Are global U-Pb detrital zircon age distributions valid proxies for global igneous activity?

Stephen J. Puetz , Kent C. Condie , Slah Boulila , Qiuming Cheng

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102075

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102075 DOI: 10.1016/j.gsf.2025.102075

Are global U-Pb detrital zircon age distributions valid proxies for global igneous activity?

Author information +
History +
PDF

Abstract

When interpreting results, it is imperative to have some understanding of the degree to which the results are replicable. If the results cannot be replicated with independent data, then interpretations from the results become questionable. To minimize the potential for misinterpretations, the current study analyzes six time-series derived from globally sampled U-Pb zircon databases - of which, two are independent igneous databases, one being a quasi-independent igneous database, and three being independent detrital databases. These time-series are then analyzed with standard statistical methods to evaluate replicability. The methods include bandpass filtering to transform the raw time-series into stationary sequences, Student's t-test, Monte Carlo simulations, periodograms from spectral analysis, correlation studies, and correlograms. Each test is designed to determine the replicability of a specific time-series, as well as the replicability of periodicities found from the time-series. The results show at least three key components to assessing replicability: (a) U-Pb igneous and detrital zircon age distributions are highly replicable, (b) time-series replicability gradually deteriorates with age, and (c) replicability is scale dependent, with low frequency cycles being more replicable than high frequency cycles. From the tests, we conclude that four harmonic cycles are highly replicable and statistically significant, these being periodicities of 810, 270, 90, and 67.5-myr.

Keywords

Detrital zircon / Igneous zircon / Global U-Pb database / Replicability / Time-series / Bandpass filter

Cite this article

Download citation ▾
Stephen J. Puetz, Kent C. Condie, Slah Boulila, Qiuming Cheng. Are global U-Pb detrital zircon age distributions valid proxies for global igneous activity?. Geoscience Frontiers, 2025, 16(4): 102075 DOI:10.1016/j.gsf.2025.102075

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Stephen J. Puetz: Writing - original draft, Validation, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Kent C. Condie: Writing - review & editing. Slah Boulila: Writing - review & editing, Funding acquisi-tion. Qiuming Cheng: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Handling Editor Dr. Kristoffer Szilas for guidance, and Milo Barham and two anonymous reviewers for numerous sugges-tions for improving the manuscript. S.B. was supported by the French Agence Nationale de la Recherche (19-CE31-0002 Astro-Meso) and the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (Advanced Grant AstroGeo-885250).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102075.

References

[1]

Baker M., 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 452-454. https://doi.org/10.1038/533452a

[2]

Barham M., Kirkland C.L., Handoko A.D., 2022. Understanding ancient tectonic settings through detrital zircon analysis. Earth Planet. Sci. Lett. 583, 117425. https://doi.org/10.1016/j.epsl.2022.117425.

[3]

Budzyn B., Wirth R., Slama J., Birski L., Tramm F., Kozub-Budzyn G.A., Rzepa G., Schreiber A., 2021. LA-ICPMS, TEM and Raman study of radiation damage, fluid-induced alteration and disturbance of U-Pb and Th-Pb ages in experimentally metasomatised monazite. Chem. Geol. 583, 120464. https://doi.org/10.1016/j.chemgeo.2021.120464.

[4]

Cherniak D.J., 2006. Pb and rare earth element diffusion in xenotime. Lithos 88, 1-14. https://doi.org/10.1016/j.lithos.2005.08.002.

[5]

Cherniak D.J., Watson E.B., Grove M., Harrison T.M., 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochim. Cosmochim. Acta 68, 829-840. https://doi.org/10.1016/j.gca.2003.07.012.

[6]

Chernick M.R., 2012. Resampling methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 255-262. https://doi.org/10.1002/widm.1054.

[7]

Dickinson W.R., 2008. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett. 275, 80-92. https://doi.org/10.1016/j.epsl.2008.08.003.

[8]

Flowers R.M., Bowring S.A., Tulloch A.J., Klepeis K.A., 2005. Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand. Geology 33, 17-20. https://doi.org/10.1130/G21010.1.

[9]

Granqvist S., Hammarberg B., 2003. The correlogram: a visual display of periodicity. J. Acoust. Soc. Am. 114, 2934-2945. https://doi.org/10.1121/1.1590972.

[10]

Gregory C.J., Rubatto D., Hermann J., Berger A., Engi M., 2012. Allanite behaviour during incipient melting in the southern Central Alps. Geochim. Cosmochim. Acta 84, 433-458. https://doi.org/10.1016/j.gca.2012.01.020.

[11]

Hardy B.W., Jamieson K.H., 2017. Chapter 42:Overcoming biases in processing of time series data about climate. In: JamiesonK.H., KahanD.M., ScheufeleD.A. (Eds.), The Oxford Handbook of the Science of Science Communication. Oxford University Press.

