Detrital zircon geochronology of lower Palaeozoic sedimentary rocks from the COSC-2 borehole, Scandinavian Caledonides

Grzegorz Ziemniak , Iwona Klonowska , William C. McClelland , Oliver Lehnert , Simon Cuthbert , Isabel Carter , Riccardo Callegari , Katarzyna Walczak

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102077

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102077 DOI: 10.1016/j.gsf.2025.102077

Detrital zircon geochronology of lower Palaeozoic sedimentary rocks from the COSC-2 borehole, Scandinavian Caledonides

Author information +
History +
PDF

Abstract

Detrital zircon geochronology is reported from the c. 1200 m thick Cambro-Ordovician sedimentary succession recovered in core from the COSC-2 continental drilling project in the Scandinavian Caledonides. Above a regolith marking the sub-Cambrian peneplain, a lower to middle Cambrian(?) succession comprises conglomerate, sandstone and shale overlain by gravity flows fining upwards into the Alum Shale Formation. First results of detrital zircon geochronology from the Cambrian(?) succession show that the basal section of the autochthonous cover is characterized by mainly late Paleoproterozoic - early Mesoproterozoic detrital grains. The middle part of the succession is dominated by late Paleoproterozoic detritus with minor Mesoproterozoic and Archean input. The upper part of lower Cambrian(?) succession is characterized by Archean to Cambrian detritus. The maximum depositional age is calculated to 530.5 ± 4 Ma for the upper part of the lower Cambrian succession. Two samples from the Lower Ordovician(?) succession above the Alum Shale Formation show predominantly Mesoproterozoic to early Neoproterozoic (1.5-0.9 Ga) ages.

The autochthonous lower Cambrian(?) passive margin succession in the lower section is dominated by local detritus, sourced exclusively from the Eastern Segment of the Sveconorwegian Orogen, which includes the basement studied in COSC-2. Up-section, the provenance shifts towards the Transscandinavian Igneous Belt and Svecofennian Orogen sources, with the youngest part of the succession showing a notable input of Neoproterozoic -Cambrian active margin detritus. The Ordovician(?) succession is characterized by populations, likely derived from the Sveconorwegian Orogen, and a minor cratonic contribution.

Statistical analysis of detrital zircon datasets across Baltica suggests that the Southern Baltica/Sandomirian Arc, rather than the Timanian Orogen, was a significant source of detrital material across the paleocontinent. The influence of Timanian Orogen grains is limited to northernmost Scandinavia, whereas Sandomirian detritus reached central Scandinavia in the lower to middle Cambrian and remained prevalent in southern Scandinavia into the Lower Ordovician.

Keywords

Detrital zircon geochronology / COSC-2 / Baltica / Cambrian / Ordovician

Cite this article

Download citation ▾
Grzegorz Ziemniak, Iwona Klonowska, William C. McClelland, Oliver Lehnert, Simon Cuthbert, Isabel Carter, Riccardo Callegari, Katarzyna Walczak. Detrital zircon geochronology of lower Palaeozoic sedimentary rocks from the COSC-2 borehole, Scandinavian Caledonides. Geoscience Frontiers, 2025, 16(4): 102077 DOI:10.1016/j.gsf.2025.102077

