Global projections of future landslide susceptibility under climate change

Yu Duan , Mingtao Ding , Yufeng He , Hao Zheng , Ricardo Delgado-Téllez , Sergey Sokratov , Francisco Dourado , Sven Fuchs

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102074

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102074 DOI: 10.1016/j.gsf.2025.102074

Global projections of future landslide susceptibility under climate change

Author information +
History +
PDF

Abstract

Landslides pose a significant threat to both human society and environmental sustainability, yet, their spatiotemporal evolution and impacts on global scales in the context of a warming climate remain poorly understood. In this study, we projected global landslide susceptibility under four shared socioeconomic pathways (SSPs) from 2021 to 2100, utilizing multiple machine learning models based on precipitation data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) and static metrics. Our results indicate an overall upward trend in global landslide susceptibility under the SSPs compared to the baseline period (2001-2020), with the most significant increase of about 1% in the very far future (2081-2100) under the high emissions scenario (SSP5-8.5). Currently, approximately 13% of the world's land area is at very high risk of landslide, mainly in the Cordillera of the Americas and the Andes in South America, the Alps in Europe, the Ethiopian Highlands in Africa, the Himalayas in Asia, and the countries of East and South-East Asia. Notably, India is the country most adversely affected by climate change, particularly during 2081-2100 under SSP3-7.0, with approximately 590 million people-23 times the global average-living in areas categorized as having very high susceptibility.

Keywords

Landslide susceptibility / CMIP6 / Climate change / Spatiotemporal analysis / Ensemble modeling

Cite this article

Download citation ▾
Yu Duan, Mingtao Ding, Yufeng He, Hao Zheng, Ricardo Delgado-Téllez, Sergey Sokratov, Francisco Dourado, Sven Fuchs. Global projections of future landslide susceptibility under climate change. Geoscience Frontiers, 2025, 16(4): 102074 DOI:10.1016/j.gsf.2025.102074

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yu Duan: Writing - original draft, Methodology, Data curation, Conceptualization. Mingtao Ding: Writing - review & editing, Supervision, Project administration, Funding acquisition, Concep-tualization. Yufeng He: Methodology, Investigation. Hao Zheng: Validation, Resources. Ricardo Delgado-Téllez: Resources, Methodology. Sergey Sokratov: Writing - review & editing. Fran-cisco Dourado: Methodology. Sven Fuchs: Writing - review & editing, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study is supported by the project of National Natural Science Foundation of China (Grant No. 42371203 and U21A2032), the project of Sichuan Provincial Science and Technol-ogy Department Program Funding (Grant No. 2025YFHZ0010), and the project of the Science and Technology Program of Aba City (Grant NO. R24YYJSYJ0001). The authors are grateful to these supports.

Code availability

The five machine learning models used in this study can be found in https://zenodo.org/records/14053287.

Data availability

The CMIP6 data are available for the WCRP Earth System Grid Federation (ESGF) (https://aims2.llnl.gov/search/cmip6/), and the climate station data were collected from the National Cen-ters for Environmental Information (NCEI) (https://www.ncei.noaa.gov/maps-and-geospatial-products). The DEM data and slope data were come from SRTM (http://srtm.csi.cgiar.org/srtmdata/), while the land use data and NDVI from National Aeronautics and Space Administration (NASA). The river and road database were available in OpenStreetMap, soil type data were from Food and Agriculture Organization (FAO) (http://www.fao.org/), and lithol-ogy data were from PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.788537).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102074.

References

[1]

Abbaszadeh Shahri A., Shan C., Larsson S., 2022. A novel approach to uncertainty quantification in groundwater table modeling by automated predictive deep learning. Nat. Resour. Res. 31(3), 1351-1373. https://doi.org/10.1007/s11053-022-10051-w.

[2]

Abbaszadeh Shahri A., Shan C., Larsson S., Johansson F., 2024. Normalizing large scale sensor-based MWD data: An automated method toward a unified database. Sensors 24(4), 1209. https://doi.org/10.3390/s24041209.

[3]

Acharya N., Montes C., Hassan S.M.Q., Sultana R., Rashid M.B., Mannan M.A., Krupnik T.J., 2023. Calibrated multi-model ensemble seasonal prediction of Bangladesh summer monsoon rainfall. Int. J. Climatol. 43(15), 6979-6992. https://doi.org/10.1002/joc.8246.