[12]

Hawkesworth C., Cawood P., Kemp T., Storey C., Dhuime B., 2009. A matter of preservation. Science 323, 49-50. https://doi.org/10.1126/science.11685.

[13]

Hawkesworth C., Cawood P.A., Dhuime B., 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165-173. https://doi.org/10.1016/j.gsf.2018.02.004.

[14]

Heaman L.M., LeCheminant A.N., 2001. Anomalous U-Pb systematics in mantle-derived baddeleyite xenocrysts from Ile Bizard: evidence for high temperature radon diffusion? Chem. Geol. 172, 77-93. https://doi.org/10.1016/S0009-2541(00)00237-0

[15]

Hess H.H., 1962. History of Ocean Basins. Peterologic Studies: A Volume in Honor of A. F. Buddington. GSA, 599-520.

[16]

Hinnov L.A., 2005. Chapter 4:Earth's orbital parameters and cycle stratigraphy. In: GradsteinF.M., OggJ.G., SmithA. (AGeologic Time Scale 2004.Eds.), Cambridge University Press, NY.

[17]

Holland M.E., Grambling T.A., Karlstrom K.E., Jones III J.V., Nagotko K.N., Daniel C. G., 2020. Geochronologic and Hf-isotope framework of Proterozoic rocks from central New Mexico, USA: formation of the Mazatzal crustal province in an extended continental margin arc. Precambrian Res. 347, 105820. https://doi.org/10.1016/j.precamres.2020.105820.

[18]

Howard B.L., Sharman G.R., Crowley J.L., Wersan E.R., 2025. The leaky chronometer: evidence for systematic cryptic Pb loss in laser ablation U-Pb dating of zircon relative to CA-TIMS. Terra Nova 37, 19-25. https://doi.org/10.1111/ter.12742.

[19]

Ioannidis J.P.A., 2022. Correction: why most published research findings are false. PLoS Medicine 19, e1004085. https://doi.org/10.1371/journal.pmed.1004085.

[20]

Isley A.E., Abbott D.H., 2022. Implications of the temporal distribution of high-Mg magmas for mantle plume volcanism through time. J. Geol. 110, 141-158. https://doi.org/10.1086/338553.

[21]

Johansson A., 2021. Cleaning up the record - revised U-Pb zircon ages and new Hf isotope data from southern Sweden. GFF 143, 328-359. https://doi.org/10.1080/11035897.2021.1939777.

[22]

Johansson A., Bingen B., Huhma H., Waight T., Vestergaard R., Soesoo A., Skridlaite G., Krzeminska E., Shumlyanskyy L., Holland M.E., Holm-Denoma C., Teixeira W., Faleiros F.M., Ribeiro B.V., Jacobs J., Wang C., Thomas R.J., Macey P.H., Kirkland C.L., Hartnady M.I.H., Eglington B.M., Puetz S.J., Condie K.C., 2022. A geochronological review of magmatism along the external margin of Columbia and in the Grenville-age orogens forming the core of Rodinia. Precambrian Res. 371, 106463. https://doi.org/10.1016/j.precamres.2021.106463.

[23]

Keller C., Schoene B., 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490-493. https://doi.org/10.1038/nature11024.

[24]

Kirkland C.L., Yakymchuk C., Szilas K., Evans N., Hollis J., McDonald B., Gardiner N.J., 2018. Apatite: a U-Pb thermochronometer or geochronometer? Lithos 318-319, 143-157. https://doi.org/10.1016/j.lithos.2018.08.007.

[25]

Klotzli U., Klotzli E., Gunes Z., Kosler J., 2009. Accuracy of laser ablation U-Pb zircon dating: results from a test using five different reference zircons. Geostand. Geoanal. Res. 33, 5-15. https://doi.org/10.1111/j.1751-908X.2009.00921.x.

[26]

Lefevre L., 2024. Sunspot number. world data center, solar influences data analysis center downloaded on 10 Oct 2024 Royal Observatory of Belgium, Brussels Data https://www.sidc.be/SILSO/datafiles.

[27]

Li M., Puetz S.J., Condie K.C., Olson P., 2023. Mantle plume heat flux and surface motion periodicities and their implications for the growth of continental crust. Earth Planet. Sci. Lett. 611, 118148. https://doi.org/10.1016/j.epsl.2023.118148.

[28]

Lo C.P., Watson L.J., 1998. The influence of geographic sampling methods on vegetation map accuracy evaluation in a swampy environment. Photogramm Eng. Rem. S. 64, 1189-1200 https://www.asprs.org/pers-archives-of-the-past.

[29]

Metropolis N., Ulam S., 1949. The Monte Carlo method. J. Am. Stat. Assoc. 44, 335-341. https://doi.org/10.1080/01621459.1949.10483310.

