Probabilistic characterization of lunar lava tube collapses: Implications for reliability-based design, safety, and exploration

Marcin Chwała , Kamil Górniak

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102076

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102076 DOI: 10.1016/j.gsf.2025.102076

Probabilistic characterization of lunar lava tube collapses: Implications for reliability-based design, safety, and exploration

Author information +
History +
PDF

Abstract

The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions. The research considered random irregularities in cave geometry and their impact on stability, with a particular focus on the geometric characteristics of identified collapses. We propose a procedure for extracting the collapse areas and integrating it into the stability analysis results. The results were examined to assess the possibility of describing the geometry characteristics of collapses using commonly applied probability density distributions, such as normal or lognormal distribution. Our aim is to facilitate future risk assessment of lunar caves. Such an assessment will be essential prior to robotically exploring caves beneath the lunar surface and can be extended to be used for planetary caves beyond the Moon. Our findings indicate that several collapse characteristics can be represented by unimodal probability density distributions, which could significantly simplify the candidate selection process. Based on our results, we also highlight several key directions for future research and suggested implications related to their future exploration.

Keywords

Lunar caves / Lava tubes / Probabilistic approach / Reliability-based design / Collapse area / Lunar collapse pits

Cite this article

Download citation ▾
Marcin Chwała, Kamil Górniak. Probabilistic characterization of lunar lava tube collapses: Implications for reliability-based design, safety, and exploration. Geoscience Frontiers, 2025, 16(4): 102076 DOI:10.1016/j.gsf.2025.102076

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Marcin Chwała: Writing - original draft, Supervision, Software, Project administration, Methodology, Funding acquisition, Formal analysis, Conceptualization. Kamil Górniak: Writing - review & editing, Software, Methodology, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The work was performed based on the research project no. 2023/51/D/ST10/01956, financed by the National Science Center, Poland. The authors would like to thank the two anonymous reviewers, Professor Jut Wynne, and Professor Karoly Nemeth for their helpful comments and suggestions, which have significantly improved the quality of this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102076.

References

[1]

Atwell M., Bussey D.B.J., Estes N.M., Grott M., Hamm M., Knollenberg J., et al., 2024. S.P. Hopper:in situ exploration of the Shackleton de Gerlaches ridge. In: 55th LPSC, #1162. https://www.hou.usra.edu/meetings/lpsc2024/pdf/1162.pdf.

[2]

Bell Jr., E., Schmerr N., Young K., Esmaeili S., Garry W.B., Jazayeri S., Kruse S., Richardson J., Whelley P., 2022. Field mapping and modeling of terrestrial lava tube magnetic anomalies as an analog for lunar lava tube exploration and prospecting. JGR Planets 127 (6), e2021JE007140.

[3]

Berger V.W., Zhou Y., 2014. Kolmogorov-smirnov test:Overview. Wiley statsref: Statistics reference online. https://doi.org/10.1002/9781118445112.stat06558.

[4]

Blair D.M., Chappaz L., Sood R., Milbury C., Bobet A., Melosh H.J., Howell K.C., Freed A.M., 2017. The structural stability of lunar lava tubes. Icarus 282, 47-55.

[5]

Calvari S., Pinkerton H., 1999. Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J. Volcanol. Geotherm. Res. 90 (3-4), 263-280.

[6]

Chappaz L., Sood R., Melosh H.J., Howell K.C., Blair D.M., Milbury C., Zuber M.T., 2017. Evidence of large empty lava tubes on the Moon using GRAIL gravity. Geophys. Res. Lett. 44 (1), 105-112.

[7]

Carrer L., Pozzobon R., Sauro F., Castelletti D., Patterson G.W., Bruzzone L., 2024. Radar evidence of an accessible cave conduit on the Moon below the Mare Tranquillitatis pit. Nat. Astron. 8 (9), 1119-1126.

[8]

Carrer L., Bruzzone L., 2023. Analysis of lava tubes' roughness and radar near-nadir regime backscattering properties. IEEE Trans. Geosci. Remote Sens. 61, 1-13.