[4]

Aditian A., Kubota T., Shinohara Y., 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318, 101-111. https://doi.org/10.1016/j.geomorph.2018.06.006.

[5]

Allen M.R., Ingram W.J., 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224-232. https://doi.org/10.1038/nature01092.

[6]

Alvioli M., Melillo M., Guzzetti F., Rossi M., Palazzi E., von Hardenberg J., Brunetti M.T., Peruccacci S., 2018. Implications of climate change on landslide hazard in Central Italy. Sci. Total Environ. 630, 1528-1543. https://doi.org/10.1016/j.scitotenv.2018.02.315.

[7]

Araújo J.R., Ramos A.M., Soares P.M.M., Melo R., Oliveira S.C., Trigo R.M., 2022. Impact of extreme rainfall events on landslide activity in Portugal under climate change scenarios. Landslides 19(10), 2279-2293. https://doi.org/10.1007/s10346-022-01895-7.

[8]

Barros V.R., Field C.B., Dokken D.J., Mastrandrea M.D., Mach K.J., Bilir T.E., Chatterjee M., Ebi K.L., 2014. Climate Change 2014:Impacts, Adaptation, and Vulnerability. Cambridge University Press, Change, Cambridge, UK.

[9]

Baum R.L., Godt J.W., Savage W.Z., 2010. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J. Geophys. Res. Earth Surf. 115, F03013. https://doi.org/10.1029/2009jf001321.

[10]

Boulange J., Hanasaki N., Yamazaki D., Pokhrel Y., 2021. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 12(1), 417. https://doi.org/10.1038/s41467-020-20704-0.

[11]

Broeckx J., Maertens M., Isabirye M., Vanmaercke M., Namazzi B., Deckers J., Tamale J., Jacobs L., Thiery W., Kervyn M., Vranken L., Poesen J., 2018. Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda. Landslides 16, 571-584. https://doi.org/10.1007/s10346-018-1085-y.

[12]

Bui D.T., Tuan T.A., Klempe H., Pradhan B., Revhaug I., 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2), 361-378. https://doi.org/10.1007/s10346-015-0557-6.

[13]

Buston P.M., Elith J., 2011. Determinants of reproductive success in dominant pairs of clownfish: A boosted regression tree analysis. J. Anim. Ecol. 80(3), 528-538.

[14]

Y. Duan, M. Ding, Y. He et al. Geoscience Frontiers 16 (2025) 102074 https://doi.org/10.1111/j.1365-2656.2011.01803.x.

[15]

Chen G.Z., Li X., Liu X.P., Chen Y.M., Liang X., Leng J.Y., Xu X.C., Liao W.L., Qiu Y. A., Wu Q.L., Huang K.N., 2020a. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. commun. 11(1), 537. https://doi.org/10.1038/s41467-020-14386-x.

[16]

Chen J., Huang G., Chen W., 2021. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. J. Environ. Manag. 293, 112810. https://doi.org/10.1016/j.jenvman.2021.112810.

[17]

Chen Y.M., Li X., Huang K.N., Luo M., Gao M.Y., 2020b. High-resolution gridded population projections for China under the shared socioeconomic pathways. Earth's Future 8 (6), e2020EF001491. https://doi.org/10.1029/2020ef001491.

[18]

Ciabatta L., Camici S., Brocca L., Ponziani F., Stelluti M., Berni N., Moramarco T., 2016. Assessing the impact of climate-change scenarios on landslide occurrence in Umbria Region. Italy. J. hydrol. 541, 285-295. https://doi.org/10.1016/j.jhydrol.2016.02.007.

[19]

Cigna F., Tapete D., Lee K., 2018. Geological hazards in the UNESCO World Heritage sites of the UK: From the global to the local scale perspective. Earth Sci. Rev. 176, 166-194. https://doi.org/10.1016/j.earscirev.2017.09.016.

[20]

Costache R., Bui D.T., 2019. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Sci. Total Environ. 691, 1098-1118. https://doi.org/10.1016/j.scitotenv.2019.07.197.

[21]

Dai F.C., Lee C.F., Ngai Y.Y., 2002. Landslide risk assessment and management: an overview. Eng. Geol. 64(1), 65-87. https://doi.org/10.1016/s0013-7952(01)00093-x.

