Early Jurassic carbon cycle perturbations recorded in terrestrial sediments of the Sichuan Basin, China

Xin Jin , Viktória Baranyi , David B. Kemp , Zhiqiang Shi , Hao Zou , Binbing Li , Yunwang Zhang , Marco Franceschi

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102073

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (4) : 102073 DOI: 10.1016/j.gsf.2025.102073

Early Jurassic carbon cycle perturbations recorded in terrestrial sediments of the Sichuan Basin, China

Author information +
History +
PDF

Abstract

The Toarcian Oceanic Anoxic Event (T-OAE, ~183 Ma) is marked in the sedimentary record by a sharp negative carbon isotope excursion, thought to be causally linked to the emplacement of the Karoo-Ferrar Large Igneous Province and the associated release of 12C-enriched carbon. The T-OAE coincided with global climate and environmental changes, as well as biotic events, indicating substantial modifications in ecosystems. Recent studies have focused on the evidence of geological responses to the T-OAE in Early Jurassic terrestrial basins in China, particularly the Sichuan Basin. Nevertheless, debate remains over the identification of this event, owing to inadequate age-constraints of many sections, and a lack of robust correlations of the carbon isotope records. Moreover, the long-term evolution of the terrestrial carbon isotope record through the Early Jurassic, and its correlation to marine records, is still not firmly established. In this paper, we present new carbon isotope analyses of carbonate (δ13Ccarb) from lacustrine carbonates and terrestrial organic matter (δ13Corg) from bulk rocks within the Ma'anshan and Da'anzhai members of the Ziliujing Formation from the Dacao 'D' (DCD) section in the eastern Sichuan Basin. Palynological-palynofacies analysis reveals a predominance of Classopollis pollen together with marker taxa such as Ischyosporites variegatus, Contignisporites problematicus, in the palynological assemblage, indicating a Pliensbachian-Toarcian age. A negative carbon isotope excursion (NCIE) is recorded in the organic carbon isotope data at the topmost part of the Pliensbachian Ma'anshan Member, which can be correlated to the Pliensbachian-Toarcian Boundary Event. This is followed, in the Toarcian Da'anzhai Member, by a major NCIE recorded in both organic matter and carbonate carbon isotope data which can be correlated to the T-OAE NCIE. A long-term carbon isotope record spanning the Sinemurian to Toarcian in Sichuan terrestrial sediments is also been reconstructed and its correlation with coeval marine records is proposed. A broader review of δ13C data from Chinese terrestrial basins spanning the Pliensbachian-Toarcian highlights a distinct 13C-depleted signature in the Sichuan Basin compared to basins at higher latitudes. Changes in latitudinal gradients and organic matters in the lake sediments were likely important factors influencing the amplitudes of the T-OAE NCIE and the carbon isotope values in terrestrial sedimentary records.

Keywords

Toarcian oceanic anoxic event / Lacustrine / Palynology / Carbon stable isotopes / Carbonate diagenesis

Cite this article

Download citation ▾
Xin Jin, Viktória Baranyi, David B. Kemp, Zhiqiang Shi, Hao Zou, Binbing Li, Yunwang Zhang, Marco Franceschi. Early Jurassic carbon cycle perturbations recorded in terrestrial sediments of the Sichuan Basin, China. Geoscience Frontiers, 2025, 16(4): 102073 DOI:10.1016/j.gsf.2025.102073

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Generative AI and AI-assisted technologies in the writing process

During the preparation of this work the author(s) used Chat GPT in order to improve the language of the manuscript. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

CRediT authorship contribution statement

Xin Jin: Writing - original draft, Visualization, Supervision, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Viktória Baranyi: Writing - original draft, Visu-alization, Methodology, Formal analysis. David B. Kemp: Writing - review & editing. Zhiqiang Shi: Writing - review & editing. Hao Zou: Writing - review & editing. Binbing Li: Writing - review & editing, Visualization. Yunwang Zhang: Writing - review & edit-ing. Marco Franceschi: Writing - review & editing, Supervision, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.15

Acknowledgments

We acknowledge Nereo Preto (University of Padova) for his valuable suggestions and assistance in sample collection during the fieldwork. We also thank associate editor Federico Lucci and editorial adviser M. Santosh, and reviewers Guillaume Suan and Elke Schneebeli-Hermann for their insightful comments which greatly improved the manuscript. The research of VB is conducted in the scope of the internal research project "WEGETA" at the Croa-tian Geological Survey, funded by the National Recovery and Resi-lience Plan 2021-2026 of the European Union - NextGenerationEU, and monitored by the Ministry of Science, Education and Youth of the Republic of Croatia. We are grateful for Dragica Kovačić (Croa-tian Geological Survey) for performing the palynological process-ing. The work is a contribution to IGCP 739.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102073.

