Provenance evolution from subduction to arc-continent collision: An example from Zagros-Makran Transition Zone

Parisa GholamiZadeh , Bo Wan , Guido Meinhold , Rasoul Esmaeili , Mohammad Ebrahimi

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102079

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102079 DOI: 10.1016/j.gsf.2025.102079

Provenance evolution from subduction to arc-continent collision: An example from Zagros-Makran Transition Zone

Author information +
History +
PDF

Abstract

Arc-continent collision zones are critical areas where uplift, accretion, and erosion processes significantly influence the growth, elimination, or recycling of the continental crust. The Zagros-Makran Transition Zone, located along the Minab-Zendan Fault, represents a convergence boundary between the Zagros continental domain and the Makran accretionary prism in southern Iran from the Cretaceous onwards. Several tectonic slices, including Neotethys ophiolitic remnants and the Ganj and Bajgan-Durkan complexes, have accreted along the southern margin of the Eurasian Plate during subduction in the western Makran wedge. To clarify the growth steps of the Makran Prism and the internal deformation associated with arc-continent collision, we used a provenance study of sandstones from the western Makran accretionary prism involving petrography of the main detrital components and U-Pb dating, Hf isotopic values, and trace elements of detrital zircon grains. Our findings reveal a progressive scenario in which oceanic arc-related rocks of the ~ 99 Ma Ganj Complex with Hf values ranging from +10 to +16 were uplifted during the Early to Late Eocene. The Eocene fore-arc sediments were sourced from the ~ 49-47 Ma Urumieh-Dokhtar Magmatic Arc with Hf values between -5 and +12, as well as from the Ganj Complex. The Jurassic-Cretaceous Bajgan-Durkan Complex was uplifted due to the Late Eocene to Oligocene collision of various terranes along the southern margin of the Eurasian Plate. This led to a major sediment influx into the Makran trench with a detrital signal in the range ~ 175-160 Ma with Hf isotopic values from -3 to +4 and alongside the Urumieh-Dokhtar Magmatic Arc with detrital ages ranging ~ 46-37 Ma and ca. 80 Ma. Notably, metamorphic lithic grains began to appear in the sediments in the Late Eocene. The initial arrival of sediments from the Arabian margin to the arc-continent suture zone along the Minab-Zendan Fault indicates the onset of initial collision. During the Late Oligocene-Early Miocene, detrital zircon ages in the range of ~ 610-520 Ma, sourced from the Arabian basement, were deposited in the trench basin together with components from the Eocene Urumieh-Dokhtar Magmatic Arc and Cretaceous ophiolitic clasts of ~ 93 Ma with Hf isotopic values of +12 to +16. Following the development and uplift of the orogen from the Middle Miocene onward, detrital zircon grains from the Cretaceous-Miocene Urumieh-Dokhtar Magmatic Arc, Jurassic-Cretaceous Bajgan-Durkan Complex, and Cretaceous ophiolites are present in both the Makran and Zagros sedimentary domains.

Keywords

Makran prism / Arc-continent collision / Provenance / Detrital zircon U-Pb dating / Minab-Zendan Fault

Cite this article

Download citation ▾
Parisa GholamiZadeh, Bo Wan, Guido Meinhold, Rasoul Esmaeili, Mohammad Ebrahimi. Provenance evolution from subduction to arc-continent collision: An example from Zagros-Makran Transition Zone. Geoscience Frontiers, 2025, 16(4): 102079 DOI:10.1016/j.gsf.2025.102079

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Parisa GholamiZadeh: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investiga-tion, Data curation, Conceptualization. Bo Wan: Writing - review & editing, Validation, Supervision, Resources, Funding acquisition, Conceptualization. Guido Meinhold: Writing - review & editing, Validation, Investigation, Conceptualization. Rasoul Esmaeili: Writing - review & editing, Data curation. Mohammad Ebrahimi: Writing - review & editing, Data curation.