[22]

Darrow M., Nelson V., Grilliot M., Wartman J., Jacobs A., Baichtal J., Buxton C., 2022. Geomorphology and initiation mechanisms of the 2020 Haines, Alaska landslide. Landslides 19, 2177-2188. https://doi.org/10.1007/s10346-022-01899-3.

[23]

Desmet Q., Ngo-Duc T., 2022. A novel method for ranking CMIP 6 global climate models over the southeast Asian region. Int. J. Climatol. 42(1), 97-117. https://doi.org/10.1002/joc.7234.

[24]

Dodangeh E., Panahi M., Rezaie F., Lee S., Bui D.T., Lee C.W., Pradhan B., 2020. Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. J. Hydrol. 590, 125423. https://doi.org/10.1016/j.jhydrol.2020.125423.

[25]

Dong F.F., Javed A., Saber A., Neumann A., Arnillas C.A., Kaltenecker G., Arhonditsis G., 2021. A flow-weighted ensemble strategy to assess the impacts of climate change on watershed hydrology. J. Hydrol. 594, 125898. https://doi.org/10.1016/j.jhydrol.2020.125898.

[26]

Emberson R., Kirschbaum D., Stanley T., 2021. Global connections between El Nino and landslide impacts. Nat. Commun. 12(1), 2262. https://doi.org/10.1038/s41467-021-22398-4.

[27]

Erener A., Mutlu A., Düzgün H.S., 2016. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng. Geol. 203, 45-55. https://doi.org/10.1016/j.enggeo.2015.09.007.

[28]

Fan H.D., Lu Y.F., Shao S.W., Li L., Wang Y.J., Lu M., Li J., Yao K.Z., Sun Y., 2023. Evaluation and analysis of statistical and coupling models for highway landslide susceptibility. Geomat. Nat. Hazards Risk. 14(1), 2167612. https://doi.org/10.1080/19475705.2023.2167612.

[29]

Fan X.M., Yang F., Siva Subramanian S., Xu Q., Feng Z., Mavrouli O., Peng M., Ouyang C., Jansen J., Huang R., 2020. Prediction of a multi-hazard chain by an integrated numerical simulation approach: the Baige landslide, Jinsha River, China. Landslides 17, 147-164. https://doi.org/10.1007/s10346-019-01313-5.

[30]

Fischer E.M., Knutti R., 2015. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5(6), 560-564. https://doi.org/10.1038/nclimate2617.

[31]

Froude M.J., Petley D.N., 2018. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18(8), 2161-2181. https://doi.org/10.5194/nhess-18-2161-2018.

[32]

Gariano S.L., Rianna G., Petrucci O., Guzzetti F., 2017. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci. Total Environ. 596, 417-426. https://doi.org/10.1016/j.scitotenv.2017.03.103.

[33]

Gómez D., García E.F., Aristizábal E., 2023. Spatial and temporal landslide distributions using global and open landslide databases. Nat. Hazards 117(1), 25-55. https://doi.org/10.1007/s11069-023-05848-8.

[34]

Guzzetti F., Carrara A., Cardinali M., Reichenbach P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1-4), 181-216. https://doi.org/10.1016/s0169-555x(99)00078-1.

[35]

Hirabayashi Y., Mahendran R., Koirala S., Konoshima L., Yamazaki D., Watanabe S., Kim H., Kanae S., 2013. Global flood risk under climate change. Nat. Clim. Change. 3(9), 816-821. https://doi.org/10.1038/nclimate1911.

[36]

Hirabayashi Y., Tanoue M., Sasaki O., Zhou X.D., Yamazaki D., 2021. Global exposure to flooding from the new CMIP 6 climate model projections. Sci. Rep. 11 (1), 3740. https://doi.org/10.1038/s41598-021-83279-w.

[37]

Hürlimann M., Guo Z.Z., Puig-Polo C., Medina V., 2022. Impacts of future climate and land cover changes on landslide susceptibility: regional scale modelling in the Val d'Aran region (Pyrenees, Spain). Landslides 19(1), 99-118. https://doi.org/10.1007/s10346-021-01775-6.