References

[1]

Anadón P., Utrilla R., 1993. Sedimentology and isotope geochemistry of lacustrine carbonates of the Oligocene Campins Basin, north-east Spain. Sedimentology 40 (4), 699-720.

[2]

Ashraf A.R., Sun Y.W., Sun G., Uhl D., Mosbrugger V., Li J., Herrmann M., 2010. Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China—a review and additional lithological data. Palaeobio. Palaeoenv. 90, 187-201.

[3]

Bailey T.R., Rosenthal Y., McArthur J.M., Van de Schootbrugge B., Thirlwall M.F., 2003. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett. 212 (3-4), 307-320.

[4]

Baranyi V., Pálfy J., Görög Á., Riding J.B., Raucsik B., 2016. Multiphase response of palynomorphs to the Toarcian oceanic anoxic event (Early Jurassic) in the Réka Valley section. Hungary. Rev. Palaeobot. Palyno. 235, 51-70.

[5]

Baranyi V., Jin X., Dal Corso J., Shi Z.Q., Grasby S.E., Kemp D.B., 2023. Collapse of terrestrial ecosystems linked to heavy metal poisoning during the Toarcian oceanic anoxic event. Geology 51 (7), 652-656.

[6]

Baranyi V., Jin X., Dal Corso J., Li B.B., Kemp D.B., 2024. Vegetation response to climate change during an Early Jurassic hyperthermal event (Jenkyns Event) from Northern China (Ordos Basin). Palaeogeog. Palaeoclimatol. Palaeoecol. 643, 112180.

[7]

Barbin V., 2000. Cathodoluminescence of carbonate shells:biochemical vs diagenetic process. In: PagelM., BarbinV., BlancP., OhnenstetterD. (Cathodoluminescencein Geosciences.Eds.), Springer, Berlin Heidelberg, pp. 303-329.

[8]

Barbin V., 2013. Application of cathodoluminescence microscopy to recent and past biological materials: a decade of progress. Miner. Petrol. 107, 353-362.

[9]

Barrón E., Ureta S., Goy A., Lassaletta L., 2010. Palynology of the Toarcian-Aalenian Global Boundary Stratotype Section and Point (GSSP) at Fuentelsaz (Lower- Middle Jurassic, Iberian Range, Spain). Rev. Palaeobot. Palyno. 162, 11-28.

[10]

Batten D.J., Koppelhus E.B., 1996. Biostratigraphic significance of uppermost Triassic and Jurassic miospores in Northwest Europe. In: JansoniusJ., McGregorD.C. (Palynology:Eds.), Principles and Applications. Am. Assoc. Stratigr. Palynol. Found., pp. 795-806.

[11]

Benavente C.A., Mancuso A.C., Bohacs K.M., 2021. Reconstructing paleoenvironmental conditions through integration of paleogeography, stratigraphy, sedimentology, mineralogy and stable isotope data of lacustrine carbonates: an example from early Middle Triassic strata of southwest Gondwana, Cuyana Rift, Argentina. In: RosenM.R., FinkelsteinD.B., BoushL. P., Pla-PueyoS. (Limnogeology:Eds.), Progress. A Tribute to Elizabeth Gierlowski-Kordesch. Springer International Publishing, Challenges and Opportunities, pp. 471-509.

[12]

Benavente C.A., Mancuso A.C., Bohacs K.M., 2019. Paleohydrogeologic reconstruction of Triassic carbonate paleolakes from stable isotopes: Encompassing two lacustrine models. J. S. Am. Earth. Sci. 95, 102292.

[13]

Boggs S.J., Krinsley D., 2010. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, Cambridge.

[14]

Bucefalo Palliani R.B., Riding J.B., 1999. Relationships between the early Toarcian anoxic event and organic-walled phytoplankton in central Italy. Mar. Micropaleontol. 37 (2), 101-116.

[15]

Bucefalo Palliani R.B., Mattioli E., Riding J.B., 2002. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Mar. Micropaleontol. 46 (3- 4), 223-245.

[16]

Budd D.A., Hammes U., Ward W.B., 2000. Cathodoluminescence in calcite cements: new insights on Pb and Zn sensitizing, Mn activation, and Fe quenching at low trace-element concentrations. J. Sediment. Res. 70 (1), 217-226.

[17]

Chen Z., Wang X., Hu J.F., Yang S.L., Zhu M., Dong X.X., Tang Z.H., Peng P., Ding Z. L., 2014. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene Thermal Maximum record from central China. Earth Planet. Sci. Lett. 408, 331-340.

[18]

Correia V.F., Riding J.B., Duarte L.V., Fernandes P., Pereira Z., 2018. The Early Jurassic palynostratigraphy of the Lusitanian Basin, western Portugal. Geobios 51, 537-557.

[19]

Cui H., Zhu S.F., Liang C., Ma W.Z., Tong H., Shi Z.S., 2023. Facies association analysis of a Toarcian siliciclastic carbonate lacustrine system, Sichuan Basin, China. Palaeogeog. Palaeoclimatol. Palaeoecol. 631, 111841.

[20]

Deng S.H., Lu Y.Z., Zhao Y., Fan R., Wang Y.D., Yang X.J., Li X., Sun B.N., 2017. The Jurassic palaeoclimate regionalization and evolution of China. Earth Sci. Front. 24, 106-142 (in Chinese with English abstract).

[21]

Diefendorf A.F., Freimuth E.J., 2017. Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: A review. Org. Geochem. 103, 1-21.

[22]

Dera G., Brigaud B., Monna F., Laffont R., Pucéat E., Deconinck J.F., Pellenard P., Joachimski M.M., Durlet C., 2011. Climatic ups and downs in a disturbed Jurassic world. Geology 39 (3), 215-218.

[23]

Dybkjær K., 1991. Palynological zonation and palynofacies of the Fjerritslev Formation (Lower Jurassic-basal Middle Jurassic) in the Danish Subbasin. Geol. Surv. Denmark, DGU Series A 30, 1-150.

[24]

Fantasia A., Adatte T., Spangenberg J.E., Font E., Duarte L.V., Föllmi K.B., 2019. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: a multi-proxy record. Earth-Sci. Rev. 198, 102932.

[25]

Filatoff J., 1975. Jurassic palynology of the Perth Basin, Western Australia. Palaeontographica Abt. B 154, 1-113.

[26]

Flügel E., Munnecke A., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application Vol. 976 (Vol. 976, 2004 p. 2004). Springer, Berlin.

[27]

Franceschi M., Jin X., Shi Z.Q., Chen B., Preto N., Roghi G., Dal Corso J., Han L., 2023. High-resolution record of multiple organic carbon-isotope excursions in lacustrine deposits of Upper Sinemurian through Pliensbachian (Early Jurassic) from the Sichuan Basin, China. GSA Bull. 135 (1-2), 3-17.

[28]

Galasso F., Schmid-Röhl A., Feist-Burkhardt S., Bernasconi S.M., Schneebeli-Hermann E., 2021. Changes in organic matter composition during the Toarcian Oceanic Anoxic Event (T-OAE) in the Posidonia Shale Formation from Dormettingen (SW-Germany). Palaeogeog. Palaeoclimatol. Palaeoecol. 569, 110327.

[29]

Galasso F., Feist-Burkhardt S., Schneebeli-Hermann E., 2022. The palynology of the Toarcian Oceanic Anoxic Event at Dormettingen, southwest Germany, with emphasis on changes in vegetational dynamics. Rev. Palaeobot. Palyno. 304, 104701.

[30]

Gama J., Schwark L., 2023. Assessment of kerogen types and source rock potential of Lower Jurassic successions in the Mandawa Basin, SE Tanzania. Mar. Pet. Geol. 157, 106505.

[31]

Götte T., Richter D.K., 2009. Quantitative aspects of Mn-activated cathodoluminescence of natural and synthetic aragonite. Sedimentology 56 (2), 483-492.

[32]

Grimm E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13-35.

[33]

Gradstein F.M., Ogg J.G., Schmitz M.D., Ogg G.M. (Eds.), 2020. Geologic Time Scale 2020. Elsevier.

[34]

Guy-Ohlson D., 1986. Jurassic palynology of the Vilhelmsfalt bore no.1, Scania, Sweden, Toarcian-Aalenian. In: Stockholm, Section of Palaeobotany Swedish Museum of Natural History, p. 127.

[35]

Habulashenmu Y., Wang X., Qiu L., Yang Y., Chen S., Khan D., Teng J., Hu Y., 2024. Lithofacies characteristics and genetic mechanism of hybrid sedimentary rocks in Da'anzhai member, Sichuan Basin. Mar. Pet. Geol. 162, 106695.

[36]

Haselwander R.D., Oboh-Ikuenobe F.E., 2015. Preliminary observations on the preservation of organic-walled algae in shallow, freshwater lakes from south- central Missouri, USA. Palynology 41, 72-88.

[37]

Helby R., Morgan R., Partridge A.D., 1987. A palynological zonation of the Australian Mesozoic. Mem. Ass. Australas. Palaeontols 4, 1-94.

[38]

Herngreen G.F.W., De Boer K.F., 1974. Palynology of Rhaetian, Liassic and Dogger strata in the eastern Netherlands. Geologie En Mijnbouw 53, 343-368.

[39]

Hesselbo S.P., Gröcke D.R., Jenkyns H.C., Bjerrum C.J., Farrimond P., Morgans Bell H.S., Green O.R., 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406 (6794), 392-395.

[40]

Hesselbo S.P., Jenkyns H.C., Duarte L.V., Oliveira L.C., 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253 (3-4), 455-470.

[41]

Hermoso M., Minoletti F., Rickaby R.E., Hesselbo S.P., Baudin F., Jenkyns H.C., 2012. Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change. Earth Planet. Sci. Lett. 319, 45-54.

[42]

Huang Y.Z., Jin X., Pancost R.D., Kemp D.B., Naafs B.D.A., 2024. An intensified lacustrine methane cycle during the Toarcian OAE (Jenkyns Event) in the Ordos Basin, northern China. Earth Planet. Sci. Lett. 639, 118766.

[43]

Jenkyns H.C., 1985. The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau 74, 505-518.

[44]

Jenkyns H.C., 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11 (3). https://doi.org/10.1029/2009GC002788.

[45]

Jiang H., Franceschi M., Yin R., Petranich E., Pavoni E., Barago N., Preto N., Covelli S., Bonini L., Jin X., 2025. Large-scale volcanogenic Hg enrichment coincided with the Sinemurian-Pliensbachian boundary event (Early Jurassic). GSA Bull. https://doi.org/10.1130/B37640.1.

[46]

Jin X., Shi Z.Q., Rigo M., Manfrin S., Franceschi M., Preto N., 2018. Carbonate platform crisis in the Carnian (Late Triassic) of Hanwang (Sichuan Basin, South China): insights from new biostratigraphic and stable isotope data. J. Asian Earth Sci. 164, 104-124.

[47]

Jin X., Baranyi V., Caggiati M., Franceschi M., Wall C.J., Liu G.L., Schmitz M.D., Gianolla P., Ogg J.G., Lu G., Shi Z.Q., Preto N., 2021. Middle Triassic lake deepening in the Ordos Basin of North China linked with global sea-level rise. Global Planet. Change 207, 103670.

[48]

Jin X., Shi Z.Q., Baranyi V., Kemp D.B., Han Z., Luo G.M., Hu J.F., He F., Chen L., Preto N., 2020. The Jenkyns Event (early Toarcian OAE) in the Ordos Basin, North China. Global Planet. Change 193, 103273.

[49]

Jin X., Zhang F., Baranyi V., Kemp D.B., Feng X.B., Grasby S.E., Sun G.Y., Shi Z.Q., Chen W.H., Dal Corso J., 2022. Early Jurassic massive release of terrestrial mercury linked to floral crisis. Earth Planet. Sci. Lett. 598, 117842.

[50]

Kelly S.R.A., Gregory J., Braham W., Strogen D.P., Whitham A.G., 2015. Towards an integrated Jurassic biostratigraphy for eastern Greenland. Volumina Jurassica 13, 43-64.

[51]

Kemp D.B., Selby D., Izumi K., 2020. Direct coupling between carbon release and weathering during the Toarcian oceanic anoxic event. Geology 48 (10), 976-980.

[52]

Kemp D.B., Chen W., Cho T., Algeo T.J., Shen J., Ikeda M., 2022. Deep-ocean anoxia across the Pliensbachian-Toarcian boundary and the Toarcian Oceanic Anoxic Event in the Panthalassic Ocean. Global Planet. Change 212, 103782.

[53]

Kemp D.B., Coe A.L., Cohen A.S., Schwark L., 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature 437 (7057), 396-399.

[54]

Kemp D.B., Ramezani J., Izumi K., Al-Suwaidi A., Huang C.J., Chen W.H., Zhu Y.Q., 2024. The timing and duration of large-scale carbon release in the Early Jurassic. Geology 52 (12), 891-895.

[55]

Kim S.T., Mucci A., Taylor B.E., 2007. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: revisited. Chem. Geol. 246 (3-4), 135-146.

[56]

Kohn M.J., 2010. Carbon isotope compositions of terrestrial C 3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691-19695.

[57]

Koppelhus E.B., Batten D.J., 1996. Application of a palynomorph zonation to a series of short borehole sections, Lower to Middle Jurassic, Øresund, Denmark. In: JansoniusJ., McGregorD.C. (Palynology:Eds.), Principles andApplications. American Association of Stratigraphic Palynologists Foundation 2, pp. 779-793.

[58]

Koppelhus E.B., Dam G., 2003. Palynostratigraphy and palaeoenvironments of the Rævekløft, Gule Horn and Ostreaelv Formations (Lower-Middle Jurassic), Neill Klinter Group, Jameson Land, East Greenland. Geol. Surv. Den. Greenl. 1, 723-775.

[59]

Korte C., Hesselbo S.P., 2011. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography 26 (4). https://doi.org/10.1029/2011PA002160

[60]

Krencker F.N., Fantasia A., Danisch J., Martindale R., Kabiri L., El Ouali M., Bodin S., 2020. Two-phased collapse of the shallow-water carbonate factory during the late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the Northwestern Gondwana Margin. Earth-Sci. Rev. 208, 103254.

[61]

Kumar M., Monga P., Shukla A., Mehrotra R.C., 2017. Botryococcus from the early Eocene lignite mines of western India: inferences on morphology, taphonomy and palaeoenvironment. Palynology 41, 462-471.

[62]

Li B.B., Jin X., Dal Corso J., Ogg J.G., Lang X., Baranyi V., Preto N., Franceschi M., Qiao P.J., Shi Z.Q., 2023. Complex pattern of environmental changes and organic matter preservation in the NE Ordos lacustrine depositional system (China) during the T-OAE (Early Jurassic). Global Planet. Change 221, 104045.

[63]

Li X.H., Wang J.Y., Rasbury T., Zhou M., Wei Z., Zhang C.K., 2020. Early Jurassic climate and atmospheric CO 2 concentration in the Sichuan paleobasin, southwestern China. Clim. Past 16 (6), 2055-2074.

[64]

Li Y., Yan Z.K., Liu S.G., Li H.B., Cao J.X., Su D.C., Dong S.L., Sun W., Yang R.J., Yan L., 2014. Migration of the carbonate ramp and sponge buildup driven by the orogenic wedge advance in the early stage (Carnian) of the Longmen Shan foreland basin, China. Tectonophysics 619, 179-193.

[65]

Littler K., Hesselbo S.P., Jenkyns H.C., 2010. A carbon-isotope perturbation at the Pliensbachian-Toarcian boundary: evidence from the Lias Group, NE England. Geol. Mag. 147 (2), 181-192.

[66]

Liu J.Z., An Z.S., 2020. Leaf wax n-alkane carbon isotope values vary among major terrestrial plant groups: Different responses to precipitation amount and temperature, and implications for paleoenvironmental reconstruction. Earth-Sci. Rev. 202, 103081.

[67]

Liu J., Cao J., He T., Liang F., Pu J., Wang Y., 2022b. Lacustrine redox variations in the Toarcian Sichuan Basin across the Jenkyns Event. Global Planet. Change 215, 103860.

[68]

Liu J.C., Cao J., Hu G., Wang Y., Yang R.F., Liao Z.W., 2020a. Water-level and redox fluctuations in a Sichuan Basin lacustrine system coincident with the Toarcian OAE. Palaeogeog. Palaeoclimatol. Palaeoecol. 558, 109942.

[69]

Liu M., Sun P., Them II T.R., Li Y.F., Sun S.L., Gao X.Y., Huang X., Tang Y.J., 2020b. Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China. Global Planet. Change 191, 103214.

[70]

Liu M., Zhang Y.-J., Sun S.-L., Chen J.-S., Li B., Yang F., Zhang T., Wang Y., Wu Z., 2019. Palynological assemblages of the Beipiao Formation in the Jinyang Basin of western Liaoning, and their age and paleoclimatic significances. Earth Sci. 7, 1-29 (in Chinese).

[71]

Liu R., Hu G., Cao J., Yang R., Liao Z., Hu C., Pang Q., Pang P., 2022a. Enhanced hydrological cycling and continental weathering during the Jenkyns Event in a lake system in the Sichuan Basin, China. Global Planet. Change 216, 103915.

[72]

Liu R.P., Hu G., Liao Z.W., Cao J., Pang Q., Meng F.S., 2024. A marine incursion during the onset of T-OAE in Sichuan Basin, China: Evidence from green clay minerals and carbonate concretions. Sediment. Geol. 466, 106647.

[73]

Liu S.G., Yang Y., Deng B., Zhong Y., Wen L., Sun W., Li Z.W., Jansa L., Li J.X., Song J.M., Zhang X.H., Peng H.L., 2021. Tectonic evolution of the Sichuan basin, southwest China. Earth-Sci. Rev. 213, 103470.

[74]

Lu J., Zhou K., Yang M., Eley Y., Shao L., Hilton J., 2020. Terrestrial organic carbon isotopic composition (d13 Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China. Global Planet. Change 195, 103331.

[75]

Lu Y.F., Liang Q.S., Tian J.C., Yu Y., Li Y.J., Chen C.Y., Wang D.J., 2024. Correlation and response of astronomical forcing in lacustrine deposits of the Middle Jurassic, Sichuan Basin, Southwest China. Mar. Pet. Geol. 166, 106905.

[76]

Lund J.J., Pedersen K.R., 1985. Palynology of the marine Jurassic formations in the Vardekløft ravine, Jameson Land, East Greenland. Bull. Geol. Soc. Denmark 33, 371-400.

[77]

Machel H.G., 2000. Application of cathodoluminescence to carbonate diagenesis. In: PagelM., BarbinV., BlancP., OhnenstetterD. (Cathodoluminescencein Geosciences.Eds.), Springer, Berlin Heidelberg, pp. 271-301.

[78]

Marshall J.D., 1988. Cathodoluminescence of Geological Materials. Unwin Hyman Ltd, London.

[79]

McElwain J.C., Wade-Murphy J., Hesselbo S.P., 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435 (7041), 479-482.

[80]

Meyers P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289-302.

[81]

Moore P.D., Webb J.A., Collinson M.E., 1991. Pollen Analysis. Blackwell Scientific Publications, Oxford, p. 216.

[82]

Morbey S.J., 1978. Late Triassic and Early Jurassic subsurface palynostratigraphy in 850 northwestern Europe. Palinologia Número Extraordinario 1, 355-365.

[83]

Oboh-Ikuenobe F., de Villiers S.E., 2003. Dispersed organic matter in samples from the western continental shelf of Southern Africa: palynofacies assemblages and depositional environments of Late Cretaceous and younger sediments. Palaeogeog. Palaeoclimatol. Palaeoecol. 201, 67-88.

[84]

Percival L.M.E., Cohen A.S., Davies M.K., Dickson A.J., Hesselbo S.P., Jenkyns H.C., Leng M.J., Mather T.A., Storm M.S., Xu W., 2016. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44 (9), 759-762.

[85]

Peti L., Thibault N., Clémence M.E., Korte C., Dommergues J.L., Bougeault C., Pellenard P., Jelby M.E., Ullmann C.V., 2017. Sinemurian-Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe. Palaeogeog. Palaeoclimatol. Palaeoecol. 468, 142-161.

[86]

Pien´kowski G., Hodbod M., Ullmann C.V., 2016. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming. Sci. Rep. 6, 31930.

[87]

Pol D., Ramezani J., Gomez K., Carballido J.L., Paulina Carabajal A., Rauhut O.W. M., Escapa I.H., Cúneo N.R., 2020. Extinction of herbivorous dinosaurs linked to Early Jurassic global warming event. Proc. Royal Soc. B 287 (1939), 20202310.

[88]

Prauss M., Riegel W., 1989. Evidence from phytoplankton associations for causes of blackshale formation in epicontinental seas. Neues Jahrbuch Für Geologie, Paläontologie Monatshefte 11, 671-682.

[89]

Prauss M., Ligouis B., Luterbacher H.-P., 1991. Organic matter and palynomorphs in the "Posidonienschiefer'' (Toarcian, Lower Jurassic) of southern Germany. In: TysonR.V., PearsonT.H. (Modern and Ancient Continental Shelf Anoxia,Eds.), 58. Geological Society Special Publications, London, pp. 335-351.

[90]

Qiu Z., He J.L., 2022. Depositional environment changes and organic matter accumulation of Pliensbachian-Toarcian lacustrine shales in the Sichuan basin, SW China. J. Asian Earth Sci. 232, 105035.

[91]

Qiu R.Y., Fang L.H., Lu Y.Z., Deng S.H., Zhang X.Z., Lv P.Z., Ren J.H., Huang R.T., Fang Y.N., Zhang X.Y., Li H.J., Xian B.Z., Shi S.B., 2023. Responses to the Early Jurassic Oceanic Anoxic Events in the Tarim Basin. Acta Sedimentol. Sinica 41 (02), 425-434 (in Chinese with English abstract).

[92]

Quattrocchio M.E., Sarjeant W.A.S., Volkheimer W., 1996. Marine and terrestrial Jurassic microfloras of the Neuquén basin (Argentina): palynological zonation. GeoResearch Forum 1-2, 167-178.

[93]

Quattrocchio M.E., Volkheimer W., Borromei A.M., Martínez M.A., 2011. Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: a review. Biol. J. Linnean Soc. 103, 380-396.

[94]

Rauscher R., Schmitt J.-P., 1990. Recherches palynologiques dans le Jurassique d'Alsace (France). Rev. Palaeobot. Palyno. 62, 107-156.

[95]

Reolid M., Mattioli E., Duarte L.V., Marok A., 2020. The Toarcian oceanic anoxic event and the Jenkyns event (IGCP-655 final report). Episodes J. Internat. Geosci. 43 (2), 833-844.

[96]

Reolid M., Ainsworth N.R., 2022. Changes in benthic microfossil assemblages before, during and after the early Toarcian biotic crisis in the Portland-Wight Basin (Kerr McGee 97/12-1 well, offshore southern England). Palaeogeog. Palaeoclimatol. Palaeoecol. 599, 111044.

[97]

Reolid M., Ruebsam W., Benton M.J., 2022. Impact of the Jenkyns Event (early Toarcian) on dinosaurs: Comparison with the Triassic/Jurassic transition. Earth-Sci. Rev. 234, 104196.

[98]

Reolid M., Ayadi C., Jin X., Abad I., Baranyi V., Franceschi M., Preto N., Shi Z.Q., 2024. Climatic changes recorded during the Jenkyns Event (Early Jurassic) in the lacustrine sediments of the Sichuan Basin (China). Geogaceta 76, 23-26.

[99]

Riding J.B., 2021. A guide to preparation protocols in palynology. Palynology 45, 1-110.

[100]

Rodrigues B., Silva R.L., Mendonça Filho J.G., Reolid M., Sadki D., Comas-Rengifo M.J., Goy A., Duarte L.V., 2021. The Phytoclast Group as a tracer of palaeoenvironmental changes in the early Toarcian. Geol. Soc. London Spec. Publ. 514, 291-307.

[101]

Rodrigues B., Silva R.L., Reolid M., Mendonça Filho J.G., Duarte L.V., 2019. Sedimentary organic matter and d 13 CKerogen variation on the southern Iberian palaeomargin (Betic Cordillera, SE Spain) during the latest Pliensbachian-Early Toarcian. Palaeogeog. Palaeoclimatol. Palaeoecol. 534, 109342.

[102]

Ruebsam W., Mayer B., Schwark L., 2019. Cryosphere carbon dynamics control Early Toarcian global warming and sea level evolution. Global Planet. Change 172, 440-453.

[103]

Ruebsam W., Reolid M., Sabatino N., Masetti D., Schwark L., 2020a. Molecular paleothermometry of the early Toarcian climate perturbation. Global Planet. Change 195, 103351.

[104]

Ruebsam W., Reolid M., Schwark L., 2020b. d 13 C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10 (1), 117.

[105]

Ruhl M., Hesselbo S.P., Hinnov L., Jenkyns H.C., Xu W., Riding J.B., Storm M., Minisini D., Ullmann C.V., Leng M.J., 2016. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth Planet. Sci. Lett. 455, 149-165.

[106]

Ruhl M., Hesselbo S.P., Jenkyns H.C., Xu W., Silva R.L., Matthews K.J., Mather T.A., Niocaill C.M., Riding J.B., 2022. Reduced plate motion controlled timing of Early Jurassic Karoo-Ferrar large igneous province volcanism. Sci. Adv. 8 (36), eabo0866.

[107]

Schöllhorn I., Adatte T., Van de Schootbrugge B., Houben A., Charbonnier G., Janssen N., Föllmi K.B., 2020. Climate and environmental response to the break-up of Pangea during the Early Jurassic (Hettangian-Pliensbachian); the Dorset coast (UK) revisited. Global Planet. Change 185, 103096.

[108]

Schulz E., 1967. Sporenpaläontologische Untersuchungen rätoliassischer Schichten im Zentralteil des Germanischen Becken. Paläontologischen Abhandlungen Abteilung B Paläobotanik 2, 633 p.

[109]

Su J., Tian Z., Shen Y., Liu B., Xu Q., Wang Y., 2020. Differential diagenetic evolution and hydrocarbon charging of the tight limestone reservoir of the Da'anzhai Member in the central Sichuan Basin, China. Interpretation 8 (4), T1007-T1022.

[110]

Slater S.M., Twitchett R.J., Danise S., Vajda V., 2019. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nature Geosci. 12 (6), 462-467.

[111]

Srivastava S.K., 1987. Jurassic spore-pollen assemblages from Normandy (France) and Germany. Geobios 20, 5-79.

[112]

Storm M.S., Hesselbo S.P., Jenkyns H.C., Ruhl M., Ullmann C.V., Xu W.M., Leng M. J., Riding J.B., Gorbanenko O., 2020. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. PNAS 117 (8), 3974-3982.

[113]

Suan G., Mattioli E., Pittet B., Lecuyer C., Sucheras-Marx B., Duarte L.V., Philippe M., Reggiani L., Martineau F., 2010. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth Planet. Sci. Lett. 290, 448-458.

[114]

Svensen H., Planke S., Chevallier L., Malthe-Sørenssen A., Corfu F., Jamtveit B., 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256 (3-4), 554-566.

[115]

Talbot M.R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. 80 (4), 261-279.

[116]

Them II T.R., Gill B.C., Caruthers A.H., Gröcke D.R., Tulsky E.T., Martindale R.C., Poulton T.P., Smith P.L., 2017. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth Planet. Sci. Lett. 459, 118-126.

[117]

Trecalli A., Spangenberg J., Adatte T., Föllmi K.B., Parente M., 2012. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event. Earth Planet. Sci. Lett. 357, 214-225.

[118]

Tyson R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Springer, Netherlands, Dordrecht, pp. 367-382.

[119]

Vakhrameyev V.A., 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge University Press, Cambridge, p. 340.

[120]

Van Erve A.W., 1977. Palynological investigation in the lower jurassic of the vicentinian alps (Northeastern Italy). Rev. Palaeobot. Palyno. 23, 1-117.

[121]

Wang E., Guo T., Li M., 2024. Paleosedimentary environmental reconstruction and mechanisms of the response to the Toarcian OAE in a lacustrine shale system. Sci. Rep. 14 (1), 14082.

[122]

Wang Y.D., Mosbrugger V., Zhang H., 2005. Early to Middle Jurassic vegetation and climatic events in the Qaidam Basin, Northwest China. Palaeogeog. Palaeoclimatol. Palaeoecol. 224, 200-216.

[123]

Wenzel B., 2000. Differential preservation of primary isotopic signatures in Silurian brachiopods from northern Europe. J. Sediment. Res. 70 (1), 194-209.

[124]

Wood G.D., Gabriel A.M., Lawson J.C., 1996. Palynological techniques - processing and microscopy. In: JansoniusJ., McGregorD.C. (Palynology:Eds.), principles and applications. American Association of Stratigraphic Palynologists Foundation, Dallas, pp. 29-50.

[125]

Xu Q.L., Hao F., Ma Y.S., Liu B., Song X.M., 2020. Effects of the matrix on the oil production of supertight limestone in a lacustrine mixed sedimentary environment: the case of the Jurassic Da'anzhai member in the central Sichuan Basin, China. Mar. Pet. Geol. 121, 104583.

[126]

Xu W., Ruhl M., Jenkyns H., Hesselbo S., Riding J., Selby D., Naafs B., Weijers J., Pancost R., Tegelaar E., 2017. Carbon sequestration in an expanding lake system during the Toarcian Oceanic Anoxic Event. Nature Geosci. 10, 129-135.

[127]

Xu W.M., Weijers J.W.H., Ruhl M., Idiz E.F., Jenkyns H.C., Riding J.B., Gorbanenko O., Hesselbo S.P., 2021. Molecular and petrographical evidence for lacustrine environmental and biotic change in the palaeo-Sichuan megalake (China) during the Toarcian Oceanic Anoxic Event. Geol. Soc., London, Spec. Publ. 514, 335-357.

[128]

Yang B., Zhang X., Yi J., Shi W., Sun S., Sun H., Su G., 2024. Carbon-cycle perturbations and intensified continental chemical weathering linked to volcanism during the Jenkyns Event in the Ordos Basin. Geol. J. 59 (4), 1298-1321.

[129]

Zakharov V., Shurygin B., Il'ina V., Nikitenko B., 2006. Pliensbachian-Toarcian biotic turnover in north Siberia and the Arctic region. Stratigr. Geol. Correl. 14, 399-417.

[130]

Zhang Q., Gong E., Zhang Y.L., Guan C.Q., 2022. Palynoflora and palaeoclimate of the late Early Jurassic (Toarcian) in eastern Liaoning, China. Palaeobio. Palaeoenv. 102, 73-88.

[131]

Zhou X.M., 2021. Characteristics Of fish Coprolites in the Da'anzha Member, Northeast Sichuan Basin:Implications for Toarcian (lower Jurassic) Lake Ecosystem. M.S. thesis, Chengdu University of Technology, p. 57 (in Chinese).

AI Summary AI Mindmap
PDF

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/