Data availability

The location of samples for zircon analyses and the datasets generated during the current study are provided in Supplementary Data Table S1. Point-counting results plotted on diagrams in are provided in Supplementary Data Table S2, U-Pb and REE data on detrital zircon in Supplementary Data Tables S3 and S4, and Hf isotopic data in Supplementary Data Table S5. Further inquiries can be directed to the corresponding author.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the NSFC grant (No. 92255303). Special thanks are extended to Prof. Fuyuan Wu for his invaluable discussions, Zhiyong Zhang for his useful suggestions and assis-tance in organizing laboratory work, as well as to Wenbo Zhang and Shasha Wang for their contributions during Hf isotope analy-sis. The first author is grateful for support from the IGGCAS post-doctoral program (2016IFPR01) under the guidance of Prof. Bo Wan. The authors thank G. Bonnet for his feedback on regional geology. We would like to express our appreciation to the anony-mous reviewers for providing insightful comments and suggestions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102079.

References

[1]

Agard P., Monié P., Gerber W., Omrani J., Molinaro M., Meyer B., Labrousse L., Vrielynck B., Jolivet L., Yamato P., 2006. Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics. J. Geophys. Res. 111, B11401. https://doi.org/10.1029/2005JB004103.

[2]

Alavi M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 304, 1-20. https://doi.org/10.2475/ajs.304.1.1.

[3]

Alavi M., 2007. Structure of the Zagros fold-thrust belt in Iran. Am. J. Sci.307 (9), 1064-1095

[4]

Barbero E., Delavari M., Dolati A., Saccani E., Marroni M., Catanzariti R., Pandolfi L., 2020a. The Ganj Complex reinterpreted as a Late cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (Southeast Iran). J. Asian Earth Sci. 195, 104306. https://doi.org/10.1016/j. jseaes.2020.104306.

[5]

Barbero E., Delavari M., Dolati A., Vahedi L., Langone A., Marroni M., Pandolfi L., Zaccarini F., Saccani E., 2020b. Early Cretaceous Plume-Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran Iran): New Constraints from Petrological, MineralChemistry, and Geochronological Data. Minerals 10, 1100. https://doi.org/10.3390/min10121100.

[6]

Barbero E., Pandolfi L., Delavari M., Dolati A., Saccani E., Catanzariti R., Luciani V., Chiari M., Marroni M., 2021a. The western Durkan Complex (Makran Accretionary Prism, SE Iran): A Late Cretaceous tectonically disrupted seamounts chain and its role in controlling deformation style. Geosci. Front. 12, 101106. https://doi.org/10.1016/j.gsf.2020.12.001.

[7]

Barbero E., Zaccarini F., Delavari M., Dolati A., Saccani E., Marroni M., Pandolfi L., 2021b. New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: Constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan Complex (Makran Accretionary Prism), SE Iran. Lithos 396-397, 106228. https://doi.org/10.1016/j.lithos.2021.106228.

[8]

Barbero E., Rosa M.D., Pandolfi L., Delavari M., Dolati A., Zaccarini F., Saccani E., Marroni M., 2023. Deformation history and processes during accretion of seamounts in subduction zones: The example of the Durkan Complex (Makran, SE Iran). Geosci. Front. 14, 101522. https://doi.org/10.1016/j.gsf.2022.101522.

[9]

Barbero E., Pandolfi L., Delavari M., Dolati A., Saccani E., Rosa M.D., Marroni M., 2025. A review of Mesozoic geodynamic evolution of the North Makran (SE Iran): A tale of a Neo-Tethyan ocean vanished due to two coexisting subduction zones. Gondwana Res. 141, 74-101. https://doi.org/10.1016/j.gr.2025.01.016.

[10]

Barrier E., Vrielynck B., Brouillet J., Brunet M., 2018. Paleotectonic reconstruction of the Central Tethyan realm. tectono-sedimentary-palinspastic maps from Late Permian to Pliocene: Commission for the geological map of the world. www. ccgm.org (Atlas of 20 maps).

[11]

Berberian F., Berberian M., 1981. In: GuptaH.K., DelanyF.M. (Zagros Hindu Kush Himalaya Geodynamic Evolution,Eds.), 3. Geodynamics Series, pp.5-32. https://doi.org/10.1029/GD003p0005.

[12]

Berberian M., King G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 18, 210-265. https://doi.org/10.1139/e81-019.

[13]

Berberian F., Muir I.D., Pankhurst R.J., Berberian M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J. Geol. Soc. London 139, 605-614.