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Grzegorz Ziemniak: Writing - review & editing, Writing - orig-inal draft, Visualization, Software, Methodology, Investigation, Data curation, Conceptualization. Iwona Klonowska: Writing - review & editing, Validation, Supervision, Resources, Project administration, Investigation, Funding acquisition, Formal analysis. William C. McClelland: Writing - review & editing, Supervision, Software, Resources, Methodology, Funding acquisition, Data cura-tion. Oliver Lehnert: Writing - review & editing, Visualization, Resources, Investigation. Simon Cuthbert: Writing - review & editing, Investigation, Data curation. Isabel Carter: Writing - review & editing, Investigation. Riccardo Callegari: Writing - review & editing, Visualization, Software, Methodology, Investiga-tion, Data curation. Katarzyna Walczak: Writing - review & edit-ing, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The COSC-2 borehole was drilled with the Swedish national research infrastructure for scientific drilling, "Riksriggen". We are thankful to the entire COSC drilling and scientific teams led by Henning Lorenz. This work was funded by the National Science Centre (NCN, Poland) project nos. 2018/29/B/ST10/02315 and 2019/33/B/ST10/01728 and the Swedish Research Council (Veten-skapsrådet) grant no. 2019-03688. OL is grateful to the Deutsche Forschunggemeinschaft for the support of his COSC-2 research (DFG 867/12-1,13-1, and 13-2). The Arizona Laserchron Facility is supported by a National Science Foundation (USA) grant EAR2050246. We thank Bernard Bingen and an anonymous reviewer for constructive reviews and Mathew Domeier for edito-rial handling.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102077.

References

[1]

Albert R., Arenas R., Gerdes A., Martínez S.S., Fernández-Suárez J., Fuenlabrada J. M., 2015a. Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Res. 28 (4), 1434-1448.

[2]

Albert R., Arenas R., Gerdes A., Sánchez Martínez S., Marko L., 2015b. Provenance of the HP-HT subducted margin in the Variscan belt (Cabo Ortegal Complex, NW Iberian Massif). J. Metam. Geol. 33 (9), 959-979.

[3]

Andersson A., Dahlman B., Gee D.G., Snäll S., 1985. The Scandinavian alum shales. Sveriges Geologiska Undersökning, Serie Ca 56, 1-50.

[4]

Andersson J., Claesson S., Kooijman E., 2022. Age and crustal affinity of Precambrian basement nappes and underlying basement in the east central Scandinavian Caledonides. In: 150 Anniversary Meeting, pp. 426-427.

[5]

Andresen A., Agyei-Dwarko N.Y., Kristoffersen M., Hanken N.M., 2014. A Timanian foreland basin setting for the late Neoproterozoic-Early Palaeozoic cover sequences (Dividal Group) of northeastern Baltica. Geol. Soc. London Spe. Publ. 390 (1), 157-175.

[6]

Andersen T.B., Corfu F., Labrousse L., Osmundsen P.T., 2012. Evidence for hyperextension along the pre-Caledonian margin of Baltica. J. Geol. Soc. 169 (5), 601-612.

[7]

Avigad D., Gerdes A., Morag N., Bechstädt T., 2012. Coupled U-Pb-Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Res. 21 (2-3), 690-703.

[8]

Balintoni I., Balica C., Ducea M.N., Zaharia L., Chen F., Clivet¸i M., Hann H.P., Ghergari L., 2010. Late Cambrian-Ordovician northeastern Gondwanan terranes in the basement of the Apuseni Mountains, Romania. J. Geol. Soc. 167 (6), 1131-1145.

[9]

Barr S.M., Hamilton M.A., Samson S.D., Satkoski A.M., White C.E., 2012. Provenance variations in northern Appalachian Avalonia based on detrital zircon age patterns in Ediacaran and Cambrian sedimentary rocks, New Brunswick and Nova Scotia, Canada. Can. J. Earth Sci. 49 (3), 533-546.

[10]

Bingen B., Belousova E.A., Griffin W.L., 2011. Neoproterozoic recycling of the Sveconorwegian orogenic belt: Detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Res. 189 (3-4), 347-367. https://doi.org/10.1016/j.precamres.2011.07.005.

[11]

Bjorklund L.J.O., 1989. Geology of the Akkajaure-Tysfjord-Lofoten Traverse, N. Scandinavian Caledonides. PhD thesis, Goeteborg University.

[12]

Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200 (1-2), 155-170. https://doi.org/10.1016/S0009-2541(03)00165-7.

[13]

Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Y.A., 2008. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Res. 160 (1-2), 23-45.