[38]

Janizadeh S., Bateni S.M., Jun C.H.Y., Pal S.C., Band S.S., Chowdhuri I., Saha A., Tiefenbacher J.P., Mosavi A., 2023. Potential impacts of future climate on the spatio-temporal variability of landslide susceptibility in Iran using machine learning algorithms and CMIP 6 climate-change scenarios. Gondw. Res. 124, 1-17. https://doi.org/10.1016/j.gr.2023.05.003.

[39]

Jun T., Rind D., 2024. Increasing contribution of the atmospheric vertical motion to precipitation in a warming climate. Commun. Earth Environ. 5 (1), 541. https://doi.org/10.1038/s43247-024-01676-1.

[40]

Kirschbaum D., Kapnick S.B., Stanley T., Pascale S., 2020. Changes in extreme precipitation and landslides over high mountain Asia. Geophys. Res. Lett. 47(4), e2019GL085347. https://doi.org/10.1029/2019gl085347.

[41]

Kirschbaum D., Stanley T., Zhou Y.P., 2015. Spatial and temporal analysis of a global landslide catalog. Geomorphology 249, 4-15. https://doi.org/10.1016/j.geomorph.2015.03.016.

[42]

Lacasse S., Nadim F., Lacasse S., Nadim F., 2009. Landslide Risk Assessment and Mitigation Strategy. In: SassaK., CanutiP. (Landslides- Disaster Risk Reduction.Eds.), Springer, Berlin, Heidelberg, pp. 31-61. doi: 10.1007/978-3-540-69970-5_3.

[43]

Lee M.J., Choi J.W., Oh H.J., Won J.S., Park I., Lee S., 2012. Ensemble-based landslide susceptibility maps in Jinbu area, Korea. Environ. Earth Sci. 67(1), 23-37. https://doi.org/10.1007/s12665-011-1477-y.

[44]

Lee S., Sambath T., 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 50(6), 847-855. https://doi.org/10.1007/s00254-006-0256-7.

[45]

Li B.H., Liu K., Wang M., He Q., Jiang Z.Y., Zhu W.H., Qiao N.N., 2022. Global dynamic rainfall-induced landslide susceptibility mapping using machine learning. Remote Sens. 14(22), 5795. https://doi.org/10.3390/rs14225795.

[46]

Lin L., Lin Q.G., Wang Y., 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat. Hazards Earth Syst. Sci. 17(8), 1411-1424. https://doi.org/10.5194/nhess-17-1411-2017.

[47]

Lin Q.G., Steger S., Pittore M., Zhang J.H., Wang L.B., Jiang T., Wang Y., 2022. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total Environ. 850, 158049. https://doi.org/10.1016/j.scitotenv.2022.158049.

[48]

Lin Q.G., Steger S., Pittore M., Zhang Y., Zhang J.H., Zhou L.F., Wang L.B., Wang Y., Jiang T., 2023. Contrasting population projections to induce divergent estimates of landslides exposure under climate change. Earth's Future 11(9), e2023EF003741. https://doi.org/10.1029/2023ef003741.

[49]

Lin Q.G., Wang Y., Glade T., Zhang J.H., Zhang Y., 2020. Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China. Clim. Change 162(2), 761-779. https://doi.org/10.1007/s10584-020-02750-1.

[50]

Liu J., Wang J.Y., Xiong J.N., Cheng W.M., Li Y., Cao Y.F., He Y.F., Duan Y., He W., Yang G., 2022. Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region. Geocarto Int. 37(25), 9817-9846. https://doi.org/10.1080/10106049.2022.2025918.

[51]

Liu J., Zhao X.Q., Chen Y.B., Sun H.Z., Gu Y., Xu S.C., 2025. A novel flood conditioning factor based on topography for flood susceptibility modeling. Geosci. Front. 16 (1), 101960. https://doi.org/10.1016/j.gsf.2024.101960.

[52]

Magnan A.K., Pörtner H.O., Duvat V.K.E., Garschagen M., Guinder V.A., Zommers Z., Hoegh-Guldberg O., Gattuso J.P., 2021. Estimating the global risk of anthropogenic climate change. Nat. Clim. Change. 11(10), 879-885. https://doi.org/10.1038/s41558-021-01156-w.