[9]

Chen Y., Li C., Ren X., Liu J., Wu Y., Lu Y., Cai W., Zhang X., 2018. The thickness and volume of young basalts within Mare Imbrium. JGR Planets 123 (2), 630-645.

[10]

Chwała M., Phoon K.K., Uzielli M., Zhang J., Zhang L., Ching J., 2023. Time capsule for geotechnical risk and reliability. Georisk 17 (3), 439-466.

[11]

Chwała M., Komatsu G., Haruyama J., 2024a. Structural stability of lunar lava tubes with consideration of variable cross-section geometry. Icarus 411, 115928.

[12]

Chwała M., Komatsu G., Haruyama J., 2024b. Effects of layered roof for stability and exploration of lunar lava tubes. Earth Planet. Sci. Lett. 643, 118918.

[13]

Chwała M., Komatsu G., Haruyama J., 2024c. Impact of regolith and variable geometries on lunar lava tubes stability. LPI Contributions 3040, 1257.

[14]

Crawford I.A., Joy K.H., Pasckert J.H., Hiesinger H., 2021. The lunar surface as a recorder of astrophysical processes. Philos. Trans. R. Soc. A 379 (2188), 20190562.

[15]

Denevi B.W., Edgar L.A., Fassett C.I., Gross J., Hayden T., Heldmann J.L., et al., 2025. Artemis III geology priorities and science planning progress. In: 56th LPSC, #1920.

[16]

Edelsbrunner H., Kirkpatrick D., Seidel R., 1983. On the shape of a set of points in the plane. IEEE Trans. Geosci. Remote Sens. 29 (4), 551-559.

[17]

Feng Y., Pan P.Z., Tang X., Wang Z., Li Y., Hussain A., 2024. A comprehensive review of lunar lava tube base construction and field research on a potential Earth test site. Int. J. Min. Sci. Technol. 34 (9), 1201-1216.

[18]

Fenton G.A., Griffiths D.V., 2008. Risk Assessment in Geotechnical Engineering (Vol. 461). John Wiley & Sons, New York.

[19]

Grechi G., Moore J.R., Jensen E.K., McCreary M.E., Czech T.L., Festin M.M., 2024. Modal Analysis of a Lava Tube Roof Complex: Tabernacle Hill, Utah, USA. Rock Mech. Rock Eng. 57 (9), 1-10.

[20]

Han L., Zhang W., Wang L., Fu J., Xu L., Wang Y., 2024. A reliability analysis framework coupled with statistical uncertainty characterization for geotechnical engineering. Geosci. Front. 15 (6), 101913.

[21]

Haruyama J., Morota T., Kobayashi S., Sawai S., Lucey P.G., Shirao M., Nishino M. N., 2012. Lunar holes and lava tubes as resources for lunar science and exploration. In: BadescuV. (Ed.), Moon: Prospective Energy and Material Resources. Springer, Berlin, Heidelberg, pp. 139-163. https://doi.org/10.1007/978-3-642-27969-0_6.

[22]

Jerez D.J., Chwała M., Jensen H.A., Beer M., 2024. Optimal borehole placement for the design of rectangular shallow foundation systems under undrained soil conditions: A stochastic framework. Reliab. Eng. Syst. Saf. 242, 109771.

[23]

Jiang S.H., Papaioannou I., Straub D., 2020. Optimization of site-exploration programs for slope-reliability assessment. ASCE-ASME J. Risk Uncertain. Eng. Syst. A. Civ. Eng. 6 (1), 04020004.

[24]

Jiang S.H., Huang J., Griffiths D.V., Deng Z.P., 2022. Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review. Comput. Geotech. 141, 104498.

[25]

Jiang S.H., Zhu G.Y., Wang Z.Z., Huang Z.T., Huang J., 2023. Data augmentation for CNN-based probabilistic slope stability analysis in spatially variable soils. Comput. Geotech. 160, 105501.