[14]

Callegari R., Mazur S., McClelland W.C., Barnes C.J., Ziemniak G., Kos´min´ska K., Majka J., 2025. Middle Cambrian shortening event at the SW margin of Baltica, Holy Cross Mts., Poland, and its importance for early Gondwana reconstructions. Geosci. Front. 16 (2), 101972. https://doi.org/10.1016/j.gsf.2024.101972.

[15]

Chelle-Michou C., Laurent O., Moyen J.F., Block S., Paquette J.L., Couzinié S., Gardien V., Vanderhaege O., Villaros A., Zeh A., 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: formation of the West European crust in a nutshell. Gondwana Res. 46, 170-190.

[16]

Cocks L.R.M., Torsvik T.H., 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Sci. Rev. 72 (1- 2), 39-66.

[17]

Collett S., Mazur S., Schulmann K., Soejono I., 2022. Significance of a late Neoproterozoic-Early Cambrian southern Baltica active margin in late-stage Rodinian and early Gondwanan reconstructions. Precambrian Res. 383, 106918. https://doi.org/10.1016/j.precamres.2022.106918.

[18]

Corfu F., Svensen H., Neumann E.R., Nakrem H.A., Planke S., 2010. U-Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia. Terra Nova 22 (2), 116-124. https://doi.org/10.1111/j.1365-3121.2010.00924.x

[19]

Corfu F., Gasser D., Chew D.M., 2014. New perspectives on the Caledonides of Scandinavia and related areas: introduction. Geol. Soc. London Special Publ. 390 (1), 1-8. https://doi.org/10.1144/SP390.28.

[20]

Drost K., Gerdes A., Jeffries T., Linnemann U., Storey C., 2011. Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U-Pb detrital zircon ages. Gondwana Res. 19 (1), 213-231.

[21]

Ershova V.B., Ivleva A.S., Podkovyrov V.N., Khudoley A.K., Fedorov P.V., Stockli D., Afinson O., Maslov A.V., Khubanov V., 2019. Detrital zircon record of the Mesoproterozoic to Lower Cambrian sequences of NW Russia: implications for the paleogeography of the Baltic interior. GFF 141 (4), 279-288. https://doi.org/10.1080/11035897.2019.1625073.

[22]

Fernández-Suárez J., Gutiérrez-Alonso G., Pastor-Galán D., Hofmann M., Murphy J.B., Linnemann U., 2014. The Ediacaran-Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. Int. J. Earth Sci. 103, 1335-1357.

[23]

Francovschi I., Shumlyanskyy L., Soesoo A., Tarasko I., Melnychuk V., Hoffmann A., Kovalick A., Love G., Bekker A., 2023. U-Pb geochronology of detrital zircon from the Ediacaran and Cambrian sedimentary successions of NE Estonia and Volyn region of Ukraine: Implications for the provenance and comparison with other areas within Baltica. Precambrian Res. 392, 107087.

[24]

Ga˛gała Ł., 2005. Pre-Ordovician polyphase tectonics of the Cambrian sequences in the Kielce Unit, Holy Cross Mts. Central Poland. Geol. Quart. 49 (1), 53-66.

[25]

Gee D.G., 1977. Extension of the Offerdal and Särv nappes and Seve supergroup into northern Tröndelag. Norsk Geologisk Tidsskrift 57, 163-170.

[26]

Gee D.G., Juhlin C., Pascal C., Robinson P., 2010. Collisional orogeny in the Scandinavian Caledonides (COSC). GFF 132 (1), 29-44.

[27]

Gee D.G., Andréasson P.G., Lorenz H., Frei D., Majka J., 2015. Detrital zircon signatures of the Baltoscandian margin along the Arctic Circle Caledonides in Sweden: The Sveconorwegian connection. Precambrian Res. 265, 40-56.

[28]

Gehrels G., Pecha M., 2014. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere 10 (1), 49-65. https://doi.org/10.1130/GES00889.

[29]

Gehrels G., Valencia V., Pullen A., 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona LaserChron Center. The Paleontological Society Papers 12, 67-76. https://doi.org/10.1017/S1089332600001352.