[53]

Mamadjanova G., Leckebusch G.C., 2022. Assessment of mudflow risk in Uzbekistan using CMIP 5 models. Weather Clim. Extrem. 35, 100403. https://doi.org/10.1016/j.wace.2021.100403.

[54]

Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., 2021. Summary for Policymakers. In: Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

[55]

McColl S.T., 2012. Paraglacial rock-slope stability. Geomorphology 153, 1-16. https://doi.org/10.1016/j.geomorph.2012.02.015.

[56]

Meunier P., Hovius N., Haines J.A., 2008. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275(3-4), 221-232. https://doi.org/10.1016/j.epsl.2008.07.020.

[57]

Min S.-K., Zhang X., Zwiers F., Hegerl G., 2011. Human contribution to moreintense precipitation extremes. Nature 470, 378-381. https://doi.org/10.1038/nature09763.

[58]

Mohanty M.P., Simonovic S.P., 2021. Changes in floodplain regimes over Canada due to climate change impacts: Observations from CMIP 6 models. Sci. Total Environ. 792, 148323. https://doi.org/10.1016/j.scitotenv.2021.148323.

[59]

Montgomery D.R., Dietrich W.E., 1994. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 30(4), 1153-1171. https://doi.org/10.1029/93wr02979.

[60]

Montgomery D.R., Sullivan K., Greenberg H.M., 1998. Regional test of a model for shallow landsliding. Hydrol. Process. 12(6), 943-955. https://doi.org/10.1002/(sici)1099-1085(199805)12:6<943::Aid-hyp664>3.0.Co;2-z.

[61]

Naimi B., Araújo M.B., 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39(4), 368-375. https://doi.org/10.1111/ecog.01881.

[62]

Osna T., Sezer E.A., Akgun A., 2014. GeoFIS: An integrated tool for the assessment of landslide susceptibility. Comput. Geosci. 66, 20-30. https://doi.org/10.1016/j.cageo.2013.12.016.

[63]

Parry M.L., Canziani O.F., Palutikof P.J., Linden V.D., Hanson C.E., 2007. Climate change 2007:Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

[64]

Patton A.I., Rathburn S.L., Capps D.M., 2019. Landslide response to climate change in permafrost regions. Geomorphology 340, 116-128. https://doi.org/10.1016/j.geomorph.2019.04.029.

[65]

Peres D.J., Cancelliere A., 2018. Modeling impacts of climate change on return period of landslide triggering. J. Hydrol. 567, 420-434. https://doi.org/10.1016/j.jhydrol.2018.10.036.

[66]

Popescu M.E., 1994. A suggested method for reporting landslide causes. Bullet. Int. Assoc. Eng. Geol. 50(1), 71-74. https://doi.org/10.1007/BF02594958.

[67]

Pradhan B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 51, 350-365. https://doi.org/10.1016/j.cageo.2012.08.023.

[68]

Regmi A.D., Devkota K.C., Yoshida K., Pradhan B., Pourghasemi H.R., Kumamoto T., Akgun A., 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 7(2), 725-742. https://doi.org/10.1007/s12517-012-0807-z.

[69]

Rentschler J., Salhab M., Jafino B.A., 2022. Flood exposure and poverty in 188 countries. Nat. Commun. 13(1), 3527. https://doi.org/10.1038/s41467-022-30727-4.

[70]

Rokach L., 2010. Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1-39. https://doi.org/10.1007/s10462-009-9124-7.

[71]

Schleussner C.F., Deryng D., D'Haen S., Hare W., Lissner T., Ly M., Nauels A., Noblet M., Pfleiderer P., Pringle P., Rokitzki M., Saeed F., Schaeffer M., Serdeczny O., Thomas A., 2018. 1.5°C hotspots: climate hazards, vulnerabilities, and impacts. Annu. Rev. Env. Resour. 43, 135-163. https://doi.org/10.1146/annurev-environ-102017-025835.

[72]

Shafizadeh-Moghadam H., Valavi R., Shahabi H., Chapi K., Shirzadi A., 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 217, 1-11. https://doi.org/10.1016/j.jenvman.2018.03.089.

[73]

Shahri A.A., Moud F.M., 2021. Landslide susceptibility mapping using hybridized block modular intelligence model. Bull. Eng. Geol. Environ. 80(1), 267-284. https://doi.org/10.1007/s10064-020-01922-8.