[14]

Brown D., Ryan P.D., Afonso J.C., Boutelier D., Burg J.P., Byrne T., Calvert A., Cook F., DeBari S., Dewey J.F., Gerya T.V., Harris R., Herrington R., Konstantinovskaya E., Reston T., Zagorevski A., 2011. Arc-continent collision:The making of an orogen. In: BrownD., RyanP.D. (Arc-ContinentCollision.Eds.), Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 477-493. https://doi.org/10.1007/978-3-540-88558-0_17.

[15]

Burg J.-P., 2011. The Asia-Kohistan-India collision:review and discussion. In: BrownD., RyanP.D. (Arc-ContinentCollision.Eds.), Frontiers in Earth Sciences. Springer, Heidelberg, pp. 279-309.

[16]

Burg J.-P., Dolati A., Bernoulli D., Smit J., 2013. Structural style of the Makran tertiary accretionary complex in SE Iran. In: Al HosaniK., RoureF., EllisonR., LokierS. (Lithosphere Dynamics and Sedimentary Basins:Eds.), the Arabian Plate and Analogues. Frontiers in Earth Sciences. Springer, Heidelberg, pp. 239-259. https://doi.org/10.1007/978-3-642-30609-9_12.

[17]

Burg J.-P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci. Rev. 185, 1210-1231.

[18]

Byrne D.E., Sykes L.R., Davis D.M., 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J. Geophys. Res. 97, 449-478.

[19]

Cavazza W., Catto S., Zattin M., Okay A., Reiners P., 2018. Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey. Geosphere 14 (5), 2277-2293. https://doi.org/10.1130/GES01637.1. https://doi.org/10.1130/GES01637.1.

[20]

Chiu H.Y., Chung S.L., Zarrinkoub M.H., Mohammadi S.S., Khatib M.M., Iizuka Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162-163, 70-87. https://doi.org/10.1016/j.lithos.2013.01.006.

[21]

Chiu H.Y., Chung S.L., Zarrinkoub M.H., Melkonyan R., Pang K.N., Lee H.Y., Wang K.L., Mohammadi S.S., Khatib M.M., 2017. Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt. J. Asian Earth Sci. 145, 652-669. https://doi.org/10.1016/j.jseaes.2017.06.011.

[22]

Darin M.H., Umhoefer P.J., 2022. Diachronous initiation of Arabia-Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. Int. Geol. Rev. 64, 2653-2681. https://doi.org/10.1080/00206814.2022.2048272.

[23]

Delavari M., Dolati A., Marroni M., Pandolfi L., Saccani E., 2016. Association of MORB and SSZ ophiolites along the shear zone between Coloured Mélange and Bajgan Complexes (North Maran, Iran): evidence from the Sorkhband area. Ofioliti 41, 21-34.

[24]

Dercourt J., Zonenshian L.P., Ricou L.E., Kazmin V.G., LePichon X., Knipper A.L., Grandjacquet C., Sbortshikov M., Geyssant J., Lepvrier C., Pechersky D.H., Boulin J., Sibuet J.C., Savostin L.A., Sorokhtin O., Westphal M., Bazhenov M.L., Lauer J.P., Biju-Duval B., 1986. Geological evolution of the Tethys Belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123, 241-315.

[25]

Dolati A., Burg J.-P., 2013. Preliminary fault analysis and paleostress evolution in the Makran Fold-and-Thrust Belt in Iran. In: Al HosaniK., RoureF., EllisonR., LokierS. (Lithosphere Dynamics and Sedimentary Basins:Eds.), the Arabian Plate and Analogues. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 261-277. https://doi.org/10.1007/978-3-642-30609-9_13.

[26]

Dolati A., 2010. Stratigraphy, structural geology and low-temperature thermochronology across the Makran accretionary wedge in Iran. Ph.D. thesis. ETH, Zurich, p. 165.

[27]

Dorani M., Arvin M., Oberhänsli R., Dargahi S., 2017. P-T evolution of metapelites from the Bajgan complex in the Makran accretionary prism, south eastern Iran. Geochemistry 773, 459-475. https://doi.org/10.1016/j.chemer.2017.07.004.