[30]

Gehrels G.E., Valencia V.A., Ruiz J., 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochem. Geophys. Geosyst. 9 (3), Q03017. https://doi.org/10.1029/2007GC001805.

[31]

Greiling R.O., Kathol B., Kumpulainen R.A., 2024. An early Cambrian post-rift basin within the Baltica-Iapetus passive margin (north-central Scandinavian Caledonides). Int. J. Earth Sci. 113 (1), 65-89.

[32]

Guynn J., Gehrels G., 2010. Comparison of Detrital Zircon Age Distributions Using the KS Test. Arizona LaserChron Center, University of Arizona, Tucson.

[33]

Hedin P., Juhlin C., Gee D.G., 2012. Seismic imaging of the Scandinavian Caledonides to define ICDP drilling sites. Tectonophysics 554, 30-41. https://doi.org/10.1016/j.tecto.2012.05.026.

[34]

Henderson B.J., Collins W.J., Murphy J.B., Gutierrez-Alonso G., Hand M., 2016. Gondwanan basement terranes of the Variscan-Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681, 278-304.

[35]

Heuwinkel J., Lindström M., 2007. Sedimentary and tectonic environment of the Ordovician Föllinge Greywacke, Storsjön area, Swedish Caledonides. GFF 129 (1), 31-42.

[36]

Isozaki Y., Poldvere A., Bauert H., Nakahata H., Aoki K., Sakata S., Hirata T., 2014. Provenance shift in Cambrian mid-Baltica: detrital zircon chronology of Ediacaran-Cambrian sandstones in Estonia. Estonian J. Earth Sci. 63 (4), 251-256.

[37]

Jakob J., Andersen T.B., Kjøll H.J., 2019. A review and reinterpretation of the architecture of the South and South-Central Scandinavian Caledonides—A magma-poor to magma-rich transition and the significance of the reactivation of rift inherited structures. Earth-Sci. Rev. 192, 513-528.

[38]

Junior F.C., Lavina E.L.C., Carassai J.J., Girelli T.J., Lana C., 2021. Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin-Paradigm as a source area. Geosci. Front. 12 (4), 101119.

[39]

Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Hertseva M.V., Andreichev V.L., 2007. Pre-Ordovician tectonic evolution and volcano-plutonic associations of the Timanides and northern Pre-Uralides, northeast part of the East European Craton. Gondwana Res. 12 (3), 305-323.

[40]

Kuznetsov N.B., Natapov L.M., Belousova E.A., OReilly S.Y., Griffin W.L., 2010. Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models. Gondwana Res. 17 (2-3), 583-601.

[41]

Kuznetsov N.B., Belousova E.A., Alekseev A.S., Romanyuk T.V., 2014a. New data on detrital zircons from the sandstones of the lower Cambrian Brusov Formation (White Sea region, East-European Craton): unravelling the timing of the onset of the Arctida-Baltica collision. Int. Geol. Rev. 56 (16), 1945-1963.

[42]

Kuznetsov N.B., Meert J.G., Romanyuk T.V., 2014b. Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic-Middle Cambrian (?) Asha group and Early Devonian Takaty formation, the Southwestern Urals: a test of an Australia-Baltica connection within Rodinia. Precambrian Res. 244, 288-305.

[43]

Kuznetsov N.B., Romanyuk T.V., 2021. Peri-Gondwanan blocks in the structure of the southern and southeastern framing of the East European Platform. Geotectonics 55, 439-472.

[44]

Landing E., Keppie J.D., Keppie D.F., Geyer G., Westrop S.R., 2022. Greater Avalonia—latest Ediacaran-Ordovician "peribaltic" terrane bounded by continental margin prisms ("Ganderia," Harlech Dome, Meguma): review, tectonic implications, and paleogeography. Earth-Sci. Rev. 224, 103863. https://doi.org/10.1016/j.earscirev.2021.103863.