[30]

Mitchell R.N., Zhang N., Salminen J., Liu Y., Spencer C.J., Steinberger B., Murphy J. B., Li Z.-X., 2021. The supercontinent cycle. Nat. Rev. Earth Environ. 2, 358-374. https://doi.org/10.1038/s43017-021-00160-0.

[31]

Moecher D.P., Samson S.D., 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth Planet. Sci. Lett. 247, 252-266. https://doi.org/10.1016/j.epsl.2006.04.035.

[32]

Moonesinghe R., Khoury M.J., Cecile A., Janssens J.W., 2007. Most published research findings are false—but a little replication goes a long way. PLoS Med. 4, e28.

[33]

Nance R.D., Murphy J.B., Santosh M., 2014. The supercontinent cycle: a retrospective essay. Gondwana Res. 25, 4-29. https://doi.org/10.1016/j.gr.2012.12.026.

[34]

Neukum G., Basilevsky A.T., Kneissl T., Chapman M.G., VanGasselt S., Michael G., Jaumann R., Hoffmann H., Lanz J.K., 2010. The geologic evolution of Mars: episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites. Earth Planet. Sci. Lett. 294 (3-4), 204-222. https://doi.org/10.1016/j.epsl.2009.09.006.

[35]

Niihara T., Kaiden H., Misawa K., Sekine T., Mikouchi T., 2012. U-Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites. Earth Planet. Sci. Lett. 341-344, 195-210. https://doi.org/10.1016/j.epsl.2012.06.002.

[36]

Owen D.B., 1965. The power of student's t-test. J. Am. Stat. Assoc. 60, 320-333. https://doi.org/10.1080/01621459.1965.10480794.

[37]

Popper K., 1959. The Logic of Scientific Discovery. Hutchinson and Company.

[38]

Popper K., 1963. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge and Kegan Paul, London.

[39]

Prokoph A., Puetz S.J., 2015. Period-tripling and fractal features in multi-billion year geological records. Math. Geosci. 501-520. https://doi.org/10.1007/s11004-015-9593-y.

[40]

Puetz S.J., Borchardt G., 2015. Quasi-periodic fractal patterns in geomagnetic reversals, geological activity, and astronomical events. Chaos Soliton Fract. 81, 246-270. https://doi.org/10.1016/j.chaos.2015.09.029.

[41]

Puetz S.J., Prokoph A., Borchardt G., Mason E., 2014. Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events. Chaos Soliton Fract. 62-63, 55-75. https://doi.org/10.1016/j.chaos.2014.04.001.

[42]

Puetz S.J., Condie K.C., 2019. Time-series analysis of mantle cycles Part I: periodicities and correlations among seven global isotopic databases. Geosci. Front. 10, 1305-1326. https://doi.org/10.1016/j.gsf.2019.04.002.

[43]

Puetz S.J., Condie K.C., 2021. Applying Popperian falsifiability to geodynamic hypotheses: empirical testing of the episodic crustal/zircon production hypothesis and selective preservation hypothesis. Int. Geol. Rev. 63, 1920-1950. https://doi.org/10.1080/00206814.2020.1818143.

[44]

Puetz S.J., Condie K.C., 2022. A review of methods used to test periodicity of natural processes with a special focus on harmonic periodicities found in global U-Pb detrital zircon age distributions. Earth-Sci. Rev. 224, 103885. https://doi.org/10.1016/j.earscirev.2021.103885.

[45]

Puetz S.J., Spencer C.J., Ganade C.E., 2021. Analyses from a validated global U-Pb detrital zircon database: enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates. Earth-Sci. Rev. 220, 103745. https://doi.org/10.1016/j.earscirev.2021.103745.

[46]

Puetz S.J., Spencer C.J., 2023. Evaluating U-Pb accuracy and precision by comparing zircon ages from 12 standards using TIMS and LA-ICP-MS methods. Geosystems Geoenvironment. 2, 100177. https://doi.org/10.1016/j.geogeo.2022.100177.

[47]

Puetz S.J., Condie K.C., Sundell K., Roberts N.M.W., Spencer C.J., Boulila S., Cheng Q., 2024a. The replication crisis and its relevance to Earth Science studies: case studies and recommendations. Geosci. Front. 15, 101821. https://doi.org/10.1016/j.gsf.2024.101821.

[48]

Puetz S.J., Spencer C.J., Condie K.C., Roberts N.M.W., 2024b. Enhanced U-Pb detrital zircon, Lu-Hf zircon, d 18 O zircon, and Sm-Nd whole rock global databases. Sci. Data 11, 56. https://doi.org/10.1038/s41597-023-02902-9.

[49]

Rampino M.R., 2015. Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Mon. Not. R. Astron. Soc. 448, 1816-1820. https://doi.org/10.1093/mnras/stu2708.