[28]

Esmaeili R., Xiao W., Griffin W.L., Shafaii Moghadam H., Zhang Z., Ebrahimi M., Zhang J., Wan B., Ao S., Bhandari S., 2020. Reconstructing the source and growth of the Makran Accretionary Complex, constraints from detrital zircon U-Pb geochronology. Tectonics 39, e2019TC005963. https://doi.org/10.1029/ 2019TC005963.

[29]

Faramarzi N.S., Amini S., Schmitt A.K., Hassanzadeh J., Borg G., McKeegan K., Razavi S.M.H., Mortazavi S.M., 2015. Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: a new record of Cadomian arc magmatism in the Hormuz Formation. Lithos 236, 203-211. https://doi.org/10.1016/j. lithos.2015.08.017.

[30]

Garzanti E., 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sed. Geol. 336, 3-13. https://doi.org/10.1016/j.sedgeo.2015.07.010.

[31]

Garzanti E., 2019. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 192, 545-563. https://doi.org/10.1016/j.earscirev.2018.12.014.

[32]

Garzanti E., Barbarano M., Andò S., Lenzi M., Deng K., Yang S., 2021. Provenance of Neogene sandstones in western Taiwan traced with garnet geochemistry and zircon geochronology. Basin Res. 33, 2069-2088.

[33]

Ghasemi Siani M., Mehrabi M., Neubauer F., Cao S., Lentz D.R., 2021. Geochronology, geochemistry, and origin of plagiogranitic rocks and related granitic dikes in the Dar Gaz district, Kahnouj ophiolite complex, SE Iran: analysis of their petrogenesis in a back-arc tectonic setting. Lithos 380-381, 105832. https://doi.org/10.1016/j.lithos.2020.105832.

[34]

Ghazban F., 2007. Petroleum Geology of the Persian Gulf. Tehran University and National Iranian Oil Company.

[35]

Ghazi J.M., Moazzenk M., 2015. Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turkish J. Earth Sci. 24, 513-528.

[36]

Ghazi A.M., Hassanipak A.A., Mahoney J.J., Duncan R.A., 2004. Geochemical characteristics, 40 Ar-39 Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics393(1-4),175-196.https://doi.org/10.1016/j.tecto.2004.07.035.

[37]

GholamiZadeh P., Adabi M.H., Hisada K.I., Hosseini-Barzi M., Sadeghi A., Ghassemi M.R., 2017. Revised version of the Cenozoic collision along the Zagros Orogen, insights from Cr spinel and modal analyses. Sci. Rep. 7, 10828. https://doi.org/10.1038/s41598-01711042-1.

[38]

GholamiZadeh P., Hu X.M., Garzanti E., Adabi M.H., 2022. Constraining the timing of Arabia-Eurasia collision in the Zagros orogen by sandstone provenance (Neyriz, Iran). Geol. Soc. Am. Bull. 134, 1793-1810. https://doi.org/10.1130/ B35950.1.

[39]

GholamiZadeh P., Wan B., Garzanti E., Hu X., Esmaeili R., Ebrahimi M., 2025. Collision timing and provenance shifts from the Late Oligocene to Middle Miocene in the southeasternmost Zagros Orogen. Sci. Rep. 15 (1), 6023. https://doi.org/10.1038/s41598-025-90186-x

[40]

Griffin W.L., Pearson N.J., Belousova E., Jackson S.E., van Achterbergh E., O'Reilly S.Y., Shee S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta. 64 (1), 133-147.

[41]

Graham S.A., Dickinson W.R., Ingersoll R.V., 1975. Himalayan-Bengal model for flysch dispersal in the Appalachian-Ouachita system. Geol. Soc. Am. Bull. 86 (3), 273-286.

[42]

Grimes C.B., Wooden J.L., Cheadle M.J., John B.E., 2015. ‘‘Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol. 170 (5), 1-26. https://doi.org/10.1007/s00410-015-1199-3.

[43]

Harris R., 2011. The nature of the Banda arc-continent collision in the Timor region. In: BrownD., RyanP. (Arc-Continent Collision:Eds.), the Making of an Orogen. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 163-211. https://doi.org/10.1007/978-3-540-88558-0_7.