[74]

Shahri A.A., Spross J., Johansson F., Larsson S., 2019. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA 183, 104225. https://doi.org/10.1016/j.catena.2019.104225.

[75]

Sobie S.R., 2020. Future changes in precipitation-caused landslide frequency in British Columbia. Clim. Change 162(2), 465-484. https://doi.org/10.1007/s10584-020-02788-1.

[76]

Song Y.Z., Yang D.G., Wu W.C., Zhang X., Zhou J., Tian Z.X., Wang C.C., Song Y.X., 2023. Evaluating landslide susceptibility using sampling methodology and multiple machine learning models. ISPRS Int. J. Geo-Inf. 12(5), 197. https://doi.org/10.3390/ijgi12050197.

[77]

Sreelakshmi S., Chandra S S V., Shaji E., 2022. Landslide identification using machine learning techniques: Review, motivation, and future prospects. Earth Sci. Inform. 15(4), 2063-2090. https://doi.org/10.1007/s12145-022-00889-2.

[78]

Stanley T., Kirschbaum D.B., 2017. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 87(1), 145-164. https://doi.org/10.1007/s11069-017-2757-y.

[79]

Stanley T.A., Soobitsky R.B., Amatya P.M., Kirschbaum D.B., 2024. Landslide hazard is projected to increase across high mountain Asia. Earth's Future 12(10), e2023EF004325. https://doi.org/10.1029/2023ef004325.

[80]

Sutton R.T., 2019. Climate science needs to take risk assessment much more seriously. Bull. Am. Meterol. Soc. 100(9), 1637-1642. https://doi.org/10.1175/bams-d-18-0280.1.

[81]

Tyagi A., Tiwari R., James N., 2023. Prediction of the future landslide susceptibility scenario based on LULC and climate projections. Landslides 20, 1837-1852. https://doi.org/10.1007/s10346-023-02088-6.

[82]

Vecchi G.A., Soden B.J., Wittenberg A.T., Held I.M., Leetmaa A., Harrison M.J., 2006. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089), 73-76. https://doi.org/10.1038/nature04744.

[83]

Wang L., Yang K.J., Wu C.Z., Zhou Y., Liu J.Z., Hu H.R., 2024. Novel approach to quantitative risk assessment of reservoir landslides using a hybrid CNN-LSTM model. Landslides 22, 943-956. https://doi.org/10.1007/s10346-024-02398-3.

[84]

Wang T.T., Sun F.B., 2022. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9(1), 221. https://doi.org/10.1038/s41597-022-01300-x.

[85]

Wang X., Wang Y., Lin Q., Yang X., 2023. Assessing global landslide casualty risk under moderate climate change based on multiple GCM projections. Int. J. Disaster Risk Sci. 14(5), 751-767. https://doi.org/10.1007/s13753-023-00514-w.

[86]

Wang X.H., Piao S.L., Ciais P., Friedlingstein P., Myneni R.B., Cox P., Heimann M., Miller J., Peng S.S., Wang T., Yang H., Chen A.P., 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506(7587), 212-215. https://doi.org/10.1038/nature12915.

[87]

Wang X.Y., Meng X.F., Long Y., 2022a. Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Sci. Data 9 (1), 563. https://doi.org/10.1038/s41597-022-01675-x.

[88]

UNDRR, 2020. The human cost of disasters: An overview of the last 20 years (2000-2019). United Nations Office for Disaster Risk Reduction, pp. 1-28. https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019.

[89]

Wang Z.Y., Ma C.M., Qiu Y., Xiong H.X., Li M.H., 2022b. Refined zoning of landslide susceptibility: A case study in Enshi County, Hubei, China. Int. J. Environ. Res. Public Health 19 (15), 9412. https://doi.org/10.3390/ijerph19159412.

[90]

Williams A.P., Cook E.R., Smerdon J.E., Cook B.I., Abatzoglou J.T., Bolles K., Baek S. H., Badger A.M., Livneh B., 2020. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368(6488), 314-318. https://doi.org/10.1126/science.aaz9600.

[91]

Xiong J.H., Guo S.L., Yin J.B., Ning Z., Zeng Z.Y., Wang R., 2022. Projected changes in terrestrial water storage and associated flood potential across the Yangtze River basin. Sci. Total Environ. 817, 152998. https://doi.org/10.1016/j.scitotenv.2022.152998.

[92]

Xue P.P., Zhang C.G., Wen Z., Yu F.R., Park E., Nourani V., 2024. Climate variability impacts on runoff projection in the 21st century based on the applicability assessment of multiple GCMs: A case study of the Lushi Basin, China. J. Hydrol. 638, 131383. https://doi.org/10.1016/j.jhydrol.2024.131383.

[93]

Yao J.M., Yao X., Zhao Z., Liu X.H., 2023. Performance comparison of landslide susceptibility mapping under multiple machine-learning based models considering InSAR deformation: a case study of the upper Jinsha River. Geomat. Nat. Hazards Risk. 14(1), 2212833. https://doi.org/10.1080/19475705.2023.2212833.

[94]

Yin H.X., Zhang J.H., Mondal S.K., Wang B.W., Zhou L.F., Wang L.B., Lin Q.G., 2023. Projected rainfall triggered landslide susceptibility changes in the Hengduan Mountain Region, Southwest China under 1.5-4.0 °C warming scenarios based on CMIP 6 models. Atmos. 14(2), 214. https://doi.org/10.3390/atmos14020214.

[95]

Youssef K., Shao K., Moon S., Bouchard L.S., 2023. Landslide susceptibility modeling by interpretable neural network. Commun. Earth Environ. 4(1), 162. https://doi.org/10.1038/s43247-023-00806-5.

[96]

Yu L.B., Wang Y., Pradhan B., 2024. Enhancing landslide susceptibility mapping incorporating landslide typology via stacking ensemble machine learning in Three Gorges Reservoir, China. Geosci. Front. 15(4), 101802. https://doi.org/10.1016/j.gsf.2024.101802.

[97]

Yunus A.P., Fan X.M., Subramanian S.S., Jie D., Xu Q., 2021. Unraveling the drivers of intensified landslide regimes in Western Ghats, India. Sci. Total Environ. 770, 145357. https://doi.org/10.1016/j.scitotenv.2021.145357.

[98]

Zhang W.G., Wu C.Z., Tang L.B., Gu X., Wang L., 2023. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondw. Res. 123, 41-53. https://doi.org/10.1016/j.gr.2022.10.004.

[99]

Zhao D.Y., Zhang Z.Y., Zhang Y.G., 2023. Soil moisture dominates the forest productivity decline during the 2022 China compound drought-heatwave event. Geophys. Res. Lett. 50(17), e2023GL104539. https://doi.org/10.1029/2023gl104539.

[100]

Zhao Q., Gao L., Meng Q., Zhu M., 2024. Climate warming will exacerbate unequal exposure to compound flood-heatwave extremes. Earth's Future 12(12), e2024EF005179. https://doi.org/10.1029/2024EF005179.

[101]

Zhao X., Chen W., 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sens. 12(14), 2180. https://doi.org/10.3390/rs12142180.

[102]

Zhou S., Yu B.F., Zhang Y., 2023a. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 9 (10), eabo1638. https://doi.org/10.1126/sciadv.abo1638.

[103]

Zhou X.Z., Wen H.J., Zhang Y.L., Xu J.H., Zhang W.G., 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 12(5), 101211. https://doi.org/10.1016/j.gsf.2021.101211.

[104]

Zhou Z.L., Zhang L.P., Chen J., She D.X., Wang G.S., Zhang Q., Xia J., Zhang Y.J., 2023b. Projecting global drought risk under various SSP-RCP scenarios. Earth's Future 11 (5), e2022EF003420. https://doi.org/10.1029/2022ef003420.

[105]

Zhou Z.L., Zhang L.P., Zhang Q., Hu C., Wang G.S., She D.X., Chen J.E., 2024. Global increase in future compound heat stress-heavy precipitation hazards and associated socio-ecosystem risks. npj Clim. Atmos. Sci. 7(1), 243. https://doi.org/10.1038/s41612-024-00579-4.

[106]

Zou Q., Cui P., He J., Lei Y., Li S.S., 2019. Regional risk assessment of debris flows in China-An HRU-based approach. Geomorphology 340, 84-102. https://doi.org/10.1016/j.geomorph.2019.04.027.

AI Summary AI Mindmap
PDF

1051

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/