah Gilbert and Paul Olin are thanked for contributing expertise to the LA-ICP-MS/MS methods and instrument setup.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102080.

References

[1]

Aitken A.R.A., Betts P.G., 2009. Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: An example from the eastern Musgrave Province, Central Australia. Tectonophysics 476, 418-435. https://doi.org/10.1016/j.tecto.2009.07.007.

[2]

Aitken A.R.A., Betts P.G., Ailleres L., 2009a. The architecture, kinematics, and lithospheric processes of a compressional intraplate orogen occurring under Gondwana assembly: The Petermann orogeny, central Australia. Lithosphere 1, 343-357. https://doi.org/10.1130/L39.1.

[3]

Aitken A.R.A., Betts P.G., Weinberg R.F., Gray D., 2009b. Constrained potential field modeling of the crustal architecture of the Musgrave Province in central Australia: Evidence for lithospheric strengthening due to crust-mantle boundary uplift. J. Geophys. Res.: Solid Earth 114 (B12), B12405. https://doi.org/10.1029/2008JB006194.

[4]

Aitken A.R.A., Smithies R.H., Dentith M.C., Joly A., Evans S., Howard H.M., 2013. Magmatism-dominated intracontinental rifting in the Mesoproterozoic: The Ngaanyatjarra Rift, central Australia. Gondwana Res. 24, 886-901. https://doi.org/10.1016/j.gr.2012.10.003.

[5]

Camacho A., Compston W., McCulloch M., McDougall I., 1997. Timing and exhumation of eclogite facies shear zones, Musgrave Block, central Australia. J. Metamorph. Geol. 15, 735-751. https://doi.org/10.1111/j.1525-1314.1997.00053.x.

[6]

Camacho A., Fanning C.M., 1995. Some isotopic constraints on the evolution of the granulite and upper amphibolite facies terranes in the eastern Musgrave Block, central Australia. Precambrian Res. 71, 155-181. https://doi.org/10.1016/0301-9268(94)00060-5.

[7]

Camacho A., McDougall I., 2000. Intracratonic, strike-slip partitioned transpression and the formation and exhumation of eclogite facies rocks: An example from the Musgrave Block, central Australia. Tectonics 19, 978-996. https://doi.org/10.1029/1999TC001151.

[8]

Camacho A., McDougall I., Armstrong R., Braun J., 2001. Evidence for shear heating, Musgrave Block, central Australia. J. Struct. Geol. 23, 1007-1013. https://doi.org/10.1016/S0191-8141(00)00172-3.

[9]

Camacho A., Yang P., Frederiksen A., 2009. Constraints from diffusion profiles on the duration of high-strain deformation in thickened crust. Geology 37, 755-758. https://doi.org/10.1130/G25753A.1.

[10]

Cherniak D.J., 1993. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem. Geol. 110, 177-194. https://doi.org/10.1016/0009-2541(93)90253-F.

[11]

Cherniak D.J., 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol. 139 (2), 198-207. https://doi.org/10.1007/PL00007671.

[12]

Clarke G.L., Buick I.S., Glikson A.Y., Stewart A.J., 1995a. Structural and pressuretemperature evolution of host rocks of the Giles Complex, western Musgrave Block, central Australia: evidence for multiple high-pressure events. AGSO J. Aust. Geol. Geophys. 16, 127-146.

[13]

Clarke G.L., Sun S.S., White R.W., 1995b. Grenville-age belts and associated older terranes in Australia and Antarctica. AGSO J. Aust. Geol. Geophys. 16, 25-40.

[14]

De Vries Van Leeuwen A.T., Hand M., Morrissey L.J., Raimondo T., 2021. Th-U powered metamorphism: Thermal consequences of a chemical hotspot. J. Metamorph. Geol. 39, 541-565. https://doi.org/10.1111/jmg.12590.

[15]

Dodson M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40, 259-274. https://doi.org/10.1007/BF00373790.

[16]

Eberlei T., Habler G., Wegner W., Schuster R., Körner W., Thöni M., Abart R., 2015. Rb/Sr isotopic and compositional retentivity of muscovite during deformation. Lithos 227, 161-178. https://doi.org/10.1016/j.lithos.2015.04.007.