[44]

Hassanzadeh J., 1993. Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province). PhD. thesis, University of California, Los Angeles.

[45]

Horton B.K., Hassanzadeh J., Stockli D.F., Axen G.J., Gillis R.J., Guest B., Amini A., Fakhari M.D., Zamanzadeh S.M., Grove M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97-122. https://doi.org/10.1016/j.tecto.2007.11.063.

[46]

Hu X., Garzanti E., Wang J., Huang W., An W., Webb A., 2016. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci. Rev. 160, 264-299. https://doi.org/10.1016/j.earscirev.2016.07.014.

[47]

Hu X., JianGang W., Wei A., Garzanti E., Juan L., 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci. China Earth Sci. 60, 603-625. https://doi.org/10.1007/s11430-016-9003-6.

[48]

Huang C., Yang Y., Wang H., Xie L., Wu S., Xu L., Wu F., 2022. In-run measuring 177 Hf16 O/177 Hf as a routine technique for in-situ Hf isotopic compositions analysis in zirconium-bearing minerals by laser ablation MC-ICP-MS. Spectrochimica Acta Part b. Atomic Spectroscopy 194, 106486.

[49]

Hunziker D., Burg J.P., Bouilhol P., von Quadt A., 2015. Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics 34 (3), 571-593.

[50]

Ingersoll R.V., Bullard T.F., Ford R.L., Grimm J.P., Pickle J.D., Sares S.W., 1984. The effect of grain size on detrital modes: A test of the Gazzi Dickinson point-counting method. J. Sediment. Petrol. 54, 103-116.

[51]

Kananian A., Juteau T., Bellon H., Darvishzadeh A., Sabzehi M., Whitechurch H., Ricou L.E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran): New geological and geochronological data. Compt. Rend. Acad. Sci. Series IIA 332 (9), 543-552.

[52]

Kooijman E., Berndt J., Mezger K., 2012. U-Pb dating of zircon by laser ablation ICP-MS: recent improvements and new insights. Europ. J. Min. 24, 5-21.

[53]

Koshnaw R.I., Kley J., Schlunegger F., 2024. The Miocene subsidence pattern of the NW Zagros foreland basin reflects the southeastward propagating tear of the Neotethys slab. Solid Earth 15, 1365-1383.

[54]

Limonta M., Garzanti E., Resentini A., Andò S., Boni M., Bechstädt T., 2015. Multicyclic sediment transfer along and across convergent plate boundaries (Barbados, Lesser Antilles). Basin Res. 27 (6), 696-713.

[55]

McCall G.J.H., Kidd R.G.W., 1982. The Makran, Southeastern Iran:the anatomy of a convergent plate margin from Cretaceous to Present. In: LeggetJ.K. (TrenchForearc Gelogy.Eds.), Geol. Soc. London, Spec. Publ. 10, 387-397.

[56]

McCall G., 1983. Mélanges of the Makran, southeastern Iran. In: McCallG.J.H., (Ed.), Ophiolitic and Related Mélanges. Benchmark Papers in Geology. Stroudsburg, Pennsylvania (Hutchinson and Ross), 66, pp. 292-299.

[57]

McCall G.J.H., 1985. Explanatory Text of the Tahruie Quadrangle Map 1:250,000. Geological Quadrangle No. J. 14. Heidary, Tehran, p. 454.

[58]

McCall G.J.H., 1985b. Explanatory Text of the Minab Quadrangle Map 1:250,000. Geological Quadrangle No. J 13. Heidary, Tehran.

[59]

McCall G.J.H., 1997. The geotectonic history of the Makran and adjacent areas of southern Iran. J. Asian Earth Sci. 15, 517-531.

[60]

McCall G., 2002. A summary of the geology of the Iranian Makran. Geol. Soc. London, Spec. Publ. 195 (1), 147-204.

[61]

Meinhold G., Hashemi Azizi S.H., Berndt J., 2020. Permian-Triassic magmatism in response to Palaeotethys subduction and pre-Late Triassic arrival of northeast Gondwana-derived continental fragments at the southern Eurasian margin: detrital zircon evidence from Triassic sandstones of Central Iran. Gondwana Res. 83, 118-131. https://doi.org/10.1016/j.gr.2020.02.001.