[45]

Lehnert O., Almquist B., Anderson M., Andersson J., Cuthbert S., Calner M., Carter I., Callegari R., Juhlin C., Lorenz H., Madonna C., Meinhold G., Menegon L., Klonowska I., Pascal C., Rast M., Roberts N.N.W., Ruh J.B., Ziemniak G., 2024. The COSC-2 drillcore and its well-preserved Lower Palaeozoic sedimentary succession - an unexpected treasure beneath the Caledonian nappes. Estonian J. Earth Sci. 73 (2), 134-140. https://doi.org/10.3176/earth.2024.13.

[46]

Lescoutre R., Almqvist B., Koyi H., Berthet T., Hedin P., Galland O., Brahimi S., Lorenz H., Juhlin C., 2022a. Large-scale, flat-lying mafic intrusions in the Baltican crust and their influence on basement deformation during the Caledonian orogeny. GSA Bull. 134 (11-12), 3022-3048. https://doi.org/10.1130/B36202.1.

[47]

Lescoutre R., Söderlund U., Andersson J., Almquist B., 2022b. 1.47 Ga and 1.27-1.26 Ga dolerite sheets within the basement underneath the east-central Scandinavian Caledonides. In: 150 Anniversary Meeting, pp. 433-444.

[48]

Linnemann U., Gerdes A., Drost K., Buschmann B., 2007. The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Spec. Pap. Geol. Soc. America 423, 61-96.

[49]

Linnemann U., Pereira F., Jeffries T.E., Drost K., Gerdes A., 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461 (1-4), 21-43.

[50]

Linnemann U., Ouzegane K., Drareni A., Hofmann M., Becker S., Gärtner A., Sagawe A., 2011. Sands of West Gondwana: An archive of secular magmatism and plate interactions—A case study from the Cambro-Ordovician section of the Tassili Ouan Ahaggar (Algerian Sahara) using U-Pb-LA-ICP-MS detrital zircon ages. Lithos 123 (1-4), 188-203.

[51]

Linnemann U., Herbosch A., Liégeois J.P., Pin C., Gärtner A., Hofmann M., 2012. The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm-Nd isotopes, stratigraphy and palaeogeography. Earth-Sci. Rev. 112 (3-4), 126-154.

[52]

Lorenz H., Juhlin C., Rosberg J.E., Bazargan M., Klonowska I., Kück J., Lescoutre R., Rejkjær S., Westmeijer G., Ziemniak G., 2021. COSC-2 operational report-Operational data sets. GFZ Data Services. https://doi.org/10.5880/ICDP.5054.003.

[53]

Lorenz H., Rosberg J.-E., Juhlin C., Klonowska I., Lescoutre R., Westmeijer G., Almqvist B.S.G., Anderson M., Bertilsson S., Dopson M., Kallmeyer J., Kück J., Lehnert O., Menegon L., Pascal C., Rejkjær S., Roberts N.N.W., 2022. COSC-2 - drilling the basal décollement and underlying margin of palaeocontinent Baltica in the Paleozoic Caledonide Orogen of Scandinavia. Scientif. Drill. 30, 43-57. https://doi.org/10.5194/sd-30-43-2022

[54]

Lorentzen S., Braut T., Augustsson C., Nystuen J.P., Jahren J., Schovsbo N.H., 2020. Provenance of lower Cambrian quartz arenite on southwestern Baltica: Weathering versus recycling. J. Sediment. Res. 90 (5), 493-512.

[55]

Ludwig K.R., 2003. User's manual for IsoPlot 3.0. A geochronological toolkit for Microsoft Excel, p. 71.

[56]

Malkowski M.A., Johnstone S.A., Sharman G.R., White C.J., Scheirer D.S., Barth G. A., 2022. Continental shelves as detrital mixers: U-Pb and Lu-Hf detrital zircon provenance of the Pleistocene-Holocene Bering Sea and its margins. Deposit Record 8 (3), 1008-1030.