[17]

Edgoose C.J., Scrimgeour I.R., Close D.F., 2004. Geology of the Musgrave Block, Northern Territory. Northern Territory Geological Survey, Report 15, 50 pp.

[18]

Ehrlich K., Verš E., Kirs J., Soesoo A., 2012. Using a titanium-in-quartz geothermometer for crystallization temperature estimation of the Palaeoproterozoic Suursaari quartz porphyry. Estonian Journal of Earth Sciences 61, 195. https://doi.org/10.3176/earth.2012.4.01.

[19]

Evins P.M., Kirkland C.L., Wingate M.T.D., Smithies R.H., Howard H.M., Bodorkos S., 2012. Provenance of the 1340-1270 Ma Ramarama Basin in the west Musgrave Province, central Australia. Geological Survey of Western Australia, Report 116, 39 pp.

[20]

Evins P.M., Smithies R.H., Howard H.M., Kirkland C.L., Wingate M.T., Bodorkos S., 2010. Devil in the detail; The 1150-1000 Ma magmatic and structural evolution of the Ngaanyatjarra Rift, west Musgrave Province, Central Australia. Precambrian Res. 183, 572-588. https://doi.org/10.1016/j.precamres.2010.02.011.

[21]

Fitzsimons I.C.W., 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. Geol. Soc. London Spec. Pub. 206, 93-130. https://doi.org/10.1144/GSL.SP.2003.206.01.07.

[22]

Fletcher I.R., McNaughton N.J., Pidgeon R.T., Rosman K.J.R., 1997. Sequential closure of K-Ca and Rb-Sr isotopic systems in Archaean micas. Chem. Geol. 138, 289-301. https://doi.org/10.1016/S0009-2541(97)00005-3.

[23]

Flottmann T., Hand M., Close D., Edgoose C., Scrimgeour I., 2004. Thrust tectonic styles of the intracratonic Alice Springs and Petermann orogenies, Central Australia. In: McClayK.R. (Ed.), Thrust Tectonics and Hydrocarbon Systems, Volume 82. American Association of Petroleum Geologists. https://doi.org/10.1306/M82813C28.

[24]

Forman D.J., 1972. Petermann Ranges, Northern Territory. 1: 250,000 geological sheet and explanatory notes. Bureau of Mineral Resources, Canberra, Australia, 17.

[25]

Gilbert S.E., Glorie S., Zack T., 2024. Chapter 8 - In situ beta decay dating by LA-ICPMS/MS:applications. In: ShellnuttJ.G., DenyszynS.W., SugaK. (Methodsand Applications of Geochronology.Eds.), Elsevier, pp. 243-295. https://doi.org/10.1016/B978-0-443-18803-9.00005-5.

[26]

Glorie S., Gilbert S.E., Hand M., Lloyd J.C., 2024. Calibration methods for laser ablation Rb-Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials. Geochronology 6, 21-36. https://doi.org/10.5194/gchron-6-21-2024.

[27]

Glorie S., Hand M., Mulder J., Simpson A., Emo R.B., Kamber B., Fernie N., Nixon A., Gilbert S., 2024b. Robust laser ablation Lu-Hf dating of apatite:an empirical evaluation. In: van Schijndel, V., CuttsK., PereiraI., GuitreauM., VolanteS., TedeschiM. (MinorMinerals, Soc.Eds.), Major Implications: Using Key Mineral Phases to Unravel the Formation and Evolution of Earth's Crust. Geol. London Spec. Pub. 537, 165-184. https://doi.org/10.1144/SP537-2022-205.

[28]

Gregory C.J., Buick I.S., Hermann J., Rubatto D., 2009. Mineral-scale trace element and U-Th-Pb age constraints on metamorphism and melting during the Petermann Orogeny (Central Australia). J. Petrol. 50, 251-287. https://doi.org/10.1093/petrology/egn077.

[29]

Hand M., Sandiford M., 1999. Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics 305, 121-140. https://doi.org/10.1016/S0040-1951(99)00009-8.