[62]

Moghadam H.S., Griffin W.L., Xian-Hua L., Santos J.F., Karsli O., Stern R.J., 2017. Crustal evolution of NW Iran: Cadomian Arcs, Archean fragments and the Cenozoic magmatic flare-up. J. Petrol. 58 (11), 2143-2190. https://doi.org/10.1093/petrology/egy005.

[63]

Moghadam H.S., Li Q.-L., Griffin W.L., Stern R.J., Chiaradia M., Karsli O., Ghorbani G., O'Reilly S., Pourmohsen M., 2020. Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A-and I-type granites and gabbro-diorites from NW Iran. Lithos 374, 105688.

[64]

Moghadam H.S., Li Q., Griffin W., Chiaradia M., Hoernle K., O'Reilly S., Esmaeili R., 2022. The Middle-Late Cretaceous Zagros ophiolites, Iran: linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman. Geol. Soc. Am. Bull. 134, 1414-1442. https://doi.org/10.1130/B36041.1.

[65]

Mohammadi A., Burg J.P., Guillong M., von Quadt A., 2017. Arc magmatism witnessed by detrital zircon U-Pb geochronology, Hf isotopes and provenance analysis of Late Cretaceous-Miocene sandstones of onshore western Makran (SE Iran). Am. J. Sci. 317 (8), 941-964.

[66]

Mohammadi A., Burg J.-P., Winkler W., Ruh J., von Quadt A., 2016a. Detrital zircon and provenance analysis of Late Cretaceous-Miocene Onshore Iranian Makran strata: Implications for the tectonic setting. Geol. Soc. Am. Bull. 128 (9-10), 1481-1499. https://doi.org/10.1130/B31361.1.

[67]

Mohammadi A., Burg J.P., Winkler W., 2016b. Detrital zircon and provenance analysis of Eocene-Oligocene strata in the South Sistan suture zone, southeast Iran: Implications for the tectonic setting. Lithosphere 8 (6), 615-632. https://doi.org/10.1130/L538.1.

[68]

Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science 189, 419-426. https://doi.org/10.1126/science.189.4201.419.

[69]

Monsef I., Monsef R., Mata J., Zhang Z., Pirouz M., Rezaeian M., Esmaeili R., Xiao W., 2018. Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: Constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (south Iran). Gondwana Res. 62, 287-305. https://doi.org/10.1016/j.gr.2018.03.002.

[70]

Mouthereau F., Lacombe O., Verges J., 2012. Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532, 27-60. https://doi.org/10.1016/j.tecto.2012.01.022.

[71]

Okay A.I., Zattin M., Cavazza W., 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38, 35-38. https://doi.org/10.1130/G30234.1.

[72]

Omrani H., Moazzen M., Oberhänsli R., Moslempour M.E., 2017. Iranshahr blueschist: subduction of the inner Makran oceanic crust. J. Metamorph. Geol. 35 (4), 373-392. https://doi.org/10.1111/jmg.12236.

[73]

Pandolfi L., Barbero E., Marroni M., Delavari M., Dolati A., Di Rosa M., Frassi C., Langone A., Farina F., MacDonald C.S., Saccani E., 2021. The Bajgan Complex revealed as a Cretaceous ophiolite-bearing subduction complex: a key to unravel the geodynamics of Makran (Southeast Iran). J. Asian Earth Sci. 222, 104965. https://doi.org/10.1016/j.jseaes.2021.104965.

[74]

Paton C., Woodhead J.D., Hellstrom J.C., Hergt J.M., Greig A., Maas R., 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geophys. Geosyst. 11 (3), Q0AA06. https://doi.org/10.1029/2009GC002618.

[75]

Platt J.P., Leggett J.K., Young J., Raza H., Alam S., 1985. Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology 13, 507-511. https://doi.org/10.1130/0091-7613(1985)13<507: LSUITM>2.0.CO;2.

[76]

Platt J.P., Leggett J.K., Alam S., 1988. Slip vectors and fault mechanics in the Makran accretionary wedge, southwest Pakistan. J. Geophys. Res. Solid Earth 93 (B7), 7955-7973.

[77]

Ravikant V., Wu F.-Y., Ji W.-Q., 2009. Zircon U-Pb and Hf isotopic constraints on petrogenesis of the Cretaceous-Tertiary granites in eastern Karakoram and Ladakh, India. Lithos 110 (1-4), 153-166. https://doi.org/10.1016/j.lithos.2008.12.013.

[78]

Regard V., Hatzfeld D., Molinaro M., Aubourg C., Bayer R., Bellier O., Yamini-Fard F., Peyret M., Abbassi M., 2010. The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. Geol. Soc. Lond. Spec. Publ. 330 (1), 43-64. https://doi.org/10.1144/SP330.4.

[79]

Ruh J.B., Valero L., Najafi M., Etemad-Saeed N., Vouga J., Mohammadi A., Landtwing F., Guillong M., Cobianchi M., Mancin N., 2023. Tectono-sedimentary evolution of shale-related minibasins in the Karvandar Basin (South Sistan, SE Iran): Insights from magnetostratigraphy, isotopic dating, and sandstone petrology. Tectonics 42, e2023TC007971. https://doi.org/10.1029/2023TC007971.

[80]

Ryan P.D., Dewey J.F., 2011. Arc-continent collision in the Ordovician of western Ireland:stratigraphic, structural, and metamorphic evolution. In: BrownD., RyanP. (Arc-Continent Collision:Eds.), the Making of an Orogeny. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 373-401. https://doi.org/10.1007/978-3-540-88558-0_13.

[81]

Saccani E., Delavari M., Dolati A., Marroni M., Pandolfi L., Chiari M., Barbero E., 2018. New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Res. 62, 306-327.

[82]

Saccani E., Barbero E., Delavari M., Dolati A., Brombin V., Marroni M., Pandolfi L., 2024. Geochemistry and magmatic petrology of meta-ophilites from the Bajgan Complex (Makran Accretionary Prism, SE Iran): new insights on the nature of the Early Cretaceous Middle East Neotethys. J. Geol. Soc. London 181 (4), jgs2024-043.

[83]

Sahandi M.R., Soheili M., 2014. Geological Map of Iran, scale 1:1,000,000. Geological Survey of Iran.

[84]

Sinclair H.D., 1993. High resolution stratigraphy and facies differentiation of the shallow marine Annot Sandstones, south-east France. Sedimentology 40, 955-978.

[85]

Sinclair H.D., 1997. Tectonostratigraphic model for underfilled peripheral foreland basins: An Alpine perspective. Geol. Soc. Am. Bull. 109 (3), 324-346.

[86]

Stöcklin J., Nabavi M.H., 1973. Tectonic Map of Iran, scale 1:2,500,000. Geological Survey of Iran.

[87]

Stöcklin J., 1968. Structural history and tectonics of Iran: a review. Am. Assoc. Pet. Geol. Bull. 52, 1229-1258.

[88]

Velbel M.A., 1985. Mineralogically mature sandstones in accretionary prisms. J. Sediment. Petrol. 55 (5), 685-690.

[89]

Verdel C., Wernicke B.P., Hassanzadeh J., Guest B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30(3), TC3008. https://doi.org/10.1029/2010TC002809.

[90]

Vermeesch P., 2012. On the visualisation of detrital age distributions. Chem. Geol. 312-313, 190-194.

[91]

Wu F.Y., Yang Y.H., Xie L.W., Yang J.H., Xu P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234, 105-126.

[92]

Xie L.W., Zhang Y.B., Zhang H.H., Sun J.F., Wu F.Y., 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Sci. Bull. 53, 1565-1573.

[93]

Yamani-Fard F., Hatzfeld D., Farahbod A., Paul A., Mokhtari M., 2007. The diffuse transition between the Zagros continental collision and the Makran oceanic subduction (Iran): microearthquake seismicity and crustal structure. Geophys. J. Int. 170, 182-194.

[94]

Zuffa G.G., 1985. Optical analyses of arenites:influence of methodology on compositional results. In: ZuffaG.G. (Ed.), Provenance of Arenites. NATO-ASI Series 148, 165-189.

AI Summary AI Mindmap
PDF

439

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/