[50]

Richards M.A., Alvarez W., Self S., Karlstrom L., Renne P.R., Manga M., Sprain C.J., Smit J., Vanderkluysen L., Gibson S.A., 2015. Triggering of the largest Deccan eruptions by the Chicxulub impact. Geol. Soc. Am. Bull. 127, 1507-1520. https://doi.org/10.1130/B31167.1.

[51]

Redden D.T., Allison D.B., 2003. Nonreplication in genetic association studies of obesity and diabetes. J. Nutr. 133, 3323-3326. https://doi.org/10.1093/jn/133.11.3323.

[52]

Roy I., Asikainen T., Maliniemi V., Mursula K., 2016. Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate. J. Atmos. Sol.-Terr. Phys. 149, 167-179. https://doi.org/10.1016/j.jastp.2016.04.009.

[53]

Scheel H., Scholtes S., 2000. Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1-22. https://doi.org/10.1287/moor.25.1.1.15213.

[54]

Schoene B., Eddy M.P., Samperton K.M., Keller C.B., Keller G., Adatte T., Khadri S. F.R., 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862-866. https://doi.org/10.1126/science.aau2422.

[55]

Schulz M., Mudelsee M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time-series. Comput. Geosci. 28, 421-426. https://doi.org/10.1016/S0098-3004(01)00044-9

[56]

Schwartz T.M., Surpless K.D., Colgan J.P., Johnstone S.A., Holm-Denoma C.S., 2021. Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28-48°N). Earth-Sci. Rev. 220, 103734. https://doi.org/10.1016/j.earscirev.2021.103734.

[57]

Segvic B., Lukacs R., Mandic O., Strauss P., Badurina L., Guillong M., Harzhauser M., 2023. U-Pb zircon age and mineralogy of the St Georgen halloysite tuff shed light on the timing of the middle Badenian (mid-Langhian) transgression, ash dispersal and palaeoenvironmental conditions in the southern Vienna Basin, Austria. J. Geol. Soc. 180, jgs2022-106. https://doi.org/10.1144/jgs2022-106.

[58]

Sharman G.R., Malkowski M.A., 2024. Modeling apparent Pb loss in zircon U-Pb geochronology. Geochronol. 6, 37-51. https://doi.org/10.5194/gchron-6-37-2024

[59]

Smith H.A., Giletti B.J., 1997. Lead diffusion in monazite. Geochim. Cosmochim. Acta 61, 1047-1055. https://doi.org/10.1016/S0016-7037(96)00396-1.

[60]

Sprain C.J., Renne P.R., Vanderkluysen L., Pande K., Self S., Mittal T., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866-870. Doi: 10.1126/science.aav144.

[61]

Stanley J.R., Flowers R.M., 2020. Mesozoic denudation history of the lower Orange River and eastward migration of erosion across the southern African Plateau. Lithosphere 12, 74-87. https://doi.org/10.1130/L1121.1.

[62]

Stehman S.V., Selkowitz D.J., 2010. A spatially stratified, multi-stage cluster sampling design for assessing accuracy of the Alaska (USA) National Land Cover Database (NLCD). Int. J. Remote Sens. 31, 1877-1896. https://doi.org/10.1080/01431160902927945.

[63]

Thrane K., 2021. The oldest part of the Rae craton identified in western Greenland. Precambrian Res. 357, 106139. https://doi.org/10.1016/j.precamres.2021.106139

[64]

Turnbull R.E., Allibone A.H., Matheys F., Fanning C.M., Kasereka E., Kabete J., McNaughton N.J., Mwandale E., Holliday J., 2021. Geology and geochronology of the Archean plutonic rocks in the northeast Democratic Republic of Congo. Precambrian Res. 358, 106133. https://doi.org/10.1016/j.precamres.2021.106133.

[65]

Vermeesch P., 2018. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001.

[66]

Wang H., Wu Y.B., Gao S., Zhang H.-F., Liu X.-C., Gong H.-J., Peng M., Wang J., Yuan H.-L., 2011. Silurian granulite-facies metamorphism, and coeval magmatism and crustal growth in the Tongbai orogen, central China. Lithos 125, 249-271. https://doi.org/10.1016/j.lithos.2011.02.010.

[67]

Wegener A., 1912. The formation of the large forms of the earth's crust (continents and oceans), on a geophysical basis. Petermann's Geographical Communications 63, 185-195 (in German).

[68]

Wilson J.T., 1966. Did the Atlantic close and then re-open? Nature 211, 676-681. https://doi.org/10.1038/211676a0.

[69]

Zwiers F.W., von Storch H., 1995. Taking serial correlation into account in tests of the mean. J. Clim. 8, 336-351. https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2

AI Summary AI Mindmap
PDF

319

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/