Central Indian Ocean Basin micrometeorite collections: Type, flux, etching and its implication to ocean biogeochemistry

Rudraswami N.G. , Singh V.P. , Basil Saleem K.T.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102078

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102078 DOI: 10.1016/j.gsf.2025.102078

Central Indian Ocean Basin micrometeorite collections: Type, flux, etching and its implication to ocean biogeochemistry

Author information +
History +
PDF

Abstract

Extraterrestrial phenomena have influenced Earth's processes throughout geological history. Evaluating the impact of extraterrestrial material on the environment is crucial for understanding the evolution of Earth and life. This study incorporates the investigation of micrometeorites (MMs), abundant cosmic materials on Earth, to understand their influence on the chemical composition and biogeochemistry of the ocean. Comprehensive etching and flux analyses reveal that ~95% of cosmic spherules (CSs) entering seawater are etched or wholly dissolved, supplying nutrients to phytoplankton. Barred spherules show the highest degree of etching (~19%), followed by porphyritic (~17%), glass (~15%), cryptocrystalline (~12%), scoriaceous (~10%), G-type (~9%), and I-type (~6%). Annually, ~3080 tonnes (t) of olivine from MMs dissolve into seawater, contributing ~495 t of Mg2+, ~1110 t of Fe2+, and ~1928 t of silicic acid. This signifies that over the Indian Ocean's ~40 Myr history, ~23 Gt of olivine from CSs has dissolved, providing nutrients to seawater and sequestering ~7 Gt of CO2. The world ocean during this time has sequestered ~35 Gt of CO2, with fluctuations influenced by extraterrestrial activity. For instance, the Veritas event, lasting ~1.5 Myr, sequestered ~6 Gt of CO2 from the atmosphere. A robust flux calculation based on ~2 t of deep-sea sediments from 3610 MMs provides a more accurate estimate of the time-averaged flux of ~229 t yr-1. These comprehensive analyses reveal MM's original characteristics, post-deposition processes, geological record and their overall impact on Earth's marine environments, thereby contributing to our knowledge of the interconnection between terrestrial and extraterrestrial processes.

Keywords

Cosmic spherules / Micrometeorites / Deep-sea / Etching / Central Indian Ocean Basin / Flux

Cite this article

Download citation ▾
Rudraswami N.G., Singh V.P., Basil Saleem K.T.. Central Indian Ocean Basin micrometeorite collections: Type, flux, etching and its implication to ocean biogeochemistry. Geoscience Frontiers, 2025, 16(4): 102078 DOI:10.1016/j.gsf.2025.102078

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Data are available in Supplementary Data (A1, A2, A3 and A4).

CRediT authorship contribution statement

N.G. Rudraswami: Writing - original draft, Methodology, Pro-ject administration, Conceptualization. V.P. Singh: Writing - orig-inal draft, Investigation, Conceptualization. K.T. Basil Saleem: Writing - original draft, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is dedicated to the late Dr. M. Shyam Prasad, in recognition of his pioneering contribution to the field and his foundational efforts in the collection of micrometeorites from the Central Indian Ocean Basin. ISRO-RESPOND GAP3332 and PMN-MOES GAP2175 Project support this work. NIO-PMN and MOES-NCPOR supported the deep-sea and Antarctica micromete-orite collections, respectively. This is NIO's contribution No. 7429.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102078.

References

[1]

Amo Y.D., Brzezinski M.A., 1999. The chemical form of dissolved si taken up by marine diatoms. J. Phycol. 35 (6), 1162-1170.

[2]

Bates B.A., 1986. The elemental composition of stony extraterrestrial particles from the ocean floor. Ph.D. thesis, University of Washington.

[3]

Berner R.A., 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249 (4975), 1382-1386.

[4]

Blanchard M.B., Brownlee D.E., Bunch T.E., Hodge P.W., Kyte F.T., 1980. Meteoroid ablation spheres from deep-sea sediments. Earth Planet. Sci. Lett. 46, 178-190.

[5]

Brownlee D.E., 1985. Cosmic dust: collection and research. Annu. Rev. Earth Planet. Sci. 13, 147-173.

[6]

Brownlee D.E., Bates B., Schramm L., 1997. The Leonard Award Address Presented 1996 July 25, Berlin, Germany: the elemental composition of stony cosmic spherules. Meteorit. Planet. Sci. 32, 157-175.

[7]

Dohnanyi J.S., 1972. Interplanetary objects in review: statistics of their masses and dynamics. Icarus 17, 1-48.

[8]

Dugdale R.C., Wilkerson F.P., 1998. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391 (6664), 270-273.

[9]

Farley K.A., Vokrouhlicky´ D., Bottke W.F., Nesvorny´ D., 2005. A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439 (7074), 295-297.

[10]

Fernandes D., Rudraswami N.G., Pandey M., Singh V.P., 2024. Chemical compositions of Fe-rich relict olivines from cosmic spherules, understanding their links with ordinary and carbonaceous chondrites. Meteorit. Planet. Sci. 59 (3), 605-625.

[11]

Flynn G.J., 1994. Interplanetary dust particles collected from the stratosphere: physical, chemical, and mineralogical properties and implications for their sources. Planet. Space Sci. 42 (12), 1151-1161.

[12]

Genge M.J., Engrand C., Gounelle M., Taylor S., 2008. The classification of micrometeorites. Meteorit. Planet. Sci. 43, 497-515.

[13]

Genge M.J., Van Ginneken M., Suttle M.D., 2020. Micrometeorites: insights into the flux, sources and atmospheric entry of extraterrestrial dust at Earth. Planet. Space Sci. 187, 104900.

[14]

Hartmann J., Kempe S., 2008. What is the maximum potential for CO 2 sequestration by "stimulated" weathering on the global scale? Sci. Nat. 95, 1159-1164.

[15]

Hartmann J., West A.J., Renforth P., Köhler P., De La Rocha C.L., Wolf-Gladrow D. A., Dürr H.H., Scheffran J., 2013. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51 (2), 113-149.

[16]

Hoover R.B., Rozanov A.Y., 2002. Chemical biomarkers and microfossils in carbonaceous meteorites. In: Proc. SPIE 4495Instruments, Methods, and Missions for Astrobiology IV (Vol. 4495, pp. 1-18). https://doi.org/10.1117/12.454756.

[17]

Köhler P., Hartmann J., Wolf-Gladrow D.A., 2010. Geoengineering potential of artificially enhanced silicate weathering of olivine. PNAS 107 (47), 20228-20233.

[18]

Kyte F.T., 1983. Analyses of extraterrestrial materials in terrestrial sediments. Ph.D. thesis, University of California, Los Angeles, California, USA, p. 152.

[19]

Love S., Brownlee D., 1991. Heating and thermal transformation of micrometeoroids entering the Earth's atmosphere. Icarus 89 (1), 26-43.

[20]

Love S.G., Brownlee D.E., 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550-553.

[21]

Love S.G., Joswiak D.J., Brownlee D.E., 1994. Densities of stratospheric micrometeorites. Icarus 111, 227.

[22]

Maurette M., Jehanno C., Robin E., Hammer C., 1987. Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap. Nature 328, 699-702.

[23]

Montserrat F., Renforth P., Hartmann J., Leermakers M., Knops P., Meysman F.J., 2017. Olivine dissolution in seawater: Implications for CO 2 sequestration through enhanced weathering in coastal environments. Environ. Sci. Tech. 51, 3960-3972.

[24]

Murrell M.T., Davis Jr P.A., Nishiizumi K., Millard Jr H.T., 1980. Deep-sea spherules from Pacific clay: mass distribution and influx rate. Geochim. Cosmochim. Acta 44, 2067-2074.

[25]

Nelson D.M., Tréguer P., Brzezinski M.A., Leynaert A., Quéguiner B., 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 9 (3), 359-372.

[26]

Oelkers E.H., 2001. An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations. Chem. Geol. 175 (3-4), 485-494.

[27]

Pandey M., Rudraswami N., Singh V., Viegas A., 2023. Geochemical evaluation of cosmic spherules collected from the Central Indian Ocean Basin. Deep Sea Res. Part I Oceanogr. Res. Pap. 200, 104153.

[28]

Peucker-Ehrenbrink B., 1996. Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim. Cosmochim. Acta 60, 3187-3196.

[29]

Plane J.M., 2012. Cosmic dust in the Earth's atmosphere. Chem. Soc. Rev. 41, 6507-6518.

[30]

Prasad M.S., Rudraswami N.G., Panda D.K., 2013. Micrometeorite flux on Earth during the last ∼50,000 years. J. Geophys. Res. Planets 118, 2381-2399.

[31]

Prasad M.S., Rudraswami N.G., De Araujo A.A., Khedekar V.D., 2018. Characterization, sources and flux of unmelted micrometeorites on Earth during the last ∼50,000 years. Sci. Rep. 8 (1), 1-8.

[32]

Presper T., Kurat G., Koeberl C., Palme H., Maurette M., 1993. Elemental depletions in Antarctic micrometeorites and Arctic cosmic spherules: Comparison and relationships. In Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: NZ p 1177-1178 (SEE N94-20636 05-91). Vol. 24.

[33]

Ragueneau O., Schultes S., Bidle K., Claquin P., Moriceau B., 2006. Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump. Global Biogeochem. Cycles 20 (4). https://doi.org/10.1029/2006GB002688.

[34]

Renforth P., Henderson G., 2017. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55 (3), 636-674.

[35]

Rojas J., Duprat J., Engrand C., Dartois E., Delauche L., Godard M., Gounelle M., Carrillo-Sánchez J., Pokorny´ P., Plane J., 2021. The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth Planet. Sci. Lett. 560, 116794.

[36]

Rowley D.B., 1996. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145 (1-4), 1-13.

[37]

Rudraswami N.G., Prasad M.S., Dey S., Plane J.M.C., Feng W., Taylor S., 2015. Evaluating changes in the elemental composition of micrometeorites during entry into the Earth's atmosphere. Astrophys. J. 814, 78.

[38]

Rudraswami N.G., Prasad M.S., Dey S., Plane J.M.C., Feng W., Carrillo-Sánchez J.D., Fernandes D., 2016a. Ablation and chemical alteration of cosmic dust particles during entry into the Earth's atmosphere. Astrophys. J. Suppl. Ser. 227, 15.

[39]

Rudraswami N.G., Prasad M.S., Babu E.V.S.S.K., Vijaya Kumar T., 2016b. Major and trace element geochemistry of S-type cosmic spherules. Meteorit. Planet. Sci. 51 (4), 718-742. https://doi.org/10.1111/maps.12618.

[40]

Rudraswami N.G., Reshma K., Shyam Prasad M., 2017. A unique corundum and refractory metal-nugget bearing micrometeorite P117. Meteorit. Planet. Sci. 52, 164-173.

[41]

Rudraswami N.G., Fernandes D., Naik A.K., Prasad M.S., Taylor S., 2018. Fine-grained volatile components ubiquitous in solar nebula: corroboration from scoriaceous cosmic spherules. Meteorit. Planet. Sci. 53 (6), 1207-1222.

[42]

Rudraswami N.G., Marrocchi Y., Prasad M.S., Fernandes D., Villeneuve J., Taylor S., 2019. Oxygen isotopic and chemical composition of chromites in micrometeorites: evidence of ordinary chondrite precursors. Meteorit. Planet. Sci. 54 (6), 1347-1361.

[43]

Rudraswami N.G., Fernandes D., Pandey M., 2020. Probing the nature of extraterrestrial dust reaching the Earth's surface collected from the Maitri station Antarctica. Meteorit. Planet. Sci. 55, 2256-2266.

[44]

Rudraswami N.G., Pandey M., Genge M.J., Fernandes D., 2021. Extraterrestrial dust as a source of bioavailable iron contributing to the ocean for driving primary productivity. Meteorit. Planet. Sci. 56, 2175-2190.

[45]

Rudraswami N.G., Pandey M., Fernandes D., Carrillo-Sanchez J.D., Feng W., Plane J.M.C., Singh V.P., 2022. Oxygen ablation during atmospheric entry: its influence on the isotopic composition of micrometeorites. Astrophys. J. 940, 25.

[46]

Singh V.P., Rudraswami N.G., Chalapathi Rao N.V., Genge M.J., Pandey M., Sreekuttan S., Chattopadhaya S., 2024. Discovery of fossil micrometeorites from the Deccan trap intertrappeans. Meteorit. Planet. Sci. 59, 2922-2937.

[47]

Suttle M., Campanale F., Folco L., Tavazzani L., Meier M., Miller C., Hughes G., Genge M., Salge T., Spratt J., Anand M., 2023. Fossil micrometeorites from Monte dei Corvi: searching for dust from the Veritas asteroid family and the utility of micrometeorites as a palaeoclimate proxy. Geochim. Cosmochim. Acta 355, 75-88.

[48]

Suttle M.D., Folco L., 2020. The extraterrestrial dust flux: size distribution and mass contribution estimates inferred from the Transantarctic Mountains (TAM) micrometeorite collection. JGR Planets 125 (2), e2019JE006241.

[49]

Suttle M.D., Genge M.J., 2017. Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record. Earth Planet. Sci. Lett. 476, 132-142.

[50]

Taylor S., Matrajt G., Guan Y., 2012. Fine-grained precursors dominate the micrometeorite flux. Meteorit. Planet. Sci. 47 (4), 550-564.

[51]

Taylor S., Lever J.H., Harvey R.P., 2000. Numbers, types, and compositions of an unbiased collection of cosmic spherules. Meteorit. Planet. Sci. 35, 651-666.

[52]

Taylor S., Lever J.H., Harvey R.P., 1998. Accretion rate of cosmic spherules measured at the South Pole. Nature 392 (6679), 899-903.

[53]

Taylor S., Brownlee D.E., 1991. Cosmic spherules in the geologic record. Meteoritics 26 (3), 203-211.

[54]

Tomkins A., Bowlt L., Genge M., Wilson S.A., Brand H.E.A., Wykes J.L., 2016. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature 533, 235-238.

[55]

Van Ginneken M., Genge M.J., Folco L., Harvey R.P., 2016. The weathering of micrometeorites from the Transantarctic Mountains. Geochim. Cosmochim. Acta 179, 1-31.

[56]

Van Ginneken M., Wozniakiewicz P.J., Brownlee D.E., Debaille V., Della Corte V., Delauche L., et al., 2024. Micrometeorite collections: a review and their current status. Phil. Trans. R. Soc. A. 382 (2273), 20230195.

[57]

Wasson J.T., Kallemeyn G.W., 1988. Compositions of chondrites. Philos. Trans. Math. Phys. Eng. Sci. 325 (1587), 535-544.

[58]

Yada T., Nakamura T., Takaoka N., Noguchi T., Terada K., Yano H., Nakazawa T., Kojima H., 2004. The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice. Earth Planet. Sp. 56, 67-79.

[59]

Yiou F., Raisbeck G.M., Jéhanno C., 1991. The micrometeorite flux to the Earth, during the last ∼200,000 years as deduced from cosmic spherule concentration in Antarctic ice cores. Meteoritics 26, 412.

AI Summary AI Mindmap
PDF

243

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/