[30]

Hartnady M.I., Kirkland C.L., Clark C., Spaggiari C.V., Smithies R.H., Evans N.J., McDonald B.J., 2019. Titanite dates crystallization: Slow Pb diffusion during super-solidus re-equilibration. J. Metamorph. Geol. 37 (6), 823-838. https://doi.org/10.1111/jmg.12489.

[31]

Hasterok D., Webb J., 2017. On the radiogenic heat production of igneous rocks. Geosci. Front. 8, 919-940. https://doi.org/10.1016/j.gsf.2017.03.006.

[32]

Hogmalm K.J., Zack T., Karlsson A.-K.-O., Sjöqvist A.S., Garbe-Schönberg D., 2017. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: an evaluation of N2O and SF 6 as reaction gases. J. Anal. at. Spectrom. 32, 305-313. https://doi.org/10.1039/C6JA00362A.

[33]

Holder R.M., Hacker B.R., Seward G.G., Kylander-Clark A.R., 2019. Interpreting titanite U-Pb dates and Zr thermobarometry in high-grade rocks: Empirical constraints on elemental diffusivities of Pb, Al, Fe, Zr, Nb, and Ce. Contrib. Mineral. Petrol. 174 (42), 1-19. https://doi.org/10.1007/s00410-019-1578-2.

[34]

Howard H.M., Smithies R.H., Kirkland C.L., Kelsey D.E., Aitken A., Wingate M.T.D., Quentin De Gromard R., Spaggiari C.V., Maier W.D., 2015. The burning heart —The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia. Gondwana Res. 27, 64-94. https://doi.org/10.1016/j.gr.2014.09.001.

[35]

Howard H.M., Smithies R.H., Pirajno F., Skwarnecki M.S., 2007. Bell Rock, WA Sheet 4645 Geological Survey of. 100000 Geological Series, Western Australia, 1.

[36]

Howard H.M., Werner M., Smithies R.H., Kirkland C.L., Kelsey D.E., Hand M., Collins A., Pirjano F., Wingate M.T.D., Maier W.D., Raimondo T., 2011. The geology of the west Musgrave Province and the Bentley Supergroup: a field guide. Geological Survey of Western Australia, Record 2011/4, 116 pp.

[37]

Jenkin G.R.T., Ellam R.M., Rogers G., Stuart F.M., 2001. An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochim. Cosmochim. Acta 65, 1141-1160. https://doi.org/10.1016/S0016-7037(00)00560-3.

[38]

Jenkin G.R.T., Rogers G., Fallick A.E., Farrow C.M., 1995. Rb-Sr closure temperatures in bi-mineralic rocks: a mode effect and test for different diffusion models. Chem. Geol. 122 (1-4), 227-240. https://doi.org/10.1016/0009-2541(95)00013-C.

[39]

Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther D., Enzweiler J., 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397- 429. https://doi.org/10.1111/j.1751-908X.2011.00120.x.

[40]

Kellett D.A., Larson K.P., Skipton D.R., 2024. Integration of white mica in situ 87Rb/87Sr with in situ and step-heat 40Ar/39Ar dates in orogenic settings. Lithos 482-483, 107687. https://doi.org/10.1016/j.lithos.2024.107687.

[41]

Kelley S., 2002a. Excess argon in K-Ar and Ar-Ar geochronology. Chem. Geol. 188, 1-22. https://doi.org/10.1016/S0009-2541(02)00064-5.

[42]

Kelley S., 2002b. K-Ar and Ar-Ar dating. Rev. Mineral. Geochem. 47, 785-818. https://doi.org/10.2138/rmg.2002.47.17.

[43]

Kelsey D.E., Smithies R.H., Hand M., Evins P.M., Clark C., Kirkland C.L., 2010. What is the tectonic setting of long-lived Grenvillian-aged ultrahigh temperature, high geothermal gradient metamorphism in the Musgrave Province, central Australia. Geological Society of America, Abstracts with Programs, p. 516.

[44]

Kirkland C.L., Smithies R.H., Spaggiari C.V., Wingate M.T.D., Quentin De Gromard R., Clark C., Gardiner N.J., Belousova E.A., 2017. Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna. Lithos 278-281, 427-444. https://doi.org/10.1016/j.lithos.2017.01.029.