[26]

Kaku T., Haruyama J., Miyake W., Kumamoto A., Ishiyama K., Nishibori T., et al., 2017. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder. Geophys. Res. Lett. 44 (20), 10-155.

[27]

Kerber L., Gale R.V., Moore N., Wire N., Francis R., Uckert K., et al., 2024. Concept of operations strategies for a lunar pit mission. In: 55th LPSC, #1808. https://www.hou.usra.edu/meetings/lpsc2024/pdf/1162.pdf.

[28]

Krabbenhoft K., Lyamin A.V., 2015. Strength reduction finite-element limit analysis. Géotech. Lett. 5 (4), 250-253.

[29]

Krabbenhoft K., Lyamin A., Krabbenhoft J., 2015. Optum computational engineering (OptumG2). Available on. www.optumce.com.

[30]

Li J., Yang T., Liu F., Zhao Y., Liu H., Deng W., Gao Y., Li H., 2024. Modeling spatial variability of mechanical parameters of layered rock masses and its application in slope optimization at the open-pit mine. Int. J. Rock Mech. Min. Sci. 181, 105859.

[31]

Lim K., Li A.J., Schmid A., Lyamin A.V., 2017. Slope-stability assessments using finite-element limit-analysis methods. Int. J. Geomech. 17 (2), 06016017.

[32]

Łydzba D., Rózan´ski A., Kawa M., Masłowski M., Rainer J., Sobótka M., Stefanek P., 2024. Reliability-oriented segmentation of sublayers in geologically uncertain substrate: A case study of the Zelazny Most TSF. Eng. Geol. 333, 107501.

[33]

Martin R.P., Benaroya H., 2023. Pressurized lunar lava tubes for habitation. Acta Astronaut. 204, 157-174.

[34]

Mittelholz A., Stähler S.C., Kolvenbach H., Bickel V., Church J., Hamran S.E., 2024. LunarLeaper - unlocking a subsurface world. In: 55th LPSC, #1820. https://www.hou.usra.edu/meetings/lpsc2024/pdf/1820.pdf.

[35]

Modiriasari A., Theinat A.K., Bobet A., Melosh H.J., Dyke S.J., Ramirez J., Maghareh A., Gomez D., 2018. Size and structural stability assessment of lunar lava tubes. In: 49th Lunar and Planetary Science Conference (No. 2083, p. 2803), The Woodlands, Texas.

[36]

National Academies of Sciences, Engineering, and Medicine,2022. Origins, Worlds, and Life: a Decadal Strategy for Planetary Science and Astrobiology 2023- 2032. The National Academies Press, Washington DC.

[37]

Noble S., Bailey B., Grossman J., Hertz P., Nahm A., Needham D., et al., 2024. Implementation Plan for a NASA Integrated Lunar Science Strategy in the Artemis Era. National Aeronautics and Space Administration https://www.nasa.gov/wp-content/uploads/2024/12/implementationplan-final-approved-12-02-24.pdf.

[38]

Robinson M.S., Ashley J.W., Boyd A.K., Wagner R.V., Speyerer E.J., Hawke B.R., Hiesinger H., Van Der Bogert C.H., 2012. Confirmation of sublunarean voids and thin layering in mare deposits. Planet. Space Sci. 69 (1), 18-27.

[39]

Pinheiro M., Emery X., Rocha A.M.A., Miranda T., Lamas L., 2017. Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing. Tunn. Undergr. Space Technol. 70, 65-75.

[40]

Sauro F., Pozzobon R., Massironi M., De Berardinis P., Santagata T., De Waele J., 2020. Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology. Earth-Sci. Rev. 209, 103288.

[41]

She X., Wang J., Xu W., Xiao L., 2025. Research on the impact of extraterrestrial lava tube environments on human survival and countermeasures. Space Habitation 1 (1), 100002.

[42]

Silverman B.W., 1981. Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. Ser. B Methodol. 43 (1), 97-99.