[57]

Mattinson J.M., 2010. Analysis of the relative decay constants of 235 U and 238 U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem.Geol. 275(3-4),186-198.https://doi.org/10.1016/j.chemgeo.2010.05.007.

[58]

Mazur S., Szczepan´ski J., Turniak K., McNaughton N.J., 2012. Location of the Rheic suture in the eastern Bohemian Massif: evidence from detrital zircon data. Terra Nova 24 (3), 199-206. https://doi.org/10.1111/j.1365-3121.2011.01053.x

[59]

McLoughlin S., Vajda V., Topper T.P., Crowley J.L., Liu F., Johansson O., Skovsted C. B., 2021. Trace fossils, algae, invertebrate remains and new U-Pb detrital zircon geochronology from the lower Cambrian Torneträsk Formation, northern Sweden. GFF 143 (2-3), 103-133.

[60]

Meert J.G., 2014. Ediacaran-Early Ordovician paleomagnetism of Baltica: a review. Gondwana Res. 25 (1), 159-169. https://doi.org/10.1016/j.gr.2013.02.003.

[61]

Meinhold G., Kostopoulos D., Frei D., Himmerkus F., Reischmann T., 2010. U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. Int. J. Earth Sci. 99, 813-832.

[62]

Nielsen A.T., Schovsbo N.H., 2011. The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Sci. Rev. 107 (3-4), 207-310.

[63]

Nielsen A.T., Schovsbo N.H., 2015. The regressive Early-Mid Cambrian 'Hawke Bay Event' in Baltoscandia: epeirogenic uplift in concert with eustasy. Earth-Sci. Rev. 151, 288-350.

[64]

Nystuen J.P., Andresen A., Kumpulainen R.A., Siedlecka A., 2008. Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes J. Int. Geosci. 31 (1), 35-43 https://doi.org/10.18814/epiiugs/2008/v31i1/006.

[65]

Paszkowski M., Budzyn´ B., Mazur S., Sláma J., Shumlyanskyy L., S´rodon´ J., Dhuime B., Ke˛dzior A., Liivamägi S., Pisarzowska A., 2019. Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus. Precambrian Res. 331, 105352.

[66]

Paszkowski M., Budzyn´ B., Mazur S., Sláma J., S´rodon´ J., Millar I.L., Shumlyanskyy L., Ke˛dzior A., Liivamägi S., 2021. Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, part II: Ukraine. Precambrian Res. 362, 106282. https://doi.org/10.1016/j.precamres.2021.106282.

[67]

Pease V., 2011. Chapter 20 Eurasian orogens and Arctic tectonics: an overview. Geol. Soc. London Memoirs 35(1), 311-324.

[68]

Põldvere A., Isozaki Y., Bauert H., Kirs J., Aoki K., Sakata S., Hirata T., 2014. Detrital zircon ages of Cambrian and Devonian sandstones from Estonia, central Baltica: a possible link to Avalonia during the Late Neoproterozoic. GFF 136 (1), 214-217.

[69]

Pollock J.C., Hibbard J.P., Sylvester P.J., 2009. Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U-Pb detrital zircon constraints from Newfoundland. J. Geol. Soc. 166 (3), 501-515.

[70]

Reimann C.R., Bahlburg H., Kooijman E., Berndt J., Gerdes A., Carlotto V., López S., 2010. Geodynamic evolution of the early Paleozoic Western Gondwana margin 14-17 S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia. Gondwana Res. 18 (2-3), 370-384.

[71]

Saintilan N.J., Spangenberg J. E., Samankassou E., Kouzmanov K., Chiaradia M., Stephens M.B., Fontboté L., 2016. A refined genetic model for the Laisvall and Vassbo Mississippi Valley-type sandstone-hosted deposits, Sweden: constraints from paragenetic studies, organic geochemistry, and S, C, N, and Sr isotope data. Mineral. Deposita 51, 639-664.

[72]

Slama J., Pedersen R.B., 2015. Zircon provenance of SW Caledonian phyllites reveals a distant Timanian sediment source. J. Geol. Soc. 172 (4), 465-478.

[73]

Saylor J.E., Jordan J.C., Sundell K.E., Wang X., Wang S., Deng T., 2018. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Res. 30 (3), 544-563. https://doi.org/10.1111/bre.12264.

[74]

Schmitz M.D., Bowring S.A., 2001. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: An assessment of high-precision U-Pb geochronology and its application to young volcanic rocks. Geochim. Cosmochim. Acta 65 (15), 2571-2587. https://doi.org/10.1016/S0016-7037(01)00616-0

[75]

Slama J., 2016. Rare late Neoproterozoic detritus in SW Scandinavia as a response to distant tectonic processes. Terra Nova 28 (6), 394-401.

[76]

Soejono I., Schulmann K., Sláma J., Hrdličková K., Hanzˇl P., Konopásek J., Collett S., Míková J., 2022. Pre-collisional crustal evolution of the European Variscan periphery: constraints from detrital zircon U-Pb ages and Hf isotopic record in the Precambrian metasedimentary basement of the Brunovistulian Domain. PrecambrianRes. 372,106606.https://doi.org/10.1016/j.precamres.2022.106606.

[77]

Torsvik T.H., Smethurst M.A., Meert J.G., Van der Voo R., McKerrow W.S., Brasier M.D., Sturt B.A., Walderhaug H.J., 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth-Sci. Rev. 40 (3-4), 229-258. https://doi.org/10.1016/0012-8252(96)00008-6

[78]

Torsvik T.H., Cocks L.R.M., 2017. Earth History and Palaeogeography. Cambridge University Press, Cambridge.

[79]

Vermeesch P., 2013. Multi-sample comparison of detrital age distributions. Chem. Geol. 341, 140-146.

[80]

Vermeesch P., 2021. Maximum depositional age estimation revisited. Geosci. Front. 12 (2), 843-850.

[81]

Waldron J.W., Schofield D.I., Pearson G., Sarkar C., Luo Y.A.N., Dokken R., 2019. Detrital zircon characterization of early Cambrian sandstones from East Avalonia and SE Ireland: implications for terrane affinities in the peri-Gondwanan Caledonides. Geol. Mag. 156 (7), 1217-1232.

[82]

Wickström L. M., Stephens M. B., 2020. Chapter 18 Tonian-Cryogenian rifting and Cambrian-Early Devonian platformal to foreland basin development outside the Caledonide orogen. Geol. Soc. London Memoirs 50(1), 451-477.

[83]

Willner A.P., Barr S.M., Gerdes A., Massonne H.J., White C.E., 2013. Origin and evolution of Avalonia: evidence from U-Pb and Lu-Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot-Venn Massif, Belgium. J. Geol. Soc. 170 (5), 769-784.

[84]

Zhang W., Roberts D., Pease V., 2015. Provenance characteristics and regional implications of Neoproterozoic, Timanian-margin successions and a basal Caledonian nappe in northern Norway. Precambrian Res. 268, 153-167.

[85]

Zhao Z.F., Ahlberg P., Thibault N., Dahl T.W., Schovsbo N.H., Nielsen A.T., 2022. High-resolution carbon isotope chemostratigraphy of the middle Cambrian to lowermost Ordovician in southern Scandinavia: Implications for global correlation. Global Planet. Change 209, 103751. https://doi.org/10.1016/j.gloplacha.2022.103751.

[86]

Zimmermann U., Andersen T., Madland M.V., Larsen I.S., 2015. The role of U-Pb ages of detrital zircons in sedimentology—An alarming case study for the impact of sampling for provenance interpretation. Sediment. Geol. 320, 38-50.

[87]

Zelaz´niewicz A., Oberc-Dziedzic T., Slama J., 2020. Baltica and the Cadomian orogen in the Ediacaran-Cambrian: a perspective from SE Poland. Int. J. Earth Sci. 109, 1503-1528.

AI Summary AI Mindmap
PDF

597

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/