[45]

Kirkland C.L., Smithies R.H., Woodhouse A.J., Howard H.M., Wingate M.T.D., Belousova E.A., Cliff J.B., Murphy R.C., Spaggiari C.V., 2013. Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Res. 23, 759-781. https://doi.org/10.1016/j.gr.2012.06.001.

[46]

Kooijman E., Mezger K., Berndt J., 2010. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet. Sci. Lett. 293 (3), 321-330. https://doi.org/10.1016/j.epsl.2010.02.047.

[47]

Kuiper Y.D., 2002. The interpretation of inverse isochron diagrams in 40Ar/39Ar geochronology. Earth Planet. Sci. Lett. 203, 499-506. https://doi.org/10.1016/S0012-821X(02)00833-6.

[48]

Lanphere M.A., Brent Dalrymple G., 1976. Identification of excess 40Ar by the 40Ar/39Ar age spectrum technique. Earth Planet. Sci. Lett. 32, 141-148. https://doi.org/10.1016/0012-821X(76)90052-2.

[49]

Li Z.-X., Evans D.A.D., 2011. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology 39 (1), 39-42. https://doi.org/10.1130/G31461.1.

[50]

Lloyd J.C., Gilbert S., Glorie S., Hand M., Spandler C., 2023. In-situ Rb-Sr Dating of Micas: The Devil Is In The Details. Goldschmidt, Lyon, France.

[51]

Maboko M.A.H., McDougall I., Zeitler P.K., Williams I.S., 1992. Geochronological evidence for ∼ 530-550 Ma juxtaposition of two Proterozoic metamorphic terranes in the Musgrave Ranges, Central Australia. Aust. J. Earth Sci. 39, 457-471. https://doi.org/10.1080/08120099208728038.

[52]

McDougall I., Harrison T.M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York, p. 269.

[53]

McLennan S.M., Taylor S.R., 1996. Heat flow and the chemical composition of continental crust. J. Geol. 104, 369-377. https://doi.org/10.1086/629834.

[54]

Merdith A.S., Williams S.E., Muller R.D., Collins A.S., 2017. Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Res. 299, 132-150. https://doi.org/10.1016/j.precamres.2017.07.013.

[55]

Mezger K., Rawnsley C.M., Bohlen S.R., Hanson G.N., 1991. U-Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts, New York. J. Geol. 99 (3), 415-428.

[56]

Mortimer G.E., Cooper J.A., James P.R., 1987. U-Pb and Rb-Sr geochronology and geological evolution of the Harts Range ruby mine area of the Arunta Inlier, central Australia. Lithos 20, 445-467. https://doi.org/10.1016/0024-4937(87)90029-6.

[57]

Norris A., Danyushevsky L., 2018. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. Goldschmidt, Boston, MA, USA.

[58]

Passchier C.W., Trouw R.A., 2005. Microtectonics, Second ed. Springer-Verlag Berlin Heidelberg, p. 366.

[59]

Quentin De Gromard, R., Kirkland C.L., Howard H.M., Wingate M.T.D., Jourdan F., McInnes B.I.A., Danišík M., Evans N.J., McDonald B.J., Smithies R.H., 2019. When will it end? Long-lived intracontinental reactivation in central Australia. Geosci. Front. 10, 149-164. https://doi.org/10.1016/j.gsf.2018.09.003.

[60]

Raimondo T., Collins A.S., Hand M., Walker-Hallam A., Smithies R.H., Evins P.M., Howard H.M., 2010. The anatomy of a deep intracontinental orogen. Tectonics 29, TC4024. https://doi.org/10.1029/2009TC002504.

[61]

Raimondo T., Collins A.S., Hand M., Walker-Hallam A., Smithies R.H., Evins P.M., Howard H.M., 2009. Ediacaran intracontinental channel flow. Geology 37, 291-294. https://doi.org/10.1130/G25452A.1.

[62]

Raimondo T., Hand M., Collins W.J., 2014. Compressional intracontinental orogens: Ancient and modern perspectives. Earth-Sci. Rev. 130, 128-153. https://doi.org/10.1016/j.earscirev.2013.11.009.