[43]

Sotiriou P., Polat A., Kusky T., Windley B.F., 2024. Early terrestrial and lunar anorthosites: Comparative geochemistry and evolutionary processes. Geosci. Front. 15 (6), 101914.

[44]

Statrel, 2024. A tool for reliability-oriented statistical analysis of data including simulation and analysis of time series.http://www.strurel.de/strurel.html#collapseFive.

[45]

Taveau J., 2024. NASA Provides Update on Artemis III Moon Landing Regions. https://www.nasa.gov/news-release/nasa-provides-update-on-artemis-iii-moon-landing-regions/.

[46]

Theinat A.K., Modiriasari A., Bobet A., Melosh H.J., Dyke S.J., Ramirez J., Maghareh J., Gomez D., 2020. Lunar lava tubes: Morphology to structural stability. Icarus 338, 113442.

[47]

Titus T.N., Wynne J.J., Malaska M.J., Agha-Mohammadi A.A., Buhler P.B., Alexander E.C., et al., 2021. A roadmap for planetary caves science and exploration. Nat. Astron. 5 (6), 524-525.

[48]

Tomasi I., Massironi M., Meyzen C.M., Pozzobon R., Sauro F., Penasa L., et al., 2022. Inception and evolution of La Corona lava tube system (Lanzarote, Canary Islands, Spain). J. Geophys. Res.: Solid Earth 127 (6), e2022JB024056.

[49]

Villeneuve M.C., Heap M.J., 2021. Calculating the cohesion and internal friction angle of volcanic rocks and rock masses. Volcanica 4 (2), 279-293.

[50]

Wagner R.V., Robinson M.S., 2021. Occurrence and origin of lunar pits:Observations from a new catalog. In: 52nd lunar and planetary science conference (No. 2548, p. 2530).

[51]

Wagner R.V., Robinson M.S., 2022. Lunar pit morphology: Implications for exploration. JGR Planets 127 (8), e2022JE007328.

[52]

Wagner R.V., Robinson M.S., 2014. Distribution, formation mechanisms, and significance of lunar pits. Icarus 237, 52-60.

[53]

Wilcoski A.X., Hayne P.O., Elder C.M., 2023. Thermal environments and volatile stability within lunar pits and caves. JGR Planets 128 (7), e2023JE007758.

[54]

Wines D.R., Lilly P.A., 2003. Estimates of rock joint shear strength in part of the Fimiston open pit operation in Western Australia. Int. J. Rock Mech. Min. Sci. 40 (6), 929-937.

[55]

Wagner R.V., Robinson M.S., 2023. Unwrapping Lunar Pits: Horizontal Views from Orbit. LPI Contrib. 2697, 1031.

[56]

Wynne J.J., Titus T.N., Agha-Mohammadi A.A., Azua-Bustos A., Boston P.J., de León P., et al., 2022a. Fundamental science and engineering questions in planetary cave exploration. JGR Planets 127 (11), e2022JE007194.

[57]

Wynne J.J., Mylroie J.E., Titus T.N., Malaska M.J., Buczkowski D.L., Buhler P.B., et al., 2022b. Planetary caves: A solar system view of processes and products. JGR Planets 127 (11), e2022JE007303.

[58]

Xin L., 2024. Japan's successful Moon landing was the most precise ever. Nature 626 (7997), 18-19.

[59]

You M., Hong Z., Tan F., Wen H., Zhang Z., Lv J., 2024. Stratigraphic identification using real-time drilling data. J. Rock Mech. Geotech. Eng. 16 (9), 3452-3464.

[60]

Yuan Y., Wang F., Zhu P., Xiao L., Zhao N., 2020. New constraints on the young lava flow profile in the northern Mare Imbrium. Geophys. Res. Lett. 47 (16), e2020GL088938.

[61]

Zhu K., Yang M., Yan X., Li W., Feng W., Zhong M., 2024. GRAIL gravity gradients evidence for a potential lava tube at Marius Hills on the moon. Icarus 408, 115814.

AI Summary AI Mindmap
PDF

597

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/