[63]

Redaa A., Farkaš J., Gilbert S., Collins A.S., Wade B., Löhr S., Zack T., GarbeSchönberg D., 2021. Assessment of elemental fractionation and matrix effects during in situ Rb-Sr dating of phlogopite by LA-ICP-MS/MS: implications for the accuracy and precision of mineral ages. J. Anal. at. Spectrom. 36, 322-344. https://doi.org/10.1039/D0JA00299B.

[64]

Rösel D., Zack T., 2022. LA-ICP-MS/MS single-spot Rb-Sr dating. Geostand. Geoanal. Res. 46, 143-168. https://doi.org/10.1111/ggr.12414.

[65]

Rudnick R.L., McDonough W.F., O'Connell R.J., 1998. Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 395-411. https://doi.org/10.1016/S0009-2541(97)00151-4.

[66]

Sandiford M., Hand M., 1998. Controls on the locus of intraplate deformation in central Australia. Earth Planet. Sci. Lett. 162, 97-110. https://doi.org/10.1016/S0012-821X(98)00159-9.

[67]

Sandiford M., Hand M., Mclaren S., 2001. Tectonic feedback, intraplate orogeny and the geochemical structure of the crust: A central Australian perspective. In: MillerJ.A., HoldsworthR.E., BuickI.S., HandM. (ContinentalReactivation and Reworking.Eds.), Geological Society of London 184,195-218.https://doi.org/10.1144/GSL.SP.2001.184.01.10.

[68]

Scrimgeour I., Close D., 1999. Regional high-pressure metamorphism during intracratonic deformation: the Petermann Orogeny, central Australia. J. Metamorph. Geol. 17, 557-572. https://doi.org/10.1046/j.1525-1314.1999.00217.x.

[69]

Scrimgeour I.R., Close D.F., Edgoose C.J., 1999. Petermann Ranges SG52-7: explanatory notes. Northern Territory Geological Survey 1: 250 000 map series, 66 pp.

[70]

Smithies R.H., Howard H.M., Evins P.M., Kirkland C.L., Kelsey D.E., Hand M., Wingate M.T.D., Collins A.S., Belousova E., Allchurch S., 2010. Geochemistry, geochronology, and petrogenesis of Mesoproterozoic felsic rocks in the west Musgrave Province, central Australia, and implications for the Mesoproterozoic tectonic evolution of the region. Geological Survey of Western Australia, Report 106, 73 pp.

[71]

Smithies R.H., Howard H.M., Evins P.M., Kirkland C.L., Kelsey D.E., Hand M., Wingate M.T.D., Collins A.S., Belousova E., 2011. High-temperature granite magmatism, crust-mantle interaction and the Mesoproterozoic intracontinental evolution of the Musgrave Province, Central Australia. J. Petrol. 52, 931-958. https://doi.org/10.1093/petrology/egr010.

[72]

Smithies R.H., Howard H.M., Kirkland C.L., Werner M., Medlin C.C., Wingate M.T. D., Cliff J.B., 2013. Geochemical evolution of rhyolites of the Talbot Sub-basin and associated felsic units of the Warakurna Supersuite. Geological Survey of Western Australia, Report 118, 74 pp.

[73]

Smithies R.H., Kirkland C.L., Korhonen F.J., Aitken A.R.A., Howard H.M., Maier W. D., Wingate M.T.D., Quentin de Gromard R., Gessner K., 2015. The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia — Plume vs. the geological record. Gondwana Res. 27, 1419-1429. https://doi.org/10.1016/j.gr.2013.12.014.

[74]

Spaggiari C.V., Smithies H., Kirkland C., Wingate M.T.D., England R.N., Lu Y.-J., 2020. Stratigraphic and co-funded drilling of the Eucla basement — the Proterozoic geology beneath the Nullarbor Plain. Geological Survey of Western Australia, Report 204, 147p. https://doi.org/10.13140/RG.2.2.19401.57441.

[75]

Spencer K.J., Hacker B.R., Kylander-Clark A.R.C., Andersen T.B., Cottle J.M., Stearns M.A., Poletti J.E., Seward G.G.E., 2013. Campaign-style titanite U-Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure. Chem. Geol. 341, 84-101. https://doi.org/10.1016/j.chemgeo.2012.11.012.

[76]

Stearns M.A., Hacker B.R., Ratschbacher L., Rutte D., Kylander-Clark A.R.C., 2015. Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics 34 (4), 784-802. https://doi.org/10.1002/2014TC003774.

[77]

Sun S.S., Sheraton J.W., Glikson A.Y., Stewart A.J., 1996. A major magmatic event during 1050-1080 Ma in central Australia, and an emplacement age for the Giles Complex. AGSO Research Newsletter 24, 13-15.

[78]

Sweet I.P., Stewart A.J., Crick I.H., 2012. Uluṟu and Kata Tjuṯa. A Geological Guide. Geoscience Australia 63.

[79]

Vermeesch P., 2018. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001.

[80]

Villa, 1998. Isotopic closure. Terra Nova 10, 42-47. https://doi.org/10.1046/j.1365-3121.1998.00156.x.

[81]

Villa I.M., De Bièvre P., Holden N.E., Renne P.R., 2015. IUPAC-IUGS recommendation on the half life of 87Rb. Geochim. Cosmochim. Acta 164, 382-385. https://doi.org/10.1016/j.gca.2015.05.025.

[82]

Wade B.P., Hand M., Barovich K.M., 2005. Nd isotopic and geochemical constraints on provenance of sedimentary rocks in the eastern Officer Basin, Australia: implications for the duration of the intracratonic Petermann Orogeny. J. Geol. Soc. 162, 513-530. https://doi.org/10.1144/0016-764904-001.

[83]

Wade B.P., Kelsey D.E., Hand M., Barovich K.M., 2008. The Musgrave Province: Stitching north, west and south Australia. Precambrian Res. 166, 370-386. https://doi.org/10.1016/j.precamres.2007.05.007.

[84]

Walsh A.K., 2015. Thermo-mechanical evolution of orogeny in the Musgrave Province. Ph.D. thesis, University of Adelaide, p. 172.

[85]

Walsh A.K., Hand M., Kelsey D.E., 2015a. A metamorphic perspective on foreland flexure during intraplate orogeny: evidence for the involvement of weak lithosphere. Terra Nova 27, 329-337. https://doi.org/10.1111/ter.12164.

[86]

Walsh A.K., Kelsey D.E., Kirkland C.L., Hand M., Smithies R.H., Clark C., Howard H. M., 2015b. P-T-t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondwana Res. 28, 531-564. https://doi.org/10.1016/j.gr.2014.05.012.

[87]

Walsh A.K., Raimondo T., Kelsey D.E., Hand M., Pfitzner H.L., Clark C., 2013. Duration of high-pressure metamorphism and cooling during the intraplate Petermann Orogeny. Gondwana Res. 24, 969-983. https://doi.org/10.1016/j.gr.2012.09.006.

[88]

Wark D.A., Watson E.B., 2006. TitaniQ: a titanium-in-quartz geothermometer. Contrib. Mineral. Petrol. 152, 743-754. https://doi.org/10.1007/s00410-006-0132-1.

[89]

White R.W., Clarke G.L., Nelson D.L., 1999. SHRIMP U-Pb zircon dating of Grenville-age events in the western part of the Musgrave Block, central Australia. J. Metamorph. Geol. 17, 465-481. https://doi.org/10.1046/j.1525-1314.1999.00211.x.

[90]

Willigers B.J.A., Mezger K., Baker J.A., 2004. Development of high precision Rb-Sr phlogopite and biotite geochronology; an alternative to 40Ar/39Ar tri-octahedral mica dating. Chem. Geol. 213, 339-358. https://doi.org/10.1016/j.chemgeo.2004.07.006.

[91]

Wingate M.T.D., Pirajno F., Morris P.A., 2004. Warakurna large igneous province: A new Mesoproterozoic large igneous province in west-central Australia. Geology 32, 105-108. https://doi.org/10.1130/G20171.1.

[92]

Zack T., Hogmalm K.J., 2016. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell. Chem. Geol. 437, 120-133. https://doi.org/10.1016/j.chemgeo.2016.05.027.

AI Summary AI Mindmap
PDF